Next Article in Journal
Profound Non-Randomness in Dinucleotide Arrangements within Ultra-Conserved Non-Coding Elements and the Human Genome
Previous Article in Journal
Functional Cardiovascular Characterization of the Common Marmoset (Callithrix jacchus)
Previous Article in Special Issue
Inventory of the Seaweeds and Seagrasses of the Hawaiian Islands
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Marine Flora of French Polynesia: An Updated List Using DNA Barcoding and Traditional Approaches

1
Department of Biology and Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Republic of Korea
2
Phycology Research Group, Center for Molecular Phylogenetics and Evolution, Ghent University, 9000 Ghent, Belgium
3
Pacific Center for Environment an Sustainable Development, The University of the South Pacific, Private Mail Bag, Suva P.O. Box 1168, Fiji
4
Institut de Recherche pour le Développement, Nouméa 98848, New Caledonia
5
UMR Ecosystèmes Insulaires Océaniens, University of French Polynesia, BP6570, Faa’a 98702, Tahiti, French Polynesia
*
Authors to whom correspondence should be addressed.
Biology 2023, 12(8), 1124; https://doi.org/10.3390/biology12081124
Submission received: 26 June 2023 / Revised: 1 August 2023 / Accepted: 4 August 2023 / Published: 11 August 2023
(This article belongs to the Special Issue Polynesian Seaweeds Biodiversity, Biogeography and Evolution)

Abstract

:

Simple Summary

The French Polynesian islands represent a unique insular system in the Pacific Ocean. Previous surveys of the marine flora of French Polynesia were mostly established on traditional morphology-based taxonomy. DNA barcoding allowed us to provide a major revision of French Polynesian marine flora, with an updated total of 702 species from French Polynesia, including 119 species of Chlorophyta, 169 Cyanobacteria, 92 Ochrophyta, 320 Rhodophyta, and 2 species of seagrasses (Alismatales)—nearly a two-fold increase from previous estimates. In addition to improving and refining our knowledge of French Polynesian marine flora, this study also provides a valuable DNA barcode reference library for identification purposes and future taxonomic and conservation studies. A significant part of the diversity uncovered corresponds to unidentified lineages, which will need careful taxonomic examination.

Abstract

Located in the heart of the South Pacific Ocean, the French Polynesian islands represent a remarkable setting for biological colonization and diversification, because of their isolation. Our knowledge of this region’s biodiversity is nevertheless still incomplete for many groups of organisms. In the late 1990s and 2000s, a series of publications provided the first checklists of French Polynesian marine algae, including the Chlorophyta, Rhodophyta, Ochrophyta, and Cyanobacteria, established mostly on traditional morphology-based taxonomy. We initiated a project to systematically DNA barcode the marine flora of French Polynesia. Based on a large collection of ~2452 specimens, made between 2014 and 2023, across the five French Polynesian archipelagos, we re-assessed the marine floral species diversity (Alismatales, Cyanobacteria, Rhodophyta, Ochrophyta, Chlorophyta) using DNA barcoding in concert with morphology-based classification. We provide here a major revision of French Polynesian marine flora, with an updated listing of 702 species including 119 Chlorophyta, 169 Cyanobacteria, 92 Ochrophyta, 320 Rhodophyta, and 2 seagrass species—nearly a two-fold increase from previous estimates. This study significantly improves our knowledge of French Polynesian marine diversity and provides a valuable DNA barcode reference library for identification purposes and future taxonomic and conservation studies. A significant part of the diversity uncovered from French Polynesia corresponds to unidentified lineages, which will require careful future taxonomic investigation.

Graphical Abstract

1. Introduction

1.1. French Polynesia

French Polynesia consists of strings of islands positioned in the heart of the South Pacific Ocean, arranged into five archipelagos: the Society, Marquesas, Austral, Gambier, and Tuamotu Islands [1] (Figure 1). French Polynesian island chains resulted from linear volcanic hotspot activities on the Pacific plate that began during the Eocene (47.4 Ma, Tuamotu archipelago [2]; but see [3]). The five archipelagos feature some 120 emerged islands and more than 500 seamounts [4], dispersed over an area of 2,500,000 km2 [5], forming a total land area of 3521 km2 with a combined coastline of 5830 km [6]. French Polynesian emerged islands present a variety of stages of the tropical volcanic island life cycle, ranging from high islands (such as Tahiti and Moorea) to atolls (such as Rangiroa and Tikehau) and guyot (or seamount), with variable climates linked to their geographical position. French Polynesia is the world’s largest contiguous exclusive economic zone (EEZ) with a total of 5,030,000 km2 [7].

1.2. Relatively Poor Biodiversity

Chiefly imputable on the insularity, remoteness, and smallness of its islands, French Polynesia supports a relatively low terrestrial and marine biodiversity [8,9,10,11]. Some authors noted that due to geographic isolation, some algal families were poorly represented in French Polynesia [12]. Contrasting to the absence of particular families, levels of endemism in some seaweed groups can be remarkably high [9,13]. In comparison to their terrestrial counterpart (893 indigenous plant species and 1700 introduced species [9]), the marine flora biodiversity is significantly poorer. The latest published works on French Polynesian marine flora reported a total of 332 species of marine macroalgae (198 Rhodophyta, 32 Ochrophyta, 82 Chlorophyta [14,15,16]), 117 Cyanobacteria [17], and 2 seagrasses [18]. Since then, only a limited number of taxonomic studies have been conducted in French Polynesia, e.g., [13,19,20,21].

1.3. Phycological History of French Polynesia

The earliest recorded collections of marine algae from French Polynesia were made during exploration voyages in the 18th and 19th centuries, and these were later examined and published by several phycologists in the 19th and early 20th centuries [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]. The first major floristic account of Tahitian algae was by Setchell [41], listing and illustrating 201 taxa of marine and freshwater algae. Hollenberg [42,43,44,45] published on species of Rhodomelaceae collected by M. S. Doty and J. Newhouse in the early 1950s from the Tuamotu archipelago; in 1973, W. R. Taylor reported on algae collected during the Smithsonian–Bredin Expedition to the Society and Tuamotu Islands [46]. Working on Tahitian collections by Setchell and Parks in 1922 and Crossland in 1928–1929, housed at the University of California Herbarium (UC), Olsen-Stojkovich [47] published a dissertation on the genus Avrainvillea. The same year, Payri and Meinesz [48,49] listed 346 taxa of French Polynesian algae, followed by Abbott [50], who reported on a new species of Valoniopsis from Huahine Island. The majority of earlier works on French Polynesian marine plants were regrouped in a comprehensive checklist by Payri and N’Yeurt [17], which also included species from Moorea Island reported by Payri [51] in her doctoral thesis dissertation. A richly illustrated field guide to French Polynesian marine flora directed at the general public was published by Payri, N’Yeurt, and Orempüller [52]. At this time, the University of French Polynesia’s phycological herbarium (officially recognized as UPF) was created by Antoine De Ramon N’Yeurt and Claude Payri to house the growing number of algal specimens stemming from ongoing work on French Polynesian flora. These efforts culminated in the publication of a three-part scientific marine flora for French Polynesia, detailing the Ochrophyta, Chlorophyta, and Rhodophyta [14,15,16]. Three new species of Rhodophyta from the Marquesas and Tuamotu archipelagos resulting from this work were published in [53]. The number of endemic species identified from the region, prior to molecular studies, appears remarkably low.

1.4. Molecular-Based and Barcoding Taxonomic Studies

A limited number of molecular-assisted alpha-taxonomic studies have been conducted in French Polynesia, encompassing the Rhodophyta (Gelidiales [54], Gibsmithia [55], Asparagopsis [56], Grateloupia filicina [57,58], Corallinophycidae [59,60,61,62], Laurencieae [63]), Chlorophyta (Halimeda [64,65,66,67,68]), Ochrophyta (Dictyota [69,70,71,72], Lobophora [13,73], Newhousia [21], Sargassum [74], Turbinaria [75]), and Cyanobacteria [20], but nothing on seagrasses. These molecular-based studies generated over 500 sequences, but from a limited number of taxa, and a bulk from the genus Lobophora (>350 sequences [13]), followed by Halimeda (>90 sequences [64,65,66,67,76]), Sargassum (>30 sequences [74]), and Newhousia (20 sequences [21]). These studies included several markers, encompassing cox1, cox2-cox3 intergeneric spacer, cox3, nad1, psbA, psaA, rbcL, tufA, ITS, 16S, 18S, 28S, 23S, 26S. Between 2008 and 2010, the Moorea BIOCODE Project led by the University of California at Berkeley in collaboration with the Smithsonian National Museum of Natural History listed a comprehensive inventory of all non-microbial life in a reef-to-ridge transect of Moorea Island, Society Islands, French Polynesia [77]. While sequences were successfully generated for organisms such as corals and fish (e.g., [78]), we could not find any useful sequences (i.e., a BLAST search returned no match to any sequences in the genomic BLAST database on NCBI BLAST) for the 28 marine algae (27 Rhodophyta and one Chlorophyta) in the publicly available dataset [79]. We suspect that the markers used for the sequences were not appropriate for marine algae.

