The Effects of 6-Month Aqua Aerobics Training on Cardiometabolic Parameters in Perimenopausal Women—A Randomized Controlled Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Preparation of Blood Samples for Analysis
2.4. Training Programme
- warm-up (walking in place, arm exercises in different planes) warm-up/cardio (running in place, running in multiple directions, arm exercises with different hand positions, movement exercises in different directions);
- main part (aerobic/strengthening) (arm exercises in multiple directions and with different ranges of movement (pushing/scooping), leg exercises (single- and double-leg raises, jumps, jumping jack, scissors, grounded, elevated), coordination exercises);
- cool-down (exercises in a front-lying position, exercises in a back-lying position, position change exercises, stretching and relaxing exercises).
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Utian, W.H. Psychosocial and Socioeconomic Burden of Vasomotor Symptoms in Menopause: A Comprehensive Review. Health Qual. Life Outcomes 2005, 3, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechien, J.R.; Hans, S.; De Marrez, L.G.; Dequanter, D.; Rodriguez, A.; Muls, V.; Ben Abdelouahed, F.; Evrard, L.; Maniaci, A.; Saussez, S.; et al. Prevalence and Features of Laryngopharyngeal Reflux in Patients with Primary Burning Mouth Syndrome. Laryngoscope 2021, 131, E2627–E2633. [Google Scholar] [CrossRef] [PubMed]
- Ford, K.; Sowers, M.; Crutchfield, M.; Wilson, A.; Jannausch, M. A Longitudinal Study of the Predictors of Prevalence and Severity of Symptoms Commonly Associated with Menopause. Menopause 2005, 12, 308. [Google Scholar] [CrossRef] [PubMed]
- Molvarec, A.; Czegle, I. Menopause and Its Management: A Review. Dev. Health Sci. 2022, 4, 38–41. [Google Scholar] [CrossRef]
- Bastian, L.A.; Smith, C.M.; Nanda, K. Is This Woman Perimenopausal? JAMA 2003, 289, 895–902. [Google Scholar] [CrossRef]
- Olszanecka, A.; Dragan, A.; Kawecka-Jaszcz, K.; Fedak, D.; Czarnecka, D. Relationships of Insulin-like Growth Factor-1, Its Binding Proteins, and Cardiometabolic Risk in Hypertensive Perimenopausal Women. Metabolism 2017, 69, 96–106. [Google Scholar] [CrossRef]
- Watanabe, T.; Itokawa, M.; Nakagawa, Y.; Iguchi, T.; Katagiri, T. Increased Levels of Insulin-like Growth Factor Binding Protein-3 in Hypertensive Patients with Carotid Atherosclerosis. Am. J. Hypertens. 2003, 16, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Agrinier, N.; Cournot, M.; Dallongeville, J.; Arveiler, D.; Ducimetière, P.; Ruidavets, J.-B.; Ferrières, J. Menopause and Modifiable Coronary Heart Disease Risk Factors: A Population Based Study. Maturitas 2010, 65, 237–243. [Google Scholar] [CrossRef]
- Fukami, K.; Koike, K.; Hirota, K.; Yoshikawa, H.; Miyake, A. Perimenopausal Changes in Serum Lipids and Lipoproteins: A 7-Year Longitudinal Study. Maturitas 1995, 22, 193–197. [Google Scholar] [CrossRef]
