Conservation of the Bird Cherry (Padus Mill.) Germplasm by Cold Storage and Cryopreservation of Winter Cuttings
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Cold Storage and Cryopreservation
2.3. Comparison of the Morphometric Parameters
2.4. Fruits Biochemistry
2.5. Statistical Analysis of Data
3. Results
3.1. Viability of Cuttings after Cold Storage and Cryopreservation
3.2. Morphometric Parameters of the Rooted Cuttings
3.3. Biochemical Composition of Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simon, F.E. Lowtemperature Physics. Four Lectures; London Press: London, UK, 1952; 132p. [Google Scholar]
- Shubin, N.A. Applied Cryobiology. Cryotechnics and Organization of Cryobanks. In Cell Culture Methods; Research Institute of Cytology: St. Petersburg, Russia, 2008; pp. 250–261. (In Russian) [Google Scholar]
- Popov, A.S. Cryopreservation of Cultured Cells. In Cell Culture Methods; Publishing House of the Polytechnic University of the Institute of Physiology of the Russian Academy of Sciences: St. Petersburg, Russia, 2008; pp. 236–250. (In Russian) [Google Scholar]
- James, E. Storage of Cells at Low Temperatures. In Biotechnology of Agricultural Plants; Agropromizdat: Moscow, Russia, 1987; 301p. (In Russian) [Google Scholar]
- Filipenko, G.I. Development of a System for Low-Temperature Storage and Cryopreservation of the Plant Gene Pool at the N.Vavilov Institute of plant Genetic Resources (VIR). Proc. Appl. Bot. Genet. Breed. 2007, 164, 263–272. (In Russian) [Google Scholar]
- Verzhuk, V.G.; Filipenko, G.I.; Safina, G.F.; Pavlov, A.V.; Zhestkov, A.S. Cryopreservation is an effective method of fruit crops genetic resources conservation. Proc. Appl. Bot. Genet. Breed. 2012, 169, 270–279. (In Russian) [Google Scholar]
- Dzyubenko, N.I. Vavilov strategy of collecting, maintaining and rational utilization of plant genetic resources of cultivated plants and their wild relatives. Proc. Appl. Bot. Genet. Breed. 2012, 169, 4–40. (In Russian) [Google Scholar]
- Pavlov, A.V.; Verzhuk, V.G.; Bondaruk, D.D. The effect of phytohormones and light on the germination of apple pollen with reduced viability. Proc. Appl. Bot. Genet. Breed. 2019, 180, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Verzhuk, V.; Pavlov, A.; Novikova, L.; Filipenko, G. Viability of Red (Ribes rubrum L.) and Black (Ribes nigrum L.) Currant Cuttings in Field Conditions after Cryopreservation in Vapors of Liquid Nitrogen. Agriculture 2020, 10, 476. [Google Scholar] [CrossRef]
- Reed, B.M. Plant Cryopreservation: A Practical Guide; Springer: New York, NY, USA, 2008; p. 513. [Google Scholar]
- Radchenko, O.E.; Erastenkova, M.V.; Pavlov, A.V.; Verzhuk, V.G. Initial and post-cryogenic assesment of viability of russian plum cultivars pollen (Prunus rossica Erem.) in the conditions of the North-West of Russia. E3S Web Conf. 2021, 254, 2002. [Google Scholar] [CrossRef]
- Tikhonova, O.A.; Gavrilova, O.A.; Radchenko, E.A.; Verzhuk, V.G.; Pavlov, A.V. Viability of black currant pollen before and after cryopreservation in liquid nitrogen and features of its morphology. Works on applied botany, genet. And Breeding 2020, 181, 110–119. (In Russian) [Google Scholar] [CrossRef]
- Pavlov, A.V.; Verzhuk, V.G.; Sitnikov, M.N.; Shlyavas, A.V. The influence of phytohormones on the germination of Apple pollen in the process of low-temperature storage. Work. Appl. Bot. Genet. Breed. 2018, 179, 293–300. (In Russian) [Google Scholar] [CrossRef]
- Pavlov, A.V.; Verzhuk, V.G.; Orlova, S.Y.; Radchenko, O.Y.; Yerastenkova, M.V.; Dodonova, A.S.; Gavrilkova, Y.A.; Sitnikov, M.N.; Filipenko, G.I.; Murashev, S.V. Cryopreservation as a Method to Preserve Some Fruit and Berry Crops and Wild Medicinal Plants. Probl. Cryobiol. Cryomed. 2019, 29, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Mu-saceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Gallard, A.; Panis, B.; Dorion, N.; Swennen, R.; Grapin, A. Cryopreservation of Pelargonium apices by droplet-vitrification. Cryoletters 2008, 29, 243–251. [Google Scholar]