1.5. DNA Barcoding Approach

There are several challenges to a DNA barcoding approach that have been discussed in [80], including the completeness and reliability of the reference library (e.g., non- and mis-labeled sequences) and the limited resolution of some markers. Gene libraries are often biased towards temperate regions, potentially neglecting tropical biodiversity in poorly sampled areas. There is an extensive mislabeling on GenBank that results in numerous polytomic species names. It is, therefore, a priority to augment the available GenBank records with high-quality sequences from all biogeographic areas, providing as much metadata as possible along with the sequences, while avoiding assigning names to submissions that do not align with any known sequences.

1.6. Barcoding an Entire Regional Marine Flora

Previous efforts of DNA barcoding of marine flora have focused either on (1) restricted geographic areas covering the three main macroalgal groups (Chlorophyta, Phaeophyceae, and Rhodophtya; e.g., northern Madagascar [80], Bergen, Norway [81], Boulder Patch, Beaufort Sea [82], southeast coast of India [83], Malta [84]), (2) larger areas (e.g., regional scale) but targeting specific groups (e.g., Rhodophyta in South Africa [85,86] and Qingdao, China [87]; Dumontiaceae [88] and Phyllophoraceae [89] in Canada; Rhodymeniales in Australia [90]; Gracilariaceae [91] and Pyropia [92] in the Republic of Korea), or (3) on lower taxonomic levels (e.g., genus, order, or family) but covering large geographic scales (e.g., Corallinophycidae in Altantic European maerl beds [93]). To our knowledge, no DNA barcoding study has yet been conducted at a regional level encompassing the three macroalgal groups (Chlorophyta, Ochrophyta, Rhodophyta), Cyanobacteria, and the marine phanerogams (seagrasses; marine phanerogams).

1.7. Objective of the Study

The present study aimed to re-assess the species diversity of French Polynesian marine flora using DNA barcoding and to deliver a revised checklist for the marine flora of French Polynesia including three macroalgal classes (Rhodophyta, Ochrophyta, Chlorophyta), the Cyanobacteria (Cyanobacteria), and the seagrasses (Alismatales).

2. Materials and Methods

2.1. Study Site and Sampling

This study was conducted between 2014 and 2023. Marine floral specimens were collected in the subtidal zone via SCUBA or snorkeling and in the shallow intertidal zone on foot and through wading or snorkeling. Specimens identified by Antoine De Ramon N’Yeurt using morphological methods while working with the Moorea BIOCODE Project in 2008 were also included in the present study.
Specimens were initially identified at the genus level and, when possible, at the species level based on the morphology. In situ and ex situ photographs were taken of most specimens collected. After field collection, for each taxa, specimens were (1) mounted as herbarium vouchers, (2) fixed in formaldehyde (4% formaldehyde in seawater) for anatomical examination, (3) and small fragments (~1 cm2) were preserved either in fine silica gel (~0.2–1 mm; ref. 1.01905.1000; Merck KGaA, Damstadt, Germany) or in ethanol (absolute EtOH) for molecular analyses. For the macroalgae, morphospecies determination was done using monographs and identification manuals from the region [14,15,16] as well as based on the most recent publications for the identified taxa. Detailed morphological and anatomical examinations and final identifications were carried out at the University of French Polynesia using a binocular and a light microscope D2000 (Leica Microsystems, Wetzlar, Germany), equipped with a Canon EOS 600D. For the Cyanobacteria, morphological observations consisted of microscopic, ultrastructural, and morphometric analyses. Fresh samples of Cyanobacteria were examined immediately following collection using a light microscope DMZ50 (Leica Microsystems, Wetzlar, Germany) to locate representative subsamples and taxonomically uniform colonies. Fresh and semi-permanent slides were prepared. Observations and measurements were made using a light microscope D2000 (Leica Microsystems, Wetzlar, Germany), equipped with a Canon EOS 600D. Measurements were carried out with Sigma-Scan Image analytical software (Sausalito, CA, USA) and Motic Images Plus (Motic Group, Hong Kong, China), using a calibrated ocular micrometer and in-scale projections and photomicrographs. Phenotype determination was performed using the available monographs and identification manuals (see [94]) as well as more recent publications, e.g., [95,96,97,98,99,100]. Some taxonomic revisions with designation changes were introduced following our phylogenetic reconstructions. A voucher number was assigned to each sample together with the date of collection and deposited into the Phycological Herbarium of the University of French Polynesia (UPF). A total of 2435 (1823 macroalgae + 612 Cyanobacteria + 10 seagrasses) specimens were collected (Supplementary Table S1).

2.2. DNA Extraction, PCR Amplification and Sequencing

Total genomic DNA was extracted from tissue samples dried in silica gel using either (1) a cetyl-trimethyl ammonium bromide extraction method [101] or (2) the MagPurix® Plant DNA Extraction Kit v.1.3 (ZP02014; Zinexts Life Science Corporation, New Taipei City, Taiwan) according to the manufacturer’s instructions.
For the CTAB protocol, the silica-dried portion was ground in liquid nitrogen using a mortar and pestle. Extraction of total genomic DNA was carried out using the protocol from OmniPrep for plant tissue (G-Biosciences, St. Louis, MO, USA). For the MagPurix protocol, algal material was directly processed, without grinding, within PLA buffer, and incubated for 4 h at 60 °C. The MagPurix DNA Extraction Kit was run on the MagPurix 12A automated nucleic acid extraction system (Zinexts Life Science Corporation, New Taipei City, Taiwan). The DNA extract (final volume of 100 µL) was stored at −24 °C.
Sequences were generated from the chloroplast ribulose-bisphosphate carboxylase gene (rbcL) (for the Rhodophyta, Ochrophyta, Chlorophyta), the chloroplast-encoded elongation factor Tu (tufA) (Chlorophyta), the plastid-encoded PSII reaction center protein D1 (psbA) (Rhodophyta, Ochrophyta), the mitochondrial-encoded cytochrome oxidase subunit 3 (cox3), (cox1) (Rhodophyta, Ochrophyta, Chlorophyta), 18S (Chlorophyta), 28S (Chlorophyta), 16S rRNA (Cyanobacteria), ITS1 (Alismatales) (Supplementary Table S2).
The primer pairs for the amplification and sequencing of each gene were as follows: for cox1 M13LF3-M13Rx (Rhodophyta) [102], GazF1-GazR1 [102], for cox3, CAF4A-CAR4A (Ochrophyta) [103], and cox3_44F-cox3-739R (Ochrophyta) [104], for rbcL 68F-R708 [105,106], PRB-F0-PRB-R1A, PRB-F2-PRB-R2, PRB-F3-PRBR3A, rbcL3F-RSPS (Ochrophyta) [107], DRL1F-DRL1R (Ochrophyta) and DRL2F-DRL2R (Ochrophyta) [108], 3F-S97R (Ochrophyta) [109], and F57-rbcLrevNEW (Rhodophyta) [102,110], F7-RrbcS start (Rhodophyta) [110], GrbcLnF-GrbcLR (Chlorophyta) [111], for psbA psbA_F-psbA_R1 [112], for tufA tufAF-tufAR or tufG4F-tufAR [111,113], for 28S rRNA C’1-D2 or C’2B-D2 (Chlorophyta) [114], for 16S rRNA (Cyanobacteria) [115], and for ITS P674-P675 [116,117] (Alismatales) (Supplementary Table S2).
PCRs were either carried out in tube strips in 20 µL reaction volumes using the following PCR master mix: (1) the MG 2X Taq PreMix (MGmed, Seoul, Republic of Korea), (2) the AccuPower® Taq PCR Premix kit (Bioneer Corp., Daejeon, Republic of Korea); or in 96-well plates in 25 μL reaction volumes containing 10X PCR buffer (2.5 µL), 200 μM dNTPs (2.5 µL), 10 µM of each primer (1.25 µL), 10µg/µL BSA (1 μL), 10 ng (1 μL) of genomic DNA, and 1 U/µL of TaqDNA polymerase (Amplitaq DNA polymerase, N8080152, Thermo Fisher, Seoul, Republic of Korea). PCRs were carried out using a thermocycling profile with specific parameters for each marker and primer set used, indicated in Supplementary Table S3. PCRs were run either in a (1) Kyratec (SC300G-R2; Kyratec, Mansfield, Australia), (2) AllInOneCycler 96-well PCR system (A-2041-1 N; Bioneer Corp., Daejeon, Republic of Korea), (3) Biometra T-professional 96 (BM070-701, Westburg, The Netherlands), or (4) VerityTM (4375786, Thermo Fisher). Sequencing reactions and runs were performed by Macrogen (Seoul, Republic of Korea, or Amsterdam, The Netherlands).