- Muka, T.; Oliver-Williams, C.; Kunutsor, S.; Laven, J.S.E.; Fauser, B.C.J.M.; Chowdhury, R.; Kavousi, M.; Franco, O.H. Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-Analysis. JAMA Cardiol. 2016, 1, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.; Zhou, Z.; Yu, X.; Wei, S.; Chen, Q.; Nie, S.; Liang, X.; Liu, L. The Predictive Value of Integrated Inflammation Scores in the Survival of Patients with Resected Hepatocellular Carcinoma: A Retrospective Cohort Study. Int. J. Surg. 2017, 42, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Demirdal, T.; Sen, P. The Significance of Neutrophil-Lymphocyte Ratio, Platelet-Lymphocyte Ratio and Lymphocyte-Monocyte Ratio in Predicting Peripheral Arterial Disease, Peripheral Neuropathy, Osteomyelitis and Amputation in Diabetic Foot Infection. Diabetes Res. Clin. Pract. 2018, 144, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Shobeiri, P.; Kulasinghe, A.; Rezaei, N. Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Front. Immunol. 2021, 12, 4308. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Tsubosa, Y.; Kawano, T. Correlation Between the Pretherapeutic Neutrophil to Lymphocyte Ratio and the Pathologic Response to Neoadjuvant Chemotherapy in Patients with Advanced Esophageal Cancer. World J. Surg. 2012, 36, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-T.; Jiang, J.-H.; Yang, H.-J.; Wu, Z.; Xiao, Z.-M.; Xiang, B.-D. The Lymphocyte-to-Monocyte Ratio Is a Superior Predictor of Overall Survival Compared to Established Biomarkers in HCC Patients Undergoing Liver Resection. Sci. Rep. 2018, 8, 2535. [Google Scholar] [CrossRef] [Green Version]
- Podgórski, T.; Kryściak, J.; Pluta, B.; Adrian, J.; Marynowicz, J.; Krzykała, M.; Konefał, M.; Chmura, P.; Chmura, J.; Andrzejewski, M. A Practical Approach to Monitoring Biomarkers of Inflammation and Muscle Damage in Youth Soccer Players during a 6-Month Training Cycle. J. Hum. Kinet. 2021, 80, 185–197. [Google Scholar] [CrossRef]
- Carrillo-Salinas, F.J.; Ngwenyama, N.; Anastasiou, M.; Kaur, K.; Alcaide, P. Heart Inflammation: Immune Cell Roles and Roads to the Heart. Am. J. Pathol. 2019, 189, 1482–1494. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Moore, X.-L.; Dart, A.M.; Wang, L.-M. Systemic Inflammatory Response Following Acute Myocardial Infarction. J. Geriatr. Cardiol. JGC 2015, 12, 305–312. [Google Scholar] [CrossRef]
- Ben Jemaa, A.; Salhi, N.; Ben Othmen, M.; Ben Ali, H.; Guissouma, J.; Ghadhoune, H.; Oueslati, R.; Dhaouadi, H. Evaluation of Individual and Combined NLR, LMR and CLR Ratio for Prognosis Disease Severity and Outcomes in Patients with COVID-19. Int. Immunopharmacol. 2022, 109, 108781. [Google Scholar] [CrossRef]
- Kouli, G.-M.; Panagiotakos, D.B.; Kyrou, I.; Georgousopoulou, E.N.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Visceral Adiposity Index and 10-Year Cardiovascular Disease Incidence: The ATTICA Study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.C.; Pizzolanti, G.; Torregrossa, V.; Misiano, G.; Milano, S.; Giordano, C. Visceral Adiposity Index (VAI) Is Predictive of an Altered Adipokine Profile in Patients with Type 2 Diabetes. PLoS ONE 2014, 9, e91969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.C.; Giordano, C. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction. Int. J. Endocrinol. 