Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Ethical Approval
2.2. Experimental Design and Protocol
2.3. Measurements
2.3.1. Baseline Anthropometric Assessment
2.3.2. Gas Exchange
2.3.3. Muscle Oxygenation
2.4. Data Analysis and Processing
3. Results
3.1. Submaximal and Maximal Cardiorespiratory Responses
3.2. Submaximal and Maximal Muscle Oxygenation Responses
4. Discussion
Methodological Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoppeler, H.; Vogt, M. Muscle tissue adaptations to hypoxia. J. Exp. Biol. 2001, 204, 3133–3139. [Google Scholar] [CrossRef] [PubMed]
- Roach, R.; Kayser, B. Exercise in hypoxia: Performance, limits and training. In High Altiude: An Exploration of Human Adaptation; Hornbein, T.F., Schoene, R.B., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 663–705. [Google Scholar]
- Smith, C.A.; Dempsey, J.A.; Hornbein, T.F. Control of breathing at high altitude. In High Altiude: An Exploration of Human Adaptation; Hornbein, T.F., Schoene, R.B., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 139–165. [Google Scholar]
- Mallet, R.T.; Burtscher, J.; Pialoux, V.; Pasha, Q.; Ahmad, Y.; Millet, G.P.; Burtscher, M. Molecular Mechanisms of High-Altitude Acclimatization. Int. J. Mol. Sci. 2023, 24, 1698. [Google Scholar] [CrossRef] [PubMed]
- Astrand, P.-O.; Rodahl, K.; Dahl, H.A.; Stromme, S.B. Textbook of Work Physiology; Human Kinetics: Champaign, IL, USA, 2003. [Google Scholar]
- West, J.B.; Schoene, R.B.; Milledge, J.S. High Altitude Medicine and Physiology; Hodder Education Publishers: London, UK, 2007. [Google Scholar]
- Wehrlin, J.P.; Hallen, J. Linear decrease in.VO2max and performance with increasing altitude in endurance athletes. Eur. J. Appl. Physiol. 2006, 96, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Pugh, L.G.C.; Ward, M.P. SOME EFFECTS OF HIGH ALTITUDE ON MAN. Lancet 1956, 268, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Kapus, J.; Mekjavic, I.B.; McDonnell, A.C.; Usaj, A.; Vodicar, J.; Najdenov, P.; Jakovljevic, M.; Jaki Mekjavic, P.; Zvan, M.; Debevec, T. Cardiorespiratory Responses of Adults and Children during Normoxic and Hypoxic Exercise. Int. J. Sports Med. 2017, 38, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Kriemler, S.; Radtke, T.; Burgi, F.; Lambrecht, J.; Zehnder, M.; Brunner-La Rocca, H.P. Short-term cardiorespiratory adaptation to high altitude in children compared with adults. Scand. J. Med. Sci. Sports 2016, 26, 147–155. [Google Scholar] [CrossRef]
- Usaj, A.; Mekjavic, I.B.; Kapus, J.; McDonnell, A.C.; Jaki Mekjavic, P.; Debevec, T. Muscle Oxygenation During Hypoxic Exercise in Children and Adults. Front. Physiol. 2019, 10, 1385. [Google Scholar] [CrossRef] [Green Version]
- Dotan, R.; Mitchell, C.; Cohen, R.; Klentrou, P.; Gabriel, D.; Falk, B. Child-adult differences in muscle activation—A review. Pediatr. Exerc. Sci. 2012, 24, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, B.O.; Gollnick, P.D.; Saltin, B. Muscle Metabolism and Enzyme Activities after Training in Boys 11–13 Years Old. Acta Physiol. Scand. 1973, 87, 485–497. [Google Scholar] [CrossRef]
- Eriksson, O.; Saltin, B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults. Acta Paediatr. Belg. 1974, 28, 257–265. [Google Scholar]
- Turley, K.R.; Wilmore, J.H. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J. Appl. Physiol. 1997, 83, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Vinet, A.; Nottin, S.; Lecoq, A.M.; Obert, P. Cardiovascular responses to progressive cycle exercise in healthy children and adults. Int. J. Sports Med. 2002, 23, 242–246. [Google Scholar] [CrossRef]