2.3. Sequence Alignment, Phylogenetic Reconstruction, Molecular-Assisted Taxonomic Identification

Nucleotide sequences newly generated were firstly BLASTed against the genomic BLAST database on NCBI BLAST (Basic Local Alignment Search Tool). BLASTing results allowed for the confirmation that newly generated sequences originated from algal DNA material (and not from microbial contaminants or epiphytes) and were more or less in line with preliminary field identification. All nucleotide sequences available on NCBI GenBank were downloaded for the corresponding marker and taxon, either at the generic level or at a higher taxonomic level (e.g., family level), if doubt on the generic identification existed. Several names assigned to sequences deposited on GenBank are inaccurate or were deposited in GB with a preliminary/different species label prior to final publication) and have not been updated since their publications. Sequences names from GenBank were therefore curated whenever possible based on the most up-to-date taxonomic information available on AlgaeBase (e.g., through updating sequences names with currently accepted species names) and the latest molecular taxonomic studies (e.g., those that delivered amendments on species names assigned to lineages). For large datasets (e.g., greater than 200 sequences) we kept a single representative sequence per haplotype, defined as >99.9% similar, using the CD-HIT program [118] run on a local computer.
Nucleotide sequences newly generated in this study were added to the GenBank downloaded sequence datasets and aligned using MUSCLE v.3.5 [119], with default parameters implemented in the eBioX software package v.1.5.1 [120].
Maximum-likelihood phylogenetic trees were reconstructed from each marker and each class using a best fit substitution model and an SPR branch swapping algorithm in PhyML v.3.0 [121].
Molecular-assisted taxonomic identification was based on placement of newly generated sequences within the phylogenetic trees and sequence similarity. Whenever newly generated sequences did not position clearly within a clade (i.e., a cluster of sequences corresponding to a given species) and diverged from the closest sequences by >1%, these lineages were considered as unidentified species and given the specific epithet “sp.#FP”. Finally, we returned to the morphological observations to ensure that molecular-assisted taxonomic identification corresponded to morphological data, at least at the genus level.

3. Results

3.1. Sequence Data

A total of 2452 specimens (1823 macroalgae + 619 Cyanobacteria + 10 seagrasses) of the French Polynesian marine algal collection were processed, including sequences already published but part of the same projects on French Polynesian marine floral biodiversity (ALGALREEF, CYANODIV, CARISTO, MICROALG). Genomic DNA was extracted from a total of 2452 specimens, followed by PCR analyses. Finally, a total of 1007 sequences (783 macroalgae + 223 Cyanobacteria + 1 seagrass) were generated from 2452 specimens: 252 sequences for the Ochrophyta, including 29 cox1 sequences (Ochrophyta), 87 cox3 sequences (Ochrophyta), 76 psbA sequences (Ochrophyta), and 60 cox1 sequences (Ochrophyta); 262 sequences for the Chlorophyta, including 29 18S rDNA sequences (Chlorophyta), 41 28S rDNA sequences (Chlorophyta), 4 ITS sequences (Chlorophyta), 4 rbcL sequences (Chlorophyta), and 184 tufA sequences (Chlorophyta); 270 sequences for the Rhodophyta, including 270 rbcL sequences (Rhodophyta); 1 sequence for the Alismatales, including 1 ITS sequence (Alismatales); 223 sequences from Cyanobacteria, including 61 [20] + 164 (new) 16S rRNA sequences (Cyanobacteria). Additionally, we recovered sequences from GenBank that were previously published, either focusing directly on French Polynesia (e.g., Lobophora, Newhousia, Sargassum, Turbinaria [13,21,74,75]) or not (e.g., Dictyota [122], Halimeda [65]). We retrieved a total of 585 sequences, including 69 sequences of Rhodophyta (25 cox1 sequences, 9 rbcL, 14 28S, 7 psbA, 4 LSU, 3 18S, 5 SSU, 2 23S), 466 sequences of Ochrophyta (1 26S, 7 cox1, 217 cox3, 1 psaA, 111 psbA, 119 rbcL, 1ITS, 3 nad1, 4 SSU, 1 trnW-trnI, 1 tufA), and 50 sequences of Chlorophyta (tufA only).

3.2. Species Identification

Based on molecular analyses, we have identified a total of 352 lineages/species: 1 Alismatales, 53 Cyanobacteria, 150 Rhodophyta, 77 Ochrophyta, and 71 Chlorophyta. We could confirm a total of 80 names from previous checklists (7 Cyanobacteria, 26 Rhodophyta, 14 Ochrophyta, 33 Chlorophyta). Our molecular phylogenetic study disclosed a total of 227 new lineages/species for French Polynesia: 115 Rhodophyta, 30 Chlorophyta, 61 Ochrophyta, 20 Cyanobacteria, 1 Alismatales. Among these 227 new lineages, 75 matched a name through the barcoding approach, and 152 did not (i.e., unidentified species) (113 Rhodophyta, 16 Chlorophyta, 23 Ochrophyta, 37 Cyanobacteria). Lineages labelled as “sp.#FP” diverged from the closest sequences from GenBank by >1%. It should be noted that these lineages do not necessarily correspond to new species, but from a barcoding approach, it strictly implies these sequences do not match sequenced species for these particular markers. Further analyses are needed to determine if these lineages should be defined as new species. Also, for those that match a current name, one needs to verify if the identifications of the names in GenBank are accurately based on type specimens or on secondary collections that could have been misidentified. Hence, these numbers need to be taken with caution at this time. We did not get molecular confirmation for 356 names from the previous checklist (170 Rhodophyta, 48 Chlorophyta, 15 Ochrophyta, 115 Cyanobacteria).

4. Discussion

This study aimed to revisit the marine floral biodiversity of French Polynesia through DNA barcoding. We discuss the present marine floral biodiversity findings and the value, utility, and challenges of barcoding an entire regional marine flora. Some of the species collected have been illustrated in Figure 2.

4.1. French Polynesian Marine Floral Species Diversity

Until the last update on regional flora from French Polynesia by N’Yeurt and Payri [16], the marine floral diversity consisted of 430 species: 198 Rhodophyceae, 32 Ochrophyta, 83 Chlorophyceae, and 117 Cyanobacteria. As mentioned earlier, a limited number of molecular-based studies have been conducted in French Polynesia in the past. Taking into account the diversity documented in past works on the French Polynesian flora and the diversity uncovered in the current study, we provide the numbers of 702 species, 320 Rhodophyta, 119 Chlorophyta, 92 Ochrophyta, and 169 Cyanobacteria. Moreover, it is very likely that an important fraction of the names previously documented and not verified with the barcoding approach are misapplied names due to the limitations of traditional methods in resolving morphologically identical species. Previous molecular-based studies have already confirmed this with some pan-tropical genera: Lobophora [13], Gibsmithia [55], and Sargassum [74]. The case of the genus Lobophora perhaps illustrates this best; previous works provided the widely-distributed name Lobophora variegata, which in fact corresponds to 37 different pseudo-cryptic species that would have been very difficult to discern using traditional techniques [123]. At the family level, e.g., Scytosiphonaceae, among the six previously identified names, four were confirmed via barcoding, six were new, and another two have not been confirmed via barcoding, leaving their previous identification as disputable.
From our study (Table 1), the level of marine floral species endemism is 11% (only including currently accepted names) and extends to 28% when accounting for all new lineages (i.e., unidentified species). These results, however, need to be taken with caution, as floristic species richness and single-island endemic species richness can be unknown, with dynamic figures dependent on sampling effort [124]. This is especially true of French Polynesia, with its vast geographical area and diversity of habitats.

4.2. Matching Barcode Data to Morphological-Based Identifications

Matching sequences to previously identified names turned out to be more challenging than expected. We were able to match sequences onto only 80 names (~18.6%) of the 430 names that were previously identified based on morphological data only. In the process, we unveiled a large potentially unknown species diversity (227 new lineages/species), including 75 previously described species and 152 unknown lineages. Accordingly, important taxonomic work remains to be conducted on French Polynesian marine flora to confirm if these new lineages and species reported through barcoding represent actual new taxa. The Rhodophyta in particular will require extensive studies, with no less than 113 unmatched lineages, i.e., not closely matching sequences from GenBank for our reference markers. This work would be all the more important considering that biogeographically speaking, species diversity generally decreases as one moves east from the Indo-Pacific centers of distribution [13,128,129].

4.3. Challenges of Barcoding an Entire Marine Flora

Barcoding an entire marine flora can be a complex and challenging task, with several obstacles to take into account. Difficulties include the availability of a comprehensive barcode reference library, a lack of new specimens for rare or seasonal species, a lack of taxonomic expertise, and difficulties in the amplification and matching of barcode data [130]. Based on our own study, we have highlighted some of the major challenges we have faced when barcoding an entire flora that one should be aware of when conducting such studies. These difficulties are inherent to (1) data collection, (2) molecular analyses, and (3) DNA-based identification.