2014, 2014, e730827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagula, P.; Karumuri, S.; Otikunta, A.N.; Yerrabandi, S.R.V. Correlation of Red Blood Cell Distribution Width with the Severity of Coronary Artery Disease—A Single Center Study. Indian Heart J. 2017, 69, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Nowinka, P.; Korab-Karpinski, E.; Guzik, P. A Thousand Words about the Link between Red Blood Cell Distribution Width and Heart Failure. J. Med. Sci. 2019, 88, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Sacks, F.; Arnold, M.; Moye, L.; Davis, B.; Pfeffer, M. Relation between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People with Coronary Disease. Circulation 2008, 117, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Azab, B.; Torbey, E.; Hatoum, H.; Singh, J.; Khoueiry, G.; Bachir, R.; Joseph, T.; McGinn, J.; McCord, D.; Lafferty, J. Usefulness of Red Cell Distribution Width in Predicting All-Cause Long-Term Mortality after Non-ST-Elevation Myocardial Infarction. Cardiology 2011, 119, 72–80. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- Hildenbrand, K.; Becker, B.E.; Whitcomb, R.; Sanders, J.P. Age-Dependent Autonomic Changes Following Immersion in Cool, Neutral, and Warm Water Temperatures. Int. J. Aquat. Res. Educ. 2010, 4. [Google Scholar] [CrossRef] [Green Version]
- Hildenbrand, K.; Nordio, S.; Freson, T.S.; Becker, B.E. Development of an Aquatic Exercise Training Protocol for the Asthmatic Population. Int. J. Aquat. Res. Educ. 2010, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Becker, B.E. Aquatic Therapy: Scientific Foundations and Clinical Rehabilitation Applications. PM&R 2009, 1, 859–872. [Google Scholar] [CrossRef]
- Wouters, E.J.M.; Van Nunen, A.M.A.; Geenen, R.; Kolotkin, R.L.; Vingerhoets, A.J.J.M. Effects of Aquajogging in Obese Adults: A Pilot Study. J. Obes. 2009, 2010, e231074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meredith-Jones, K.; Waters, D.; Legge, M.; Jones, L. Upright Water-Based Exercise to Improve Cardiovascular and Metabolic Health: A Qualitative Review. Complement. Ther. Med. 2011, 19, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Rewald, S.; Mesters, I.; Emans, P.J.; Arts, J.J.C.; Lenssen, A.F.; de Bie, R.A. Aquatic Circuit Training Including Aqua-Cycling in Patients with Knee Osteoarthritis: A Feasibility Study. J. Rehabil. Med. 2015, 47, 376–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delevatti, R.; Marson, E.; Kruel, L.F. Effect of Aquatic Exercise Training on Lipids Profile and Glycaemia: A Systematic Review. Rev. Andal. Med. Deporte 2015, 8, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Dargatz, T.; Röwekamp, A. Aqua-Fitness: Aqua-Aerobic, Aqua-Power, Aqua-Jogging, Wassergymnastik; Stiebner Verlag GmbH: München, Germany, 2017. [Google Scholar]
- Nagle, E.F.; Sanders, M.E.; Franklin, B.A. Aquatic High Intensity Interval Training for Cardiometabolic Health: Benefits and Training Design. Am. J. Lifestyle Med. 2017, 11, 64–76. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Volaklis, K.A.; Spassis, A.T.; Tokmakidis, S.P. Land versus Water Exercise in Patients with Coronary Artery Disease: Effects on Body Composition, Blood Lipids, and Physical Fitness. Am. Heart J. 2007, 154, 560.e1–560.e6. [Google Scholar] [CrossRef]
- Costa, R.R.; Buttelli, A.C.K.; Fagundes, A.d.O.; Fonseca, G.A.; Pilla, C.; Barreto, M.F.; Viero, P.A.; Rocha, V.d.M.B.d.; Alberton, C.L.; Kruel, L.F.M. The Beneficial Effects of a Water-Based Aerobic Exercise Session on the Blood Lipids of Women with Dyslipidemia Are Independent of Their Training Status. Clinics 2020, 75, e1183. [Google Scholar] [CrossRef]