- Springer, C.; Barstow, T.J.; Cooper, D.M. Effects of hypoxia on ventilatory control during exercise in children and adults. Pediatr. Res. 1989, 25, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Springer, C.; Barstow, T.J.; Wasserman, K.; Cooper, D.M. Oxygen uptake and heart rate responses during hypoxic exercise in children and adults. Med. Sci. Sports Exerc. 1991, 23, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Rieger, M.; Algaze, I.; Rodriguez-Vasquez, A.; Smith, K.; Stembridge, M.; Smith, B.; Radom-Aizik, S.; McManus, A. Kids With Altitude: Acute Mountain Sickness and Changes in Body Mass and Total Body Water in Children Travelling to 3800 m. Wilderness Environ. Med. 2022, 33, 33–42. [Google Scholar] [CrossRef]
- Rieger, M.G.; Tallon, C.M.; Perkins, D.R.; Smith, K.J.; Stembridge, M.; Piombo, S.; Radom-Aizik, S.; Cooper, D.M.; Ainslie, P.N.; McManus, A.M. Cardiopulmonary and cerebrovascular acclimatization in children and adults at 3800 m. J. Physiol. 2022, 600, 4849–4863. [Google Scholar] [CrossRef] [PubMed]
- Casey, D.P.; Curry, T.B.; Joyner, M.J. Measuring muscle blood flow: A key link between systemic and regional metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Casey, D.P.; Joyner, M.J. Local control of skeletal muscle blood flow during exercise: Influence of available oxygen. J. Appl. Physiol. 2011, 111, 1527–1538. [Google Scholar] [CrossRef] [Green Version]
- Casey, D.P.; Joyner, M.J. Compensatory vasodilatation during hypoxic exercise: Mechanisms responsible for matching oxygen supply to demand. J. Physiol. 2012, 590, 6321–6326. [Google Scholar] [CrossRef]
- Joyner, M.J.; Casey, D.P. Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiol. Rev. 2015, 95, 549–601. [Google Scholar] [CrossRef] [Green Version]
- Kalliokoski, K.K.; Scheede-Bergdahl, C.; Kjaer, M.; Boushel, R. Muscle perfusion and metabolic heterogeneity: Insights from noninvasive imaging techniques. Exerc. Sport Sci. Rev. 2006, 34, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Mahon, A.D.; Vaccaro, P. Ventilatory threshold and VO2max changes in children following endurance training. Med. Sci. Sports Exerc. 1989, 21, 425–431. [Google Scholar] [CrossRef]
- Grassi, B.; Quaresima, V.; Marconi, C.; Ferrari, M.; Cerretelli, P. Blood lactate accumulation and muscle deoxygenation during incremental exercise. J. Appl. Physiol. 1999, 87, 348–355. [Google Scholar] [CrossRef] [PubMed]
- van der Zwaard, S.; Jaspers, R.T.; Blokland, I.J.; Achterberg, C.; Visser, J.M.; den Uil, A.R.; Hofmijster, M.J.; Levels, K.; Noordhof, D.A.; de Haan, A.; et al. Oxygenation Threshold Derived from Near-Infrared Spectroscopy: Reliability and Its Relationship with the First Ventilatory Threshold. PLoS ONE 2016, 11, e0162914. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, D.C.; Wilkerson, D.P.; Jones, A.M. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur. J. Appl. Physiol. 2008, 102, 403–410. [Google Scholar] [CrossRef]