4.3.1. Data Collection Challenges: Spatial Coverage

Marine flora are found in a wide range of habitats, from the intertidal zone to the deep ocean. Conducting a survey that covers all of these habitats can be logistically difficult and time consuming. Considering that French Polynesia consists of some 120 islands with a coastline of 5830 km dispersed over an area of 2,500,000 km2, comprehensive sampling covering the whole region is a daunting and unmanageable task. Moreover, some species are locally very limited in geographic distribution (e.g., Dasya palmatifida from Afaahiti in Tahiti; Stypopodium australasicum from Rapa Island) and, consequently, inconvenient to sample. In our study, we were able to sample a total of 12 islands (c. 10% of all islands). While our study covered intertidal to subtidal areas (down to 60 m depth), sampling was chiefly conducted in shallow depths. We are therefore missing the biodiversity below these depths (e.g., mesophotic depths), which, as illustrated in recent studies, may vary from that of shallower depths (e.g., [131]); also, microhabitats were not sampled. It is evident that we are still missing an important fraction of the total algal diversity from French Polynesia.

4.3.2. Data Collection Challenges: Seasonal Coverage

The abundance and distribution of seaweeds can vary seasonally, depending on factors such as temperature, light, and nutrient availability. Conducting a survey over multiple seasons can help to account for this variability but can also be logistically challenging. Considering that there are two main seasons in French Polynesia (hot and humid from November to March, and drier and cooler from April to October), sampling efforts would need to be doubled, without counting the flora that thrive during inter-seasons. This is especially true for genera of brown algae, for instance, Colpomenia, Rosenvingea, Hydroclathrus, and Sargassum [14,132]. Many genera (Hydroclathrus, Rosenvingea, Pseudochnoospora) belonging to the family Scytosiphonaceae are blooming seasonally after the cool season between September and December [51]. The abundance of some Dictyotaceae species varies strongly between seasons, such as the genus Padina, which has the highest cover during the austral summer [19].

4.3.3. Data Collection Challenges: Taxonomic Expertise

Marine algae are a diverse group of organisms, with many different species that can be difficult to distinguish from one another. Taxonomic expertise is required to accurately identify the different species, which can be time consuming and resource intensive. Marine plant taxonomists usually specialize in specific groups and will develop a sharp eye in the field for their group of expertise. So, while a molecular approach will allow us to uncover hidden diversity, sampling will first and foremost demand from collectors a high discriminatory capacity between taxonomic assemblages in the field, and primary field identification and classification of the collected specimens will require a high level of taxonomic expertise from several specialists for each group to meaningfully synthesize morphological and molecular data [133]. Another critical challenge is that the availability of trained morphological taxonomists is in a worldwide decline due to a lack of recognition and funding for this discipline of research [133].

4.3.4. Data Collection Challenges: Sampling Methods

Marine algae are attached to rocks, the substratum, or other organisms, making it difficult to collect samples without damaging the habitat or the flora itself. Additionally, some epiphytic and turf species are microscopic (e.g., Ceramiales, Rhodophyta), rare, or occur in mixed assemblages or low densities, making them difficult to find, sort, and sample.

4.3.5. Molecular Analyses: DNA Quality and Quantity

Obtaining good-quality DNA from all the species in a marine flora can be challenging, as some species may be difficult to collect, rare, or preserved in a way that is not suitable for DNA extraction. We were able to generate 1007 sequences from 2452 specimens (1823 macroalgae, 619 Cyanobacteria, and 10 seagrasses) from which we extracted DNA. Additionally, some species may have a low DNA yield, which can make barcode amplification difficult.

4.3.6. DNA-Based Identification: Markers and Reference Library

DNA barcoding approaches rely on accurate species identification, and if the reference database contains errors or incomplete information, it can lead to misidentification. As discussed at length in [80], the current challenge with DNA barcoding is the necessity to have a good reference dataset. The reference database is largely lacking in many groups, since not all known species have been sequenced yet, and not all species have been described, with many regions still hosting novelties that remain to be identified. Another major issue is the choice of markers. Currently, no universal marker is used across and within marine floral phyla. For the Rhodophyta and Phaeophyta, rbcL is by far the best reference marker, while tufA is preferred for the Chlorophyta [80,111]. Nevertheless, the reference library is far from complete for many taxa within each phylum. For instance, within the Rhodophyta, an rbcL library for the Corallinophycidae is largely lacking, and within this group, cox1 and psbA are preferred markers; similarly, in the Chlorophyta, the 44 tufA reference library does not include the Cladophorales, for which nuclear markers are used (e.g., 18S, 28S, ITS). In this sense, [80] highlighted the need to complement the algal GenBank reference libraries, for instance, with mitochondrial markers such as cox1 and cox3. As a result, there may be difficulties in identifying and classifying all the species in a given marine flora using a single marker per phylum. The marker selection and reference library completeness and quality are likely the main limitations of a standardized approach to DNA barcoding.

4.3.7. DNA-Based Identification: Variation within Species

While DNA barcoding is highly accurate, there can be significant genetic variability within a species, especially across latitudinal gradients, which can make it difficult to distinguish between closely related species in under-sampled regions [134,135]. This can lead to misidentification or the creation of artificial species groups, if the threshold to separate ‘species’ is incorrectly applied. This has led some taxonomists to suggest considering species as ‘discrete evolutionary units’ rather than finite taxa [133].

4.3.8. Cost and Time

Barcoding an entire flora can be a costly and time-consuming process, as each sample must be collected, processed, sequenced, and analyzed. The cost can also vary depending on the sequencing technology used and the number of samples and markers analyzed. We have calculated an average price ranging from USD 50 to 100 per specimen from collection to sequencing.

4.4. Utility of DNA Barcoding to Identify Cryptic Species and Ill-Defined Species

DNA barcoding can be especially useful in identifying cryptic and pseudo-cryptic species (i.e., species difficult to distinguish based on morphological characteristics alone) new to science and ill-defined species (e.g., lacking reproductive features to make firm taxonomic decisions). Cryptic species are difficult to find and study in the wild. Through using DNA barcoding, we can identify and distinguish between different species with a high degree of accuracy, even if they have very similar morphological characteristics. Furthermore, DNA barcoding can be used to confirm the identity of species whose names had been previously misapplied.

4.5. Conserving the Biodiversity of French Polynesian Marine Flora through DNA Barcoding

As shown in this study, French Polynesia is home to a diverse range of marine plants, including various species of Cyanobacteria, Chlorophyta, Rhodophyta, and Ochrophyta (but only two species of seagrasses). Many of these species are important for ecological reasons, such as providing habitat for other marine organisms, as well as for economic purposes, such as being used for food [136,137,138] and other commercial purposes [139,140]. However, some of these species are threatened by factors such as pollution, coastal development, tourism, and the proliferation of some brown macroalgae (e.g., Dictyotales, Sargassaceae [141]) and Cyanobacteria [20,142]. Marine floral biodiversity is threatened globally, and rapid surveying and monitoring are needed before species are irremediably lost. DNA barcoding can be used to help conserve biodiversity through accurately identifying different species and understanding their genetic relationships [44]. Using DNA barcoding in conjunction with traditional taxonomic expertise and systematic habitat sampling results in a quicker, more precise understanding of species diversity. This knowledge can then be used to inform conservation efforts, such as identifying which species are most in need of protection and which areas are most important for conservation.
In addition to its conservation applications, DNA barcoding can also be used for other purposes, such as detecting the presence of invasive species. The number of alien marine species recorded in the various coastal countries and islands of the world has continued to increase, particularly since the second half of the 20th century, in connection with the increase in maritime traffic and aquaculture exchanges [143]. The morpho-taxonomic methods traditionally employed by many marine monitoring programs are laborious, expensive, and require taxonomic expertise that is often lacking or in decline. In addition, the morpho-taxonomic approach is often unable to detect microscopic invasive species or those at the larval stage, which limits the capacity for eradication, especially at the first stage of introduction. The recent development of molecular tools (e.g., metabarcoding), in particular high-throughput DNA sequencing such as environmental DNA monitoring [143], offers enormous advantages in marine monitoring due to its dual capacity to detect invasive species at any stage of development, while producing a comprehensive and holistic view of all biological communities present in any type of environmental sample (water, sediment, biofilm/biofouling [144,145]). However, it implies that reference molecular data are available, and its effectiveness depends on the choice of genetic markers used. These techniques are particularly effective at detecting targeted species, including when they are present in low density, and make it possible to massively increase the number of sites studied. They are thus complementary to traditional techniques [146]. A survey based on eDNA metabarcoding would have revealed 22 species of introduced seaweeds—of which only one species was confirmed with barcoding, Solieria filiformis)—including 21 Rhodophyta and 1 Ochrophyta (Colpomenia sinuosa) [147]. The latter study defined “introduced” as “non-native” based on the information available on the database WORMS [148] (i.e., to determine a species geographic origin). Nevertheless, comprehensive large-scale phylogeographic analyses are necessary to conclusively determine the natural geographic range of a given species [149]. For instance, [148] listed the cosmopolitan species C. sinuosa as an introduced species in French Polynesia. However, a global phylogeographic study conducted on this taxon showed that it consisted of a species complex with high genetic diversity mainly associated with its geographic distribution [150]. In our study, C. sinuosa belonged to two groups within the C. sinuosa complex, both broadly distributed in the Pacific, thus not supporting the hypothesis of an introduction. On the other hand, another species, Gracilaria caudata, with a clear native range in the Atlantic [151], was identified from Tahiti in our study—but not in [147].