- Pinto, A.; Di Raimondo, D.; Tuttolomondo, A.; Butta, C.; Milio, G.; Licata, G. Effects of Physical Exercise on Inflammatory Markers of Atherosclerosis. Curr. Pharm. Des. 2012, 18, 4326–4349. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.; McAuley, P.; Lavie, C.J.; Despres, J.-P.; Arena, R.; Kokkinos, P. Physical Activity and Cardiorespiratory Fitness as Major Markers of Cardiovascular Risk: Their Independent and Interwoven Importance to Health Status. Prog. Cardiovasc. Dis. 2015, 57, 306–314. [Google Scholar] [CrossRef]
- dos Santos Leonel, L.; de Brum, G.; Lima Alberton, C.; Sudatti Delevatti, R. Aquatic Training Improves HbA1c, Blood Pressure and Functional Outcomes of Patients with Type 2 Diabetes: A Systematic Review with Meta-Analysis. Diabetes Res. Clin. Pract. 2023, 197, 110575. [Google Scholar] [CrossRef] [PubMed]
- Pendergast, D.; Moon, R.; Krasney, J.; Held, H.; Zamparo, P. Human Physiology in an Aquatic Environment. Compr. Physiol. 2015, 5, 1705–1750. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.S.; Botton, C.E.; David, G.B.; Pinto, S.S.; Häfele, M.S.; Alberton, C.L. Cardiorespiratory Parameters Comparison Between Incremental Protocols Performed in Aquatic and Land Environments by Healthy Individuals: A Systematic Review and Meta-Analysis. Sport. Med. 2022, 52, 2247–2270. [Google Scholar] [CrossRef]
- Nagashima, K.; Nose, H.; Yoshida, T.; Kawabata, T.; Oda, Y.; Yorimoto, A.; Uemura, O.; Morimoto, T. Relationship between Atrial Natriuretic Peptide and Plasma Volume during Graded Exercise with Water Immersion. J. Appl. Physiol. 1995, 78, 217–224. [Google Scholar] [CrossRef]
- Wiesner, S.; Birkenfeld, A.L.; Engeli, S.; Haufe, S.; Brechtel, L.; Wein, J.; Hermsdorf, M.; Karnahl, B.; Berlan, M.; Lafontan, M.; et al. Neurohumoral and Metabolic Response to Exercise in Water. Horm. Metab. Res. 2010, 42, 334–339. [Google Scholar] [CrossRef]
- Weise, S.D.; Grandjean, P.W.; Rohack, J.J.; Womack, J.W.; Crouse, S.F. Acute Changes in Blood Lipids and Enzymes in Postmenopausal Women after Exercise. J. Appl. Physiol. 2005, 99, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadreza, B.; Farzad, H.; Davoud, K.; Prof, A.F. Prognostic Significance of the Complex “Visceral Adiposity Index” vs. Simple Anthropometric Measures: Tehran Lipid and Glucose Study. Cardiovasc. Diabetol. 2012, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Ananthaseshan, S.; Bojakowski, K.; Sacharczuk, M.; Poznanski, P.; Skiba, D.S.; Prahl Wittberg, L.; McKenzie, J.; Szkulmowska, A.; Berg, N.; Andziak, P.; et al. Red Blood Cell Distribution Width Is Associated with Increased Interactions of Blood Cells with Vascular Wall. Sci. Rep. 2022, 12, 13676. [Google Scholar] [CrossRef]
- Landõr, A.; Maaroos, J.; Lepik, M.; Vider, J. The Effect of Physical Exercise of Different Intensity on the Blood Parameters in Athletes. Pap. Anthropol. 2002, 11, 135–150. [Google Scholar]
- Mertoglu, C.; Gunay, M. Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio as Useful Predictive Markers of Prediabetes and Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S127–S131. [Google Scholar] [CrossRef]
- Karavidas, A.; Lazaros, G.; Tsiachris, D.; Pyrgakis, V. Aging and the Cardiovascular System. Hell. J. Cardiol. 2010, 51, 421–427. [Google Scholar]
- Eroglu, S.; Karatas, G. Platelet/Lymphocyte Ratio Is an Independent Predictor for Osteoporosis. Saudi Med. J. 2019, 40, 360–366. [Google Scholar] [CrossRef] [PubMed]
Control Group (n = 16) | Study Group (n = 14) | |||||
---|---|---|---|---|---|---|