- Ukhatova, Y.V.; Gavrilenko, T.A. Cryoconservation methods for vegetatively propagated crops (revive). Biotechnol. Plant Breed. 2018, 1, 52–63. [Google Scholar] [CrossRef]
- Kaviani, B. Conservation of plant genetic resources by cryopreservation. Aust. J. Crop Sci. 2011, 5, 78–80. [Google Scholar]
- Jenderek, M.M.; Forsline, P.; Postman, J.; Stover, E.; Ellis, D. Effect of Geographical Location, Year, and Cultivar on Survival of Malus sp. Dormant Buds Stored in Vapors of Liquid Nitrogen. Hortscience 2011, 46, 1230–1234. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A. Plant cryopreservation. In Life in the Frozen State; Fuller, B., Lane, N., Benson, E.E., Eds.; CRC Press: London, UK, 2004; pp. 329–346. [Google Scholar]
- Forsline, P.I.; Towill, L.E.; Waddel, J.W.; Stushnoff, S.; Lamboy, W.F.; McFerson, G.R. Recovery and longevity of cryopreserved dormant apple buds. J. Am. Soc. Hort. Sci. 1998, 123, 365–370. [Google Scholar] [CrossRef]
- Towill, L.E.; Forshline, P.L.; Walters, C.; Waddell, J.W.; Laufmann, J. Cryopreservation of Malus germplasm using a winter vegetative bud method: Results from 1915 accessions. Cryoletters 2004, 25, 323–334. [Google Scholar] [PubMed]
- Volk, G.M.; Waddell, J.; Bonnart, R.; Towill, L.; Ellis, D.; Luffman, M. High viability of dormant Malus buds after 10 years of storage in liquid nitrogen vapour. Cryoletters 2008, 29, 89–94. [Google Scholar]
- Hoefer, M. Cryopreservation of winter-dormant apple buds: Establishment of a duplicate collection of Malus germplasm. Plant Cell Tissue Organ Cult. 2015, 121, 647–656. [Google Scholar] [CrossRef]
- Acker, J.P.; Adkins, S.; Alves, A.; Horna, D.; Toll, J. Feasibility Study for a Safety Back-Up Cryopreservation Facility, Inde-pendent Expert Report, July 2017; Biodiversity International: Rome, Italy, 2017; 100p, Available online: https://hdl.handle.net/10568/91009 (accessed on 22 July 2023).
- Panis, B.; Nagel, M.; Van den Houwe, I. Challenges and Prospects for the Conservation of Crop Genetic Resources in Field Genebanks, in In Vitro Collections and/or in Liquid Nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-R.; Bi, W.; Shukla, M.R.; Ren, L.; Hamborg, Z.; Blystad, D.-R.; Saxena, P.K.; Wang, Q.-C. Epigenetic and Genetic Integrity, Metabolic Stability, and Field Performance of Cryopreserved Plants. Plants 2021, 10, 1889. [Google Scholar] [CrossRef]
- Orlova, S.Y.; Yushev, A.A.; Shelenga, T.V. Chemical composition of bird cherry fruits in the Northwestern region of Russia. Proc. Appl. Bot. Genet. Breed. 2020, 181, 65–72. [Google Scholar] [CrossRef]
- Simagin, V.S.; Lokteva, A.V. Creation of large-fruited varieties of bird cherry on the basis of wild species for the northern and eastern regions of Russia/Works on applied botany, genetics, and breeding. SPb 2021, 182, 123–130. (In Russian) [Google Scholar] [CrossRef]
- Verzhuk, V.G.; Pavlov, A.V. Viability of Cuttings and Biochemical Evaluation of Black Currant Berries (Ribes nigrum L.) and Gooseberries (Grossularia Mill.) after Cryopreservation in Liquid Nitrogen Vapor (–183 … –185 °C). In Collection of Scientific Papers Dedicated to the 110th Anniversary of the Honored Scientist of the RSFSR K.D. Sergeeva. Modern Trends in the Sustainable Development of Berry Growing in Russia (Currants, Gooseberries); Federal State Budgetary Scientific Institution «Federal Research Center the N.I.Vavilov All-Russian Institute of Plant Genetic Resources»: Michurinsk, Russia, 2018; pp. 13–25. (In Russian) [Google Scholar]
- Engels, J.M.M.; Tao, K.L. Genebank Standards; FAO: Rome, Italy; IPGRI: Aleppo, Syrian Arab Republic, 1994; p. 13. [Google Scholar]
- Genebank Standards For Plant Genetic Resources For Food And Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014.