5. Conclusions

This study demonstrated how DNA barcoding is a powerful tool that can help to document and conserve the biodiversity of marine flora worldwide. DNA barcoding can help to create a more accurate picture of biodiversity and inform conservation efforts to protect local species. Our revised listing of French Polynesian marine flora now contains a total of 670 species, including 2 species of Alismatales, 146 Cyanobacteria, 315 Rhodophyta, 92 Ochrophyta, and 115 Chlorophyta, a nearly two-fold increase from previous estimates. Further systematic studies (both molecular and using traditional taxonomic expertise) will be needed to validate the taxonomic identity of the numerous new molecular lineages reported in this study. The DNA database presented in this study has the potential to serve as a valuable reference library for identification purposes, making a significant contribution to the advancement of molecular taxonomy, ecological research, and biodiversity studies in French Polynesia.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/biology12081124/s1, Table S1: Detailed information of specimens sequenced in this study; Table S2: Detailed information of markers and primers sequence used in this study; Table S3: Detailed information on polymerase chain reaction steps used for each gene studied.

Author Contributions

Conceptualization, C.V. and M.Z.; methodology, C.V. and M.Z.; software, C.V.; validation, C.V. and M.Z.; formal analysis, C.V., S.D. and M.Z.; investigation, C.V., A.D.R.N. and M.Z.; resources, C.V., M.S.K., O.D.C. and M.Z.; data curation, C.V., A.D.R.N. and M.Z.; writing—original draft preparation, C.V., A.D.R.N. and M.Z.; writing—review and editing, C.V., A.D.R.N., M.S.K., O.D.C., C.P. and M.Z.; visualization, C.V. and M.Z.; supervision, C.V. and M.Z.; project administration, C.V. and M.Z.; funding acquisition, C.V., M.Z., M.S.K. and O.D.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research work was supported by two LABEX CORAIL research grants under the program ALGALREEF (ANR-10-LABX-0008:’Les communautés algales des récifs coralliens: diversité, structure et fonctions écologiques’) and the program CYANODIV (ANR-10-LABX-0008:’Etude de la répartition spatio- temporelle de la diversité des peuplements de cyanobactéries benthiques de Tahiti et Moorea’), and by the countries of France and French Polynesia (Contrat de Projet “Caractérisation et gestion des risques environnementaux et sanitaires liés au développement du phytoplancton ciguatérigène en Polynésie française: CARISTO-Pf” No. 7937/MSR/REC of 4 December 2015 and Arrêté No. HC/491/DIE/BPT of 30 March 2016), from the University of French Polynesia (BIOALG, DIVECOBAL, MICROBALG), from the Delegation a la recherche de Polynésie française (DIVECOBAL, No. 3412/MSR/REC). CV is indebted to Ghent University for a grant as postdoctoral researcher (16/PDO/141). CV’s mobility in 2019 to Tahiti was supported by The Research Foundation—Flanders (FWO) grant V406219N. DNA sequencing was carried out with infrastructure funded by EMBRC Belgium—FWO project GOH3817N and I001621N. This research was supported by the Basic Science Research Program (2019R1A6A1A10072987 and 2020R1I1A2069706) through the National Research Foundation of Korea (NRF), funded by the Ministry of Education of Korea.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Materials. Phylogenetic trees generated for taxonomic identification are available upon request.

Acknowledgments

We acknowledge support we received for some collections, including from Melanie Roué; the “cig-uatera research team” from the Institut Louis Mallardé; Tohei Theophilus; the Braveheart vessel crew for the research expedition in Morane; Laetitia Hédouin and the “Under The Pole” team for the sampling in mesophotic reefs (CAPSULES program); and David Lecchini for the Bora Bora expedition.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