- Sanni, A.A.; McCully, K.K. Interpretation of Near-Infrared Spectroscopy (NIRS) Signals in Skeletal Muscle. J. Funct. Morphol. Kinesiol. 2019, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Debevec, T.; Mekjavic, I.B. Short intermittent hypoxic exposures augment ventilation but do not alter regional cerebral and muscle oxygenation during hypoxic exercise. Respir. Physiol. Neurobiol. 2012, 181, 132–142. [Google Scholar] [CrossRef]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclair, E.; Borel, B.; Baquet, G.; Berthoin, S.; Mucci, P.; Thevenet, D.; Reguem, S.C. Reproducibility of measurement of muscle deoxygenation in children during exercise. Pediatr. Exerc. Sci. 2010, 22, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, V.M.; Jansen, J.P.; van Dijk, T.; Spee, R.F.; Meijer, E.J.; Kemps, H.M.; Wijn, P.F. The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: The extent of the problem. Physiol. Meas. 2017, 38, 539–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Beekvelt, M.C.; Colier, W.N.; Wevers, R.A.; Van Engelen, B.G. Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J. Appl. Physiol. 2001, 90, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallum, A.M.; Varsani, H.; Holton, J.L.; Marie, S.K.; Wedderburn, L.R. Morphometric analyses of normal pediatric brachial biceps and quadriceps muscle tissue. Histol. Histopathol. 2013, 28, 525–530. [Google Scholar] [CrossRef]
- Neder, J.A.; Dal Corso, S.; Malaguti, C.; Reis, S.; De Fuccio, M.B.; Schmidt, H.; Fuld, J.P.; Nery, L.E. The pattern and timing of breathing during incremental exercise: A normative study. Eur. Respir. J. 2003, 21, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Boule, M.; Gaultier, C.; Girard, F. Breathing pattern during exercise in untrained children. Respir. Physiol. 1989, 75, 225–233. [Google Scholar] [CrossRef]
- Springer, C.; Cooper, D.M.; Wasserman, K. Evidence that maturation of the peripheral chemoreceptors is not complete in childhood. Respir. Physiol. 1988, 74, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, B.G.; Nuding, S.C.; Segers, L.S.; Morris, K.F. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology 2018, 33, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Timmons, B.W.; Bar-Or, O.; Riddell, M.C. Oxidation rate of exogenous carbohydrate during exercise is higher in boys than in men. J. Appl. Physiol. 2003, 94, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Martinez, L.R.; Haymes, E.M. Substrate utilization during treadmill running in prepubertal girls and women. Med. Sci. Sport. Exerc. 1992, 24, 975–983. [Google Scholar] [CrossRef]
- Sarelius, I.; Pohl, U. Control of muscle blood flow during exercise: Local factors and integrative mechanisms. Acta Physiol. 2010, 199, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.S.; Duteil, S.; Wary, C.; Wray, D.W.; Hoff, J.; Carlier, P.G. Human skeletal muscle intracellular oxygenation: The impact of ambient oxygen availability. J. Physiol. 2006, 571, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Welsman, J.; Armstrong, N. Interpreting Aerobic Fitness in Youth: The Fallacy of Ratio Scaling. Pediatr. Exerc. Sci. 2019, 31, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Keramidas, M.E.; Debevec, T.; Amon, M.; Kounalakis, S.N.; Simunic, B.; Mekjavic, I.B. Respiratory muscle endurance training: Effect on normoxic and hypoxic exercise performance. Eur. J. Appl. Physiol. 2010, 108, 759–769. [Google Scholar] [CrossRef]
- Lancaster, G.; Debevec, T.; Millet, G.P.; Poussel, M.; Willis, S.J.; Mramor, M.; Goricar, K.; Osredkar, D.; Dolzan, V.; Stefanovska, A. Relationship between cardiorespiratory phase coherence during hypoxia and genetic polymorphism in humans. J. Physiol. 2020, 598, 2001–2019. [Google Scholar] [CrossRef] [Green Version]