- Benson, E.E. Cryopreservayion. In Plant Conservation Biotechnology; Benson, E.E., Ed.; Taylor & Francis Ltd.: London, UK, 1999; pp. 83–97. [Google Scholar]
- Sedov, E.N.; Ogol’tsova, T.P. (Eds.) The Program and Methodology for Studying Varieties of Fruit, Berry and Nut Crops; VNIISPK Publishing House: Orel, Russia, 1999; pp. 300–350. [Google Scholar]
- Ermakov, A.I.; Arasimovich, V.V.; Ikonnikova, M.I.; Lukovnikova, G.A.; Yarosh, N.P. Methods of Biochemical Research of Plants, 2nd ed.; Kolos: Leningrad, Russia, 1972; p. 430. (In Russian) [Google Scholar]
- Khalafyan, A.A. Statistica 6. Statistical Data Analisis; Ed. “Binom”: Moscow, Russia, 2010; 528p. (In Russian) [Google Scholar]
- Stushnoff, C. Cryopreservation of Fruit Crop Genetic Resources—Implications for Maintenance and Diversity during Con-servation. HortScience 1991, 26, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Wirthensohn, M.; Collins, G.; Channuntapipat, C.; Sedgley, M. Update on Long-Term Cryopreservation of Almond Germplasm. Acta Hortic. 2006, 726, 127–132. [Google Scholar] [CrossRef]
- Bilavcik, A.; Faltus, M.; Zamecnik, J. The Survival of Pear Dormant Buds at Ultra-Low Temperatures. Plants 2021, 10, 2502. [Google Scholar] [CrossRef] [PubMed]
- Höfer, M.; Flachowsky, H. Cryopreservation of Malus and Pyrus Wild Species in the ‘Fruit Genebank’ in Dresden-Pillnitz, Germany. Biology 2023, 12, 200. [Google Scholar] [CrossRef]
- Matsumoto, T.; Takashi, A.; Maki, S.; Mochida, K.; Kitagawa, M.; Tanaka, D.; Yamamoto, S.; Niino, T. Genetic stability assessment of Wasabi plants regenerated from long-term cryopreserved shoot tips using morphological, biochemical and molecular analysis. Cryo Lett. 2013, 34, 128–136. [Google Scholar]
- Kiseleva, A.A.; Verzhuk, V.G.; Saveliev, N.I.; Dorokhov, D.S.; Zheltikov, Y.V.; Eremina, O.V.; Potokina, E.K.; Dzyubenko, N.I. Methods for monitoring the genetic integrity of cryopreserved fetal germplasm. Work. Appl. Bot. Genet. Breed. 2012, 169, 280–288. [Google Scholar]
- Kaity, A.; Ashmore, S.E.; Drew, R.A.; Dulloo, M.E. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep. 2008, 27, 1529–1539. [Google Scholar] [CrossRef]
Variety | VIR Catalog № | Genetic Origin |
---|---|---|
Avgustina | 42,101 | P. virginiana × P. avium |
Granatovaya grozd’ | 42,102 | P. virginiana × P. avium |
Rannyaya kruglaya | 42,109 | Seedling of Pamyati Salamatova (P. virginiana × P. avium) |
Samoplodnaya | 42,110 | Seedling of Pamyati Salamatova (P. virginiana × P. avium) |
Sakhalinskaya ustojchivaya | 42,287 | Padus avium Mill. |
Variety | Viability of Cuttings, % | ||||
---|---|---|---|---|---|
Baseline (Initial) Viability (Laboratory Conditions) | Viability Under Laboratory Conditions | Viability in the Field | |||
Cold Storage | Cryopreservation | Cold Storage | Cryopreservation | ||
Avgustina | 86.7 ± 3.3 fg | 86.7 ± 3.3 fg | 56.7 ± 3.3 abcd | 56.7 ± 3.3 abcd | 50.0 ± 5.8 abc |
Granatovaya grozd’ | 90.0 ± 5.8 g | 83.3 ± 3.3 efg | 60.0 ± 5.8 abcde | 63.3 ± 3.3 abcdef | 46.7 ± 3.3 a |
Rannyaya kruglaya | 86.7 ± 3.3 fg | 73.3 ± 3.3 bcdefg | 50.0 ± 5.8 ab | 53.3 ± 3.3 abc | 46.7 ± 3.3 a |