  1. Fages, J. Petit Atlas de la Polynésie Française; Société des Océanistes: Paris, France, 1975; Volume Dossiers Tahitiens 19, p. 41. [Google Scholar]
  2. Schlanger, S.; Garcia, M.; Keating, B.; Naughton, J.; Sager, W.; Haggerty, J.; Philpotts, J.; Duncan, R. Geology and geochronology of the Line Islands. J. Geophys. Res. Solid Earth 1984, 89, 11261–11272. [Google Scholar] [CrossRef]
  3. Liu, J.; Webster, J.M.; Salles, T.; Wang, S.; Ma, Y.; Xu, W.; Li, G.; Yan, W. The formation of atolls: New insights from numerical simulations. J. Geophys. Res. Earth Surf. 2022, 127, e2022JF006812. [Google Scholar]
  4. Jean-Marius, L.; Meller, D.; de Carpentier, G.; Zhioua, M. Les Monts Sous-Marins de Polynésie Française. 2020. Rapport Ecole Polytechnique de Paris. p. 43. Available online: http://www.ircp.pf/wp-content/uploads/Monts_sous_marins_de_Polyne%CC%81sie_franc%CC%A7aise.pdf (accessed on 20 June 2023).
  5. Marquet, G. Freshwater crustaceans of French Polynesia: Taxonomy, distribution and biomass (Decapoda). Crustaceana 1991, 61, 125–140. [Google Scholar] [CrossRef] [Green Version]
  6. McKenzie, L.J.; Nordlund, L.M.; Jones, B.L.; Cullen-Unsworth, L.C.; Roelfsema, C.; Unsworth, R.K. The global distribution of seagrass meadows. Environ. Res. Lett. 2020, 15, 074041. [Google Scholar] [CrossRef]
  7. United Nations. Maritime Space: Maritime Zones and Maritime Delimitation. 2018. Available online: https://www.un.org/depts/los/LEGISLATIONANDTREATIES/index.htm (accessed on 20 June 2023).
  8. Florence, J. Endémisme et évolution de la flore de la Polynésie française. Bull. Soc. Zool. Fr. 1987, 112, 369–380. [Google Scholar]
  9. Gargominy, O. Polynésie française. In Biodiversité et Conservation Dans les Collectivités Françaises D’outre-Mer; Comité français pour l’UICN: Paris, France, 2003; pp. 181–196. [Google Scholar]
  10. Kulbicki, M. Biogeography of reef fishes of the French territories in the South Pacific. Cybium 2007, 31, 275–288. [Google Scholar]
  11. Lorence, D.; Wood, K.; Perlman, S.; Meyer, J.-Y. Flore vasculaire et végétation des îles Marquises: Caractéristiques, originalités et vulnérabilité. In Biodiversité Terrestre et Marine Des îles Marquises, Polynésie Française; Société Française d’Ichtyologie: Paris, French, 2016; pp. 311–336. [Google Scholar]
  12. Payri, C.E.; Denizot, M. Les Peuplements d’Algues. In Atlas de la Polynésie Française; ORSTOM: Paris, France, 1993. [Google Scholar]
  13. Vieira, C.; De Clerck, O.; De Ramon N’Yeurt, A.; D’hondt, S.; Millet, L.; Kim, M.S.; Payri, C.; Zubia, M. Diversity, systematics and biogeography of French Polynesian Lobophora (Dictyotales, Phaeophyceae). Eur. J. Phycol. 2023, 58, 226–253. [Google Scholar] [CrossRef]
  14. N’Yeurt, A.D.R.; Payri, C.E. Marine algal flora of French Polynesia I. Phaeophyceae (Ochrophyta, brown algae). Cryptogam. Algol. 2006, 27, 111–152. [Google Scholar]
  15. N’Yeurt, A.D.R.; Payri, C.E. Marine algal flora of French Polynesia II. Chlorophyceae (green algae). Cryptogam. Algol. 2007, 28, 3. [Google Scholar]
  16. N’Yeurt, A.D.R.; Payri, C.E. Marine algal flora of French Polynesia III. Rhodophyta, with additions to the Phaeophyceae and Chlorophyta. Cryptogam. Bryol. 2010, 31, 3–205. [Google Scholar]
  17. Payri, C.E.; N’Yeurt, A.D.R. A revised checklist of Polynesian benthic marine algae. Aust. Syst. Bot. 1997, 10, 867–910. [Google Scholar] [CrossRef]
  18. McKenzie, L.J.; Yoshida, R.L.; Aini, J.W.; Andréfouet, S.; Colin, P.L.; Cullen-Unsworth, L.C.; Hughes, A.T.; Payri, C.E.; Rota, M.; Shaw, C. Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot. Mar. Pollut. Bull. 2021, 167, 112308. [Google Scholar] [PubMed]
  19. Theophilus, T.; Vieira, C.; Culioli, G.; Thomas, O.P.; N’Yeurt, A.D.R.; Andréfouët, S.; Mattio, L.; Payri, C.E.; Zubia, M. Dictyotaceae (Dictyotales, Phaeophyceae) species from French Polynesia: Current knowledge and future research. Seaweeds Around World State Art Perspect 2020, 95, 163. [Google Scholar]
  20. Zubia, M.; Vieira, C.; Palinska, K.A.; Roué, M.; Gaertner, J.-C.; Zloch, I.; Grellier, M.; Golubic, S. Benthic cyanobacteria on coral reefs of Moorea Island (French Polynesia): Diversity response to habitat quality. Hydrobiologia 2019, 843, 61–78. [Google Scholar]
  21. Vieira, C.; Schils, T.; Kawai, H.; D’hondt, S.; Paiano, M.O.; Sherwood, A.R.; De Clerck, O.; Zubia, M. Phylogenetic position of Newhousia (Dictyotales, Phaeophyceae) and the description of N. sumayensis spnov. from Guam. Phycologia 2022, 61, 255–264. [Google Scholar] [CrossRef]
  22. Bory De Saint-Vincent, J.B.G.M. Botanique. Agamie. Hydrophytes. In Voyage Autour du Monde sur ‘La Coquille’ Pendant les Années 1822–1825 et 1827–1829; Duperrey, L.I., Ed.; Arthus Bertrand: Paris, France, 1827; pp. 62–177. [Google Scholar]
  23. Montagne, C. Prodromus Generum Specierumque Phycearum Novarum, in Itinere ad Polum Antarcticum Regis Ludovici Philippi Jussu ab Illustri Dumont d’Urville: Preacto Collectarum, Notis Diagnosticis Tantum Huc Evulgatarum, Descriptionibus Vero Fusioribus Nec Non Iconibus Analyticis Jam Jamque Illustrandarum; Gide and Cie: Paris, France, 1842. [Google Scholar]
  24. Montagne, C. Plantes cellulaires. In Voyage au Pôle Sud et Dans l’Océanie sur les Corvettes l’Astrolabe et a Zelée Pendant les Années 1837–1838–1839–1840, Sous le Com-Mandement de M. J. Dumont-D’Urville: Botanique; Hombron, J.B., Jacquinot, H., Eds.; Gide and Cie: Paris, France, 1845; Volume 1, p. 349. [Google Scholar]
  25. Bailey, J.W.; Harvey, W.H. Algae. US Exploring Expedition 1838–1842. Bot. Cryptogam. 1874, 17, 153–192. [Google Scholar]
  26. Harvey, W.H.; Bailey, J.W. Description of seventeen new species of Algae collected by the U.S. Exploring Expedition. Proc. Boston Soc. Nat. Hist. 1851, 3, 370–373. [Google Scholar]
  27. Grunow, A. Algae. In Reise Der Osterr. Fregatte Novara Um Die Erde Den Jahren 1857, 1858, 1859: Botanischer Theil, Erster Band: Sporenpflanzen; Fenzl, E., Ed.; Kaiserlich-Königliche Hof- und Staatsdruckerei: Wien, France, 1867; pp. 1–104. [Google Scholar]
  28. Grunow, A. Algen der Fidschi-, Tonga- und Samoa-Inseln, gesammelt von Dr E. Graeffe. Erste folge. Phaeosporeae. Fucoideae und Florideae. J. Des. Mus. Godeffroy Hambg. 1874, 3, 23–50. [Google Scholar]
  29. Agardh, J.G. Till Algernes Systematik, Nya bidrag (Femte afdelningen). Lunds Uniersitets Årsskrift Afdelningen För Math. Och Naturvetenskap 1887, 23, 1–5. [Google Scholar]
  30. Barton, E.S. A systematic and structural account of the genus Turbinaria Lamouroux. In Transactions of the Linnean Society of London (Botany) 2nd Series; Mike Park Ltd.: London, UK, 1891; Volume 3, pp. 215–226. [Google Scholar]
  31. Barton, E.S. The Genus Halimeda. Monogr. Siboga Exped. 1901, 60, 1–32. [Google Scholar]
  32. Weber-van Bosse, A. Monographie des Caulerpes. In Annales du Jardin Botanique de Buitenzorg; BiblioBazaar: Charleston, SC, USA, 1898; Volume 15, pp. 243–401. [Google Scholar]
  33. Weber-van Bosse, A. Note sur les Caulerpa de l’île Taiti et sur un Nouveau Caulerpa de la Nouvelle Hollande. 1910. Available online: https://www.amazon.com/Note-Caulerpa-Taiti-nouveau-Nouvelle-Hollande/dp/B005WW2L94 (accessed on 20 June 2023).
  34. Foslie, M.H. Algologiske notiser. Kongelige Norske Videnskabers Selskabs Skrifter; Wentworth Press: London, UK, 1906; Volume 81. [Google Scholar]
  35. Foslie, M.H. Contributions to a Monograph of the Lithothamnia, after the Author’s Death Collected and Edited by Henrik Printz; Aktietrykkeriet: Trondhjem, Norway, 1929. [Google Scholar]
  36. Brand, F. Uber einege neue Grunalgen aus Neuseeland und Tahiti. In Berichte der Deutschen Botanischen Gesellschaft; Gebrüder Borntræger: Berlin, Germany, 1911; Volume 29, pp. 138–145. [Google Scholar]
  37. Brand, F. Uber die Siphonengattung Chlorodesmis. In Berichte der Deutschen Botanischen Gesellschaft; Gebrüder Borntræger: Berlin, Germany, 1911; Volume 29, pp. 606–611. [Google Scholar]
  38. Gepp, A.; Gepp, E.S. The Codiaceae of the Siboga Expedition, including a monograph of Flabellariae and Udoteae. Monogr. Siboga Exped. 1911, 62, 1–150. [Google Scholar]
  39. Grunow, A. Additamenta ad Cognitionem Sargassorum. 1915. Available online: https://www.zobodat.at/pdf/VZBG_65_0321-0328.pdf (accessed on 20 June 2023).
  40. Grunow, A. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien. 1916. Available online: https://www.algaebase.org/search/bibliography/detail/?biblio_id=16707 (accessed on 20 June 2023).
  41. Setchell, W.A. Tahitian Algae collected by W.A.; Setchell, C.B. Setchell and H.E. Parks. Univ. Calif. Publ. Bot. 1926, 12, 61–142. [Google Scholar]
  42. Hollenberg, G.J. New genera in the Rhodomelaceae from the Central Pacific. Bull. South. Calif. Acad. Sci. 1967, 66, 201–221. [Google Scholar]
  43. Hollenberg, G.J. An account of the species of Polysiphonia of the Central and Western Tropical Pacific Ocean. I. Oligosiphonia. Pac. Sci. 1968, 22, 56–98. [Google Scholar]
  44. Hollenberg, G.J. An account of the species of the red alga Herposiphonia occuring in the Central and Western Tropical Pacific Ocean. Pac. Sci. 1968, 22, 536–559. [Google Scholar]
  45. Hollenberg, G.J. Phycological notes III. New records of marine algae from the Central Tropical Pacific Ocean. Brittonia 1968, 20, 74–82. [Google Scholar]
  46. Taylor, W.R. Marine algae of the Smithsonian-Bredin Expedition to the Society and Tuamotu islands. Pac. Sci. 1973, 27, 37–43. [Google Scholar]
  47. Olsen-Stojkovich, J. A systematic study of the genus Avrainvillea Decaisne (Chlorophyta, Udoteaceae). Nova Hedwig. 1985, 41, 1–68. [Google Scholar]
  48. Payri, C.E.; Meinesz, A. Algae. In Proceedings of the 5th International Coral Reef Congress, Tahiti, French, 27 May–1 June 1985; Delesalle, B., Galzin, R., Salvat, B., Eds.; Muséum National d’Histoire Naturelle: Moorea, French, 1985; Volome 1, French Polynesian Coral Reefs. pp. 498–518. [Google Scholar]
  49. Payri, C.E.; Meinesz, A. Taxonomy and distribution of the genus Halimeda (Chlorophyta, Caulerpales) in French Polynesia. In Proceedings of the 5th International Coral Reef Congress, Tahiti, French, 27 May–1 June 1985; Delesalle, B., Galzin, R., Salvat, B., Eds.; Muséum National d’Histoire Naturelle: Moorea, French Polynesia, 1985; Volume 6, pp. 642–648. [Google Scholar]
  50. Abbott, I.A. A unique form of Valoniopsis pachynema (Chlorophyta) from French Polynesia. Cryptogam. Algol. 1986, 7, 161–167. [Google Scholar]
  51. Payri, C.E. Variabilité spatiale et temporelle de la communauté des macrophytes des récifs coralliens de Moorea (Polynésie française). In Contribution des Algues au Métabolisme du Carbone de L’écosystème Récifal; Université des Sciences et des Techniques du Languedoc: Montpellier, France, 1987. [Google Scholar]
  52. Payri, C.E.; N’Yeurt, A.D.R.; Orempüller, J. Algues de Polynésie Française/Algae of French Polynesia; Bilingual (English/French) illustrated guide; Editions au Vent des Iles: Papeete, French, 2000. [Google Scholar]
  53. N’Yeurt, A.D.R.; Payri, C.E. Four new species of Rhodophyceae from Fiji, French Polynesia and Vanuatu, South Pacific. Phycol. Res. 2009, 57, 12–24. [Google Scholar] [CrossRef] [Green Version]
  54. Boo, G.H.; Zubia, M.; Hughey, J.R.; Sherwood, A.R.; Fujii, M.T.; Boo, S.M.; Miller, K.A. Complete mitochondrial genomes reveal population-level patterns in the widespread red alga Gelidiella fanii (Gelidiales, Rhodophyta). Front. Mar. Sci. 2020, 7, 583957. [Google Scholar] [CrossRef]
  55. Gabriel, D.; Draisma, S.G.; Schmidt, W.E.; Schils, T.; Sauvage, T.; Maridakis, C.; Gurgel, C.F.D.; Harris, D.J.; Fredericq, S. Beneath the hairy look: The hidden reproductive diversity of the Gibsmithia hawaiiensis complex (Dumontiaceae, Rhodophyta). J. Phycol. 2017, 53, 1171–1192. [Google Scholar] [PubMed]
  56. Dijoux, L.; Viard, F.; Payri, C. The more we search, the more we find: Discovery of a new lineage and a new species complex in the genus Asparagopsis. PLoS ONE 2014, 9, e103826. [Google Scholar]
  57. De Clerck, O.; Gavio, B.; Fredericq, S.; Barbara, I.; Coppejans, E. Systematics of Grateloupia filicina (Halymeniaceae, Rhodophyta), based on rbcL sequence analyses and morphological evidence, including the reinstatement of G. minima and the description of G. capensis sp. nov. J. Phycol. 2005, 41, 391–410. [Google Scholar] [CrossRef]
  58. Figueroa, F.L.; Korbee, N.; Clerck, O.d.; Bárbara, I.; Gall, E.A. Characterization of Grateloupia lanceola (Halymeniales, Rhodophyta), an obscure foliose Grateloupia from the Iberian Peninsula, based on morphology, comparative sequence analysis and mycosporine-like amino acid composition. Eur. J. Phycol. 2007, 42, 231–242. [Google Scholar] [CrossRef]
  59. Caragnano, A.; Foetisch, A.; Maneveldt, G.W.; Millet, L.; Liu, L.C.; Lin, S.M.; Rodondi, G.; Payri, C.E. Revision of Corallinaceae (Corallinales, Rhodophyta): Recognizing Dawsoniolithon gen. nov., Parvicellularium gen. nov. and Chamberlainoideae subfam. nov. containing Chamberlainium gen. nov. and Pneophyllum. J. Phycol. 2018, 54, 391–409. [Google Scholar] [CrossRef] [PubMed]
  60. Pena, V.; Vieira, C.; Braga, J.C.; Aguirre, J.; Rösler, A.; Baele, G.; De Clerck, O.; Le Gall, L. Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Mol. Phylogen. Evol. 2020, 150, 106845. [Google Scholar] [CrossRef] [PubMed]
  61. Rösler, A.; Perfectti, F.; Peña, V.; Braga, J.C. Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): Taxonomic implications for reef-building corallines. J. Phycol. 2016, 52, 412–431. [Google Scholar]
  62. Janot, K.G.; Unda, F.; Mansfield, S.D.; Martone, P.T. Evolutionary patterns in chemical composition and biomechanics of articulated coralline algae. Integr. Comp. Biol. 2022, 62, 652–667. [Google Scholar] [CrossRef]
  63. Rousseau, F.; Gey, D.; Kurihara, A.; Maggs, C.A.; Martin-Lescanne, J.; Payri, C.; Reviers, B.d.; Sherwood, A.R.; Gall, L.L. Molecular phylogenies support taxonomic revision of three species of Laurencia (Rhodomelaceae, Rhodophyta), with the description of a new genus. Eur. J. Taxon 2017, 269, 1–19. [Google Scholar]
  64. Dijoux, L.; Verbruggen, H.; Mattio, L.; Duong, N.; Payri, C. Diversity of Halimeda (Bryopsidales, Chlorophyta) in New Caledonia: A combined morphological and molecular study. J. Phycol. 2012, 48, 1465–1481. [Google Scholar]
  65. Verbruggen, H.; De Clerck, O.; N’yeurt, A.D.; Spalding, H.; Vroom, P.S. Phylogeny and taxonomy of Halimeda incrassata, including descriptions of H. kanaloana and H. heteromorpha spp. nov.(Bryopsidales, Chlorophyta). Eur. J. Phycol. 2006, 41, 337–362. [Google Scholar] [CrossRef]
  66. Verbruggen, H.; Tyberghein, L.; Pauly, K.; Vlaeminck, C.; Nieuwenhuyze, K.V.; Kooistra, W.H.; Leliaert, F.; Clerck, O.D. Macroecology meets macroevolution: Evolutionary niche dynamics in the seaweed Halimeda. Glob. Ecol. Biogeogr. 2009, 18, 393–405. [Google Scholar] [CrossRef] [Green Version]
  67. Verbruggen, H.; De Clerck, O.; Schils, T.; Kooistra, W.H.; Coppejans, E. Evolution and phylogeography of Halimeda section Halimeda (Bryopsidales, Chlorophyta). Mol. Phylogen. Evol. 2005, 37, 789–803. [Google Scholar] [CrossRef] [PubMed]
  68. Verbruggen, H.; Littler, D.S.; Littler, M.M. Halimeda pygmaea and Halimeda pumila (Bryopsidales, Chlorophyta): Two new dwarf species from fore reef slopes in Fiji and the Bahamas. Phycologia 2007, 46, 513–520. [Google Scholar] [CrossRef] [Green Version]
  69. Tronholm, A.; Sanson, M.; Afonso-Carrillo, J.; Verbruggen, H.; De Clerck, O. Niche partitioning and the coexistence of two cryptic Dictyota (Dictyotales, Phaeophyceae) species from the Canary Islands. J. Phycol. 2010, 46, 1075–1087. [Google Scholar] [CrossRef]
  70. Tran, L.A.T.; Bafort, Q.; Steen, F.; Gomez Garreta, A.; D’Hondt, S.; Miller, K.A.; Vranken, S.; Žuljević, A.; Smith, J.E.; De Clerck, O. Dictyota cyanoloma (Dictyotales, Phaeophyceae), a newly introduced brown algal species in California. J. Phycol. 2021, 57, 370–378. [Google Scholar] [CrossRef] [PubMed]
  71. Tronholm, A.; Steen, F.; Tyberghein, L.; Leliaert, F.; Verbruggen, H.; Antonia Ribera Siguan, M.; De Clerck, O. Species delimitation, taxonomy, and biogeography of Dictyota in Europe (Dictyotales, Phaeophyceae). J. Phycol. 2010, 46, 1301–1321. [Google Scholar] [CrossRef]
  72. Tronholm, A.; Leliaert, F.; Sansón, M.; Afonso-Carrillo, J.; Tyberghein, L.; Verbruggen, H.; De Clerck, O. Contrasting geographical distributions as a result of thermal tolerance and long-distance dispersal in two allegedly widespread tropical brown algae. PLoS ONE 2012, 7, e30813. [Google Scholar] [CrossRef] [Green Version]
  73. Vieira, C.; Steen, F.; D’Hondt, S.; Bafort, Q.; Tyberghein, L.; Fernandez-García, C.; Wysor, B.; Tronholm, A.; Payri, C.; Kawai, H.; et al. Global biogeography and diversification of a group of brown seaweeds driven by different evolutionary processes across clades. J. Biogeogr. 2021, 48, 703–715. [Google Scholar] [CrossRef]
  74. Mattio, L.; Payri, C.E.; Stiger-Pouvreau, V. Taxonomic revision of Sargassum (Fucales, Phaeophyceae) from French Polynesia based on morphological and molecular analyses. J. Phycol. 2008, 44, 1541–1555. [Google Scholar] [PubMed]
  75. Rohfritsch, A.; Payri, C.; Stiger, V.; Bonhomme, F. Molecular and morphological relationships between two closely related species, Turbinaria ornata and T. conoides (Sargassaceae, Phaeophyceae). Biochem. Syst. Ecol. 2007, 35, 91–98. [Google Scholar]
  76. Kooistra, W.H.; Coppejans, E.G.; Payri, C. Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales). Mol. Phylogen. Evol. 2002, 24, 121–138. [Google Scholar]
  77. Davies, N. “Moorea Biocode” [Data Management Plan]. DMPHub. 2021. Available online: https://dmphub.cdlib.org/dmps/doi:10.48321/D1F88S (accessed on 20 June 2023).
  78. Leray, M.; Boehm, J.; Mills, S.C.; Meyer, C. Moorea BIOCODE barcode library as a tool for understanding predator–prey interactions: Insights into the diet of common predatory coral reef fishes. Coral Reefs 2012, 31, 383–388. [Google Scholar] [CrossRef]
  79. Meyer, C. Moorea Biocode Project FASTA data. Available online: http://n2t.net/ark:/13030/m5478zfg (accessed on 20 June 2023).
  80. Vieira, C.; N’Yeurt, A.D.R.; Rasoamanendrika, A.F.; D’Hondt, S.; Tran, L.-A.T.; Van den Spiegel, D.; Hiroshi, K.; De Clerck, O. Marine macroalgal biodiversity of northern Madagascar: Morpho-genetic systematics and implications of anthropic impacts for conservation. Biodivers. Conserv. 2021, 30, 1501–1546. [Google Scholar] [CrossRef]
  81. Bringloe, T.T.; Sjøtun, K.; Saunders, G.W. A DNA barcode survey of marine macroalgae from Bergen (Norway). Mar. Biol. Res. 2019, 15, 1–10. [Google Scholar] [CrossRef]
  82. Bringloe, T.T.; Dunton, K.H.; Saunders, G.W. Updates to the marine algal flora of the Boulder Patch in the Beaufort Sea off Northern Alaska as revealed by DNA Barcoding. Arctic 2017, 70, 343–348. [Google Scholar] [CrossRef]
  83. Prasanthi, N.; Prasannakumar, C.; Annadurai, D.; Mahendran, S. Identifying seaweeds species of Chlorophyta, Phaeophyta and Rhodophyta using DNA barcodes. bioRxiv 2020. [Google Scholar] [CrossRef]
  84. Bartolo, A.G.; Zammit, G.; Russell, H.; Peters, A.F.; Küpper, F.C. DNA barcoding of marine algae from Malta: New records from the central Mediterranean. Acta Bot. Croat. 2021, 80, 176–183. [Google Scholar] [CrossRef]
  85. Du Plessis, J.C. DNA Barcoding of South African Red Seaweeds (Rhodophyta). Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2020. [Google Scholar]
  86. Kogame, K.; Uwai, S.; Anderson, R.; Choi, H.-G.; Bolton, J. DNA barcoding of South African geniculate coralline red algae (Corallinales, Rhodophyta). S. Afr. J. Bot. 2017, 108, 337–341. [Google Scholar]
  87. Zhao, X.; Pang, S.; Shan, T.; Liu, F. Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China. J. Ocean Univ. China 2013, 12, 139–145. [Google Scholar] [CrossRef]
  88. Saunders, G.W. A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea–Neodilsea complex and Weeksia. Botany 2008, 86, 773–789. [Google Scholar] [CrossRef]
  89. Le Gall, L.; Saunders, G.W. Dna barcoding is a powerful tool to uncover algal diversity: A case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J. Phycol. 2010, 46, 374–389. [Google Scholar]
  90. Saunders, G.W.; McDonald, B. DNA barcoding reveals multiple overlooked Australian species of the red algal order Rhodymeniales (Florideophyceae), with resurrection of Halopeltis J. Agardh and description of Pseudohalopeltis gen. nov. Botany 2010, 88, 639–667. [Google Scholar] [CrossRef]
  91. Kim, M.-S.; Yang, M.Y.; Cho, G.Y. Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta). Cryptogam. Algol. 2010, 31, 387. [Google Scholar]
  92. Koh, Y.H.; Kim, M.S. DNA barcoding reveals cryptic diversity of economic red algae, Pyropia (Bangiales, Rhodophyta): Description of novel species from Korea. J. Appl. Phycol. 2018, 30, 3425–3434. [Google Scholar] [CrossRef]
  93. Pardo, C.; Bárbara, I.; Barreiro, R.; Peña, V. Insights into species diversity of associated crustose coralline algae (Corallinophycidae, Rhodophyta) with Atlantic European maerl beds using DNA barcoding. In Anales del Jardín Botánico de Madrid; Editorial CSIC: Madrid, Spain, 2017; pp. 1–12. [Google Scholar]
  94. Zubia, M.; Turquet, J.; Golubic, S. Benthic cyanobacterial diversity of iles eparses (scattered islands) in the Mozambique channel. Acta Oecol. 2016, 72, 21–32. [Google Scholar] [CrossRef]
  95. Dvořák, P.; Poulíčková, A.; Hašler, P.; Belli, M.; Casamatta, D.A.; Papini, A. Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers. Conserv. 2015, 24, 739–757. [Google Scholar] [CrossRef] [Green Version]
  96. Komárek, J. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 2018, 811, 7–17. [Google Scholar] [CrossRef]
  97. Komárek, J.; Kaštovský, J.; Mareš, J.; Johansen, J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 2014, 86, 295–335. [Google Scholar]
  98. Engene, N.; Cameron Coates, R.; Gerwick, W.H. 16S rRNA Gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J. Phycol. 2010, 46, 591–601. [Google Scholar] [CrossRef]
  99. Engene, N.; Rottacker, E.C.; Kaštovský, J.; Byrum, T.; Choi, H.; Ellisman, M.H.; Komárek, J.; Gerwick, W.H. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 2012, 62, 1171. [Google Scholar] [CrossRef] [Green Version]
  100. Engene, N.; Tronholm, A.; Salvador-Reyes, L.A.; Luesch, H.; Paul, V.J. Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. J. Phycol. 2015, 51, 670–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  101. Steen, F.; Vieira, C.; Leliaert, F.; Payri, E.C.; De Clerck, O. Biogeographic affinities of Dictyotales from Madagascar: A phylogenetic approach. Cryptogam. Algol. 2015, 36, 129–141. [Google Scholar] [CrossRef]
  102. Saunders, G.W.; Moore, T.E. Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: A summary of current primers, profiles and strategies. Algae 2013, 28, 31–43. [Google Scholar] [CrossRef] [Green Version]
  103. Kogame, K.; Uwai, S.; Shimada, S.; Masuda, M. A study of sexual and asexual populations of Scytosiphon lomentaria (Scytosiphonaceae, Phaeophyceae) in Hokkaido, northern Japan, using molecular markers. Eur. J. Phycol. 2005, 40, 313–322. [Google Scholar] [CrossRef] [Green Version]
  104. Silberfeld, T.; Leigh, J.W.; Verbruggen, H.; Cruaud, C.; De Reviers, B.; Rousseau, F. A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the “brown algal crown radiation”. Mol. Phylogen. Evol. 2010, 56, 659–674. [Google Scholar] [CrossRef]
  105. Bittner, L.; Payri, C.; Couloux, A.; Cruaud, C.; De Reviers, B.; Rousseau, F. Molecular phylogeny of the Dictyotales and their position within the Phaeophyceae, based on nuclear, plastid and mitochondrial DNA sequence data. Mol. Phylogen. Evol. 2008, 49, 211–226. [Google Scholar] [CrossRef] [PubMed]
  106. Draisma, S.G.; Prud’Homme van Reine, W.F.; Stam, W.T.; Olsen, J.L. A reassessment of phylogenetic relationships within the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA sequences. J. Phycol. 2001, 37, 586–603. [Google Scholar] [CrossRef]
  107. Kogame, K.; Horiguchi, T.; Masuda, M. Phylogeny of the order Scytosiphonales (Phaeophyceae) based on DNA sequences of rbc L, partial rbc S, and partial LSU nrDNA. Phycologia 1999, 38, 496–502. [Google Scholar] [CrossRef]
  108. Hwang, I.-K.; Kim, H.-S.; Lee, W.J. Polymorphism in the brown alga Dictyota dichotoma (Dictyotales, Phaeophyceae) from Korea. Mar. Biol. 2005, 147, 999–1015. [Google Scholar] [CrossRef]
  109. Phillips, N.E. Molecular Phylogenetic Analysis of the Pan-Pacific Genus Sargassum; University of Hawaiʻi at Manoa: Honolulu, HI, USA, 1998. [Google Scholar]
  110. Freshwater, D.W.; Rueness, J. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 1994, 33, 187–194. [Google Scholar] [CrossRef]
  111. Saunders, G.W.; Kucera, H. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogam. Algol. 2010, 31, 487–528. [Google Scholar]
  112. Yoon, H.S.; Hackett, J.D.; Bhattacharya, D. A single origin of the peridinin-and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. USA 2002, 99, 11724–11729. [Google Scholar] [CrossRef] [PubMed]
  113. Famà, P.; Wysor, B.; Kooistra, W.H.; Zuccarello, G.C. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene1. J. Phycol. 2002, 38, 1040–1050. [Google Scholar] [CrossRef] [Green Version]
  114. Hassouna, N.; Mithot, B.; Bachellerie, J.-P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984, 12, 3563–3583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  115. Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
  116. Stanford, A.M.; Harden, R.; Parks, C.R. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. Am. J. Bot. 2000, 87, 872–882. [Google Scholar] [CrossRef]
  117. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: New York, NY, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
  118. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
  119. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
  120. Lagercrantz, E. eBioX. Available online: http://www.ebioinformatics.org/ebiox (accessed on 30 June 2016).
  121. Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate Maximum-Likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. De Clerck, O.; Leliaert, F.; Verbruggen, H.; Lane, C.E.; De Paula