- Uryumtsev, D.Y.; Gultyaeva, V.V.; Zinchenko, M.I.; Baranov, V.I.; Melnikov, V.N.; Balioz, N.V.; Krivoschekov, S.G. Effect of Acute Hypoxia on Cardiorespiratory Coherence in Male Runners. Front. Physiol. 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.M.d.; Cairo, B.; Porta, A. On the significance of estimating cardiorespiratory coupling strength in sports medicine. Front. Netw. Physiol. 2023, 2, 1114733. [Google Scholar] [CrossRef]
- Millet, G.P.; Debevec, T. CrossTalk proposal: Barometric pressure, independent of PO2, is the forgotten parameter in altitude physiology and mountain medicine. J. Physiol. 2020, 598, 893–896. [Google Scholar] [CrossRef]
Adults | Children | p Value | p Value | |||
---|---|---|---|---|---|---|
NOR | HYP | NOR | HYP | (NOR:HYP) | (Adults:Children) | |
PGET (W·kg−1) | 2.88 ± 0.50 | 2.37 ± 0.48 | 1.43 ± 0.44 | 1.29 ± 0.31 | 0.01 | <0.01 |
E GET (L·min−1·kg−1) | 0.90 ± 0.17 | 0.94 ± 0.17 | 0.74 ± 0.11 | 0.87 ± 0.27 | 0.09 | 0.03 |
2 GET (mL·min−1·kg−1) | 39 ± 5 | 35 ± 3 | 34 ± 5 | 33 ± 9 | 0.19 | 0.05 |
2 GET (mL·min−1·kg−1) | 36 ± 7 | 35 ± 7 | 24 ± 4 | 28 ± 7 | 0.58 | <0.01 |
fR GET (breaths·min−1) | 25 ± 5 | 26 ± 6 | 36 ± 8 | 40 ± 12 | 0.07 | <0.01 |
RER GET | 0.97 ± 0.06 | 0.98 ± 0.14 | 0.88 ± 0.04 | 0.94 ± 0.06 | 0.08 | <0.01 |
HRGET (min−1) | 161 ± 24 | 158 ± 14 | 147 ± 13 | 157 ± 11 | 0.31 | 0.06 |
PETO2GET (kPa) | 12.8 ± 0.7 | 7.0 ± 0.7 | 13.8 ± 0.4 | 7.0 ± 1.4 | <0.01 | 0.01 |
PETCO2GET (kPa) | 6.1 ± 0.6 | 5.2 ± 0.4 | 4.9 ± 0.2 | 4.6 ± 0.3 | <0.01 | <0.01 |
Adults | Children | p Value | p Value | |||
---|---|---|---|---|---|---|
NOR | HYP | NOR | HYP | (NOR:HYP) | (Adults:Children) | |
PMAX (W·kg−1) | 4.52 ± 0.42 | 3.80 ± 0.43 | 3.80 ± 0.73 | 2.70 ± 0.56 | <0.01 | <0.01 |
E MAX (L·min−1·kg−1) | 1.95 ± 0.30 | 1.92 ± 0.29 | 1.81 ± 0.43 | 1.64 ± 0.46 | 0.32 | 0.04 |
2 MAX (mL·min−1·kg−1) | 53 ± 5 | 48 ± 4 | 50 ± 7 | 44 ± 10 | <0.01 | 0.10 |
2 MAX (mL·min−1·kg−1) | 64 ± 6 | 51 ± 15 | 54 ± 11 | 49 ± 11 | <0.01 | 0.05 |
fR MAX (breaths·min−1) | 52 ± 6 | 52 ± 8 | 59 ± 10 | 54 ± 14 | 0.28 | 0.25 |
RER | 1.22 0.06 | 1.15 0.22 | 1.07 0.06 | 1.15 0.20 | 0.76 | 0.06 |
HRMAX (L·min−1) | 182 ± 11 | 184 ± 8 | 186 ± 12 | 180 ± 10 | 0.72 | 0.98 |
SpO2 MAX (%) | 94 ± 2 | 75 ± 5 | 96 ± 1 | 77 ± 4 | <0.01 | 0.05 |
PETO2 MAX (kPa) | 15.0 ± 0.4 | 8.8 ± 0.8 | 12.4 ± 0.3 | 8.3 ± 0.5 | <0.01 | 0.02 |
PETCO2 MAX (kPa) | 4.9 ± 0.4 | 4.2 ± 0.3 | 4.5 ± 0.2 | 4.3 ± 0.3 | <0.01 | 0.03 |
Adults | Children | |||||
---|---|---|---|---|---|---|
NOR | HYP | p Value | NOR | HYP | p Value | |
O2HbTh (W) | 199 ± 61 | 167 ± 38 | 0.04 | 54 ± 17 | 41 ± 13 | 0.01 |
HHbTh (W) | 215 ± 40 | 166 ± 33 | <0.01 | 58 ± 24 | 38 ± 14 | 0.01 |
tHbTh (W) | 183 ± 73 | 174 ± 42 | 0.70 | 57 ± 19 | 48 ± 18 | 0.10 |
O2HbO2HbTH (AU) | −2.4 ± 4.6 | −7.7 ± 5.2 | 0.01 | 2.1 ± 3.3 | −1.2 ± 2.7 | 0.01 |
HHbHHbTh (AU) | 9.2 ± 5.4 | 12.9 ± 5.3 | 0.01 | 1.0 ± 3.3 | 4.5 ± 4.8 | 0.02 |
tHbtHbTh (AU) | 5.1 ± 5.1 | 5.9 ± 4.4 | 0.60 | 2.6 ± 4.7 | 3.2 ± 5.9 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ušaj, A.; Sotiridis, A.; Debevec, T. Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults. Biology 2023, 12, 457. https://doi.org/10.3390/biology12030457
Ušaj A, Sotiridis A, Debevec T. Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults. Biology. 2023; 12(3):457. https://doi.org/10.3390/biology12030457
Chicago/Turabian StyleUšaj, Anton, Alexandros Sotiridis, and Tadej Debevec. 2023. "Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults" Biology 12, no. 3: 457. https://doi.org/10.3390/biology12030457
APA StyleUšaj, A., Sotiridis, A., & Debevec, T. (2023). Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults. Biology, 12(3), 457. https://doi.org/10.3390/biology12030457