Samoplodnaya | 90.0 ± 5.8 g | 76.7 ± 3.3 cdefg | 46.7 ± 3.3 a | 56.7 ± 3.3 abcd | 43.3 ± 3.3 a |
Sakhalinskaya ustojchivaya | 93.3 ± 3.3 g | 80.0 ± 5.8 defg | 56.7 ± 3.3 abcd | 60.0 ± 5.8 abcde | 50.0 ± 5.8 abcd |
Average | 89.3 ± 1.8 D | 80.0 ± 2.0 C | 54.0 ± 2.1 AB | 58.0 ± 1.7 B | 47.3 ± 1.8 A |
Variety | Plant Height, cm | Number of | Length of Roots, cm | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Shoots | Internodes | Roots | ||||||||
Cold | Cryo | Cold | Cryo | Cold | Cryo | Cold | Cryo | Cold | Cryo | |
Avgustina | 25.3 ± 3.3 | 15.5 ± 0.5 | 1.3 ± 0.3 | 1.5 ± 0.5 | 2.7 ± 0.3 | 4.5 ± 2.5 | 10.7 ± 0.9 | 9.0 ± 0.0 | 6.7 ± 0.9 | 10.0 ± 0.0 |
Granatovaya grozd’ | 22.5 ± 4.5 | 19.5 ± 1.5 | 1.0 ± 0.0 | 1.0 ± 0.0 | 9.5 ± 2.5 | 7.0 ± 5.0 | 5.5 ± 0.5 | 4.5 ± 0.5 | 12.0 ± 2.0 | 12.0 ± 2.0 |
Ranyaya kruglaya | 8.8 ± 0.3 | 20.8 ± 4.3 | 3.5 ± 0.5 | 1.0 ± 0.0 * | 15.0 ± 2.0 | 3.8 ± 1.0 * | 12.5 ± 1.5 | 12.0 ± 2.4 | 8.5 ± 2.5 | 6.8 ± 1.3 |
Samoplodnaya | 12.3 ± 2.2 | 8.3 ± 0.9 | 1.0 ± 0.0 | 1.0 ± 0.0 | 3.3 ± 0.8 | 3.0 ± 0.6 | 8.0 ± 0.7 | 7.3 ± 1.8 | 12.3 ± 1.7 | 8.7 ± 1.3 |
Sakhalinskaya ustoychivaya | 25.5 ± 1.2 | 22.6 ± 3.3 | 1.0 ± 0.0 | 1.0 ± 0.0 | 2.4 ± 0.4 | 3.6 ± 1.2 | 2.2 ± 0.4 | 8.8 ± 2.4 * | 11.2 ± 1.3 | 9.8 ± 1.7 |
Variety | Dry Matter Content (%) | Total Sugars Content (%) | Ascorbic Acid Content (mg/100 g Fresh Weight) | |||
---|---|---|---|---|---|---|
Cold Storage | Cryopreservation | Cold Storage | Cryopreservation | Cold Storage | Cryopreservation | |
Avgustina | 27.6 ± 2.1 | 27.1 ± 2.0 | 12.1 ± 1.5 | 13.1 ± 0.5 | 20.5 ± 1.1 | 19.4 ± 2.0 |
Granatovaya grozd’ | 28.1 ± 2.1 | 27.0 ± 2.8 | 14.8 ± 2.1 | 13.4 ± 3.3 | 21.1 ± 2.3 | 20.6 ± 3.1 |
Rannyaya kruglaya | 27.9 ± 1.5 | 28.0 ± 1.7 | 15.7 ± 2.0 | 14.5 ± 3.1 | 19.8 ± 2.2 | 19.9 ± 2.8 |
Samoplodnaya | 27.3 ± 3.1 | 28.1 ± 2.0 | 16.3 ± 2.1 | 16.6 ± 1.8 | 21.1 ± 3.3 | 21.1 ± 2.9 |
Sakhalinskaya ustojchivaya | 28.1 ± 2.5 | 29.5 ± 1.1 | 15.9 ± 2.5 | 16.0 ± 2.4 | 19.1 ± 2.6 | 18.8 ± 3.0 |
Average | 27.8 ± 2.3 | 27.9 ± 1.9 | 14.9 ± 2.0 | 14.7 ± 2.2 | 20.3 ± 2.3 | 19.9 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verzhuk, V.; Murashev, S.; Novikova, L.; Kiru, S.; Orlova, S. Conservation of the Bird Cherry (Padus Mill.) Germplasm by Cold Storage and Cryopreservation of Winter Cuttings. Biology 2023, 12, 1071. https://doi.org/10.3390/biology12081071
Verzhuk V, Murashev S, Novikova L, Kiru S, Orlova S. Conservation of the Bird Cherry (Padus Mill.) Germplasm by Cold Storage and Cryopreservation of Winter Cuttings. Biology. 2023; 12(8):1071. https://doi.org/10.3390/biology12081071
Chicago/Turabian StyleVerzhuk, Vladimir, Sergey Murashev, Liubov Novikova, Stepan Kiru, and Svetlana Orlova. 2023. "Conservation of the Bird Cherry (Padus Mill.) Germplasm by Cold Storage and Cryopreservation of Winter Cuttings" Biology 12, no. 8: 1071. https://doi.org/10.3390/biology12081071
APA StyleVerzhuk, V., Murashev, S., Novikova, L., Kiru, S., & Orlova, S. (2023). Conservation of the Bird Cherry (Padus Mill.) Germplasm by Cold Storage and Cryopreservation of Winter Cuttings. Biology, 12(8), 1071. https://doi.org/10.3390/biology12081071