Baseline | 6 Months | p-Value | Baseline | 6 Months | p-Value | |
Age (year) | 47.00 (7.00) | 48.43 (6.72) | ||||
Body weight (kg) | 69.44 (12.36) | 67.34 (11.67) | 0.0174 (ES: 0.175) | 70.87 (10.49) | 70.85 (11.11) | 0.6377 |
Body height (cm) | 164.44 (6.79) | 161.36 (6.26) | ||||
BMI (kg/m2) | 25.59 (3.65) | 24.83 (3.59) | 0.0106 (ES: 0.210) | 27.19 (3.24) | 27.17 (3.57) | 0.7007 |
FM % | 32.80 (7.21) | 30.60 (5.64) | 0.1034 | 34.66 (4.65) | 33.51 (5.68) | 0.1405 |
MM % | 43.64 (4.46) | 43.91 (5.43) | 0.7332 | 43.52 (4.17) | 48.66 (4.16) | 0.3152 |
VFA | 5.87 (2.22) | 5.25 (1.84) | 0.0277 (ES: 0.304) | 6.71 (1.98) | 6.57 (1.99) | 0.5286 |
WHR | 0.90 (0.07) | 0.90 (0.07) | 0.9096 | 0.94 (0.07) | 0.79 (0.07) | 0.0009 (ES: 0.143) |
VAI | 3.25 (1.92) | 3.57 (2.64) | 0.3010 | 3.96 (4.56) | 3.66 (3.67) | 0.5098 |
SBP (mmHg) | 116.25 (14.32) | 112.50 (14.26) | 0.2132 | 123.21 (9.12) | 115.00 (15.19) | 0.0917 |
DBP (mmHg) | 77.50 (10.65) | 75.00 (10.80) | 0.3669 | 86.79 (6.96) | 78.93 (8.59) | 0.0185 (ES: 1.005) |
Control Group (n = 16) | Study Group (n = 14) | |||||
---|---|---|---|---|---|---|
Baseline | 6 Months | p-Value | Baseline | 6 Months | p-Value | |
WBC (109/L) | 6.37 (1.61) | 6.32 (1.47) | 0.7764 | 6.74 (2.16) | 7.31 (2.11) | 0.0868 |
RBC (1012/L) | 4.36 (0.28) | 4.30 (0.28) | 0.2805 | 4.46 (0.25) | 4.52 (0.25) | 0.0901 |
HGB (mmol/L) | 13.05 (0.79) | 13.09 (0.89) | 0.3152 | 13.22 (0.96) | 13.88 (1.09) | 0.0013 (ES: 0.643) |
PLT (109/L) | 227.56 (51.13) | 238.12 (42.34) | 0.0703 | 245.93 (39.29) | 244.79 (30.09) | 0.8339 |
RDW-CV (%) | 13.79 (0.46) | 14.03 (0.61) | 0.0202 (ES: 0.444) | 13.75 (0.95) | 14.06 (0.29) | 0.1961 |
PRL | 104.48 (29.38) | 103.84 (23.58) | 0.8361 | 98.66 (20.27) | 89.58 (19.16) | 0.0219 (ES: 0.460) |
LMR | 8.43 (2.64) | 7.74 (1.64) | 0.7959 | 7.94 (3.16) | 7.89 (1.59) | 0.5936 |
TC (mg/dL) | 216.87 (22.16) | 212.62 (24.80) | 0.5895 | 217.93 (35.97) | 202.92 (32.32) | 0.0868 |
HDL-C (mg/dL) | 72.12 (14.29) | 71.00 (15.81) | 0.6247 | 70.43 (16.55) | 69.07 (17.04) | 0.5525 |
LDL-C (mg/dL) | 123.62 (28.61) | 120.62 (28.83) | 0.6603 | 125.14 (28.71) | 114.00 (27.04) | 0.0277 (ES: 0.399) |
TG (mg/dL) | 105.69 (50.36) | 105.31 (51.79) | 0.9176 | 113.07 (91.92) | 117.79 (82.34) | 0.6605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczak, K.; Wochna, K.; Antosiak-Cyrak, K.; Domaszewska, K. The Effects of 6-Month Aqua Aerobics Training on Cardiometabolic Parameters in Perimenopausal Women—A Randomized Controlled Trial. Biology 2023, 12, 588. https://doi.org/10.3390/biology12040588
Sobczak K, Wochna K, Antosiak-Cyrak K, Domaszewska K. The Effects of 6-Month Aqua Aerobics Training on Cardiometabolic Parameters in Perimenopausal Women—A Randomized Controlled Trial. Biology. 2023; 12(4):588. https://doi.org/10.3390/biology12040588
Chicago/Turabian StyleSobczak, Katarzyna, Krystian Wochna, Katarzyna Antosiak-Cyrak, and Katarzyna Domaszewska. 2023. "The Effects of 6-Month Aqua Aerobics Training on Cardiometabolic Parameters in Perimenopausal Women—A Randomized Controlled Trial" Biology 12, no. 4: 588. https://doi.org/10.3390/biology12040588
APA StyleSobczak, K., Wochna, K., Antosiak-Cyrak, K., & Domaszewska, K. (2023). The Effects of 6-Month Aqua Aerobics Training on Cardiometabolic Parameters in Perimenopausal Women—A Randomized Controlled Trial. Biology, 12(4), 588. https://doi.org/10.3390/biology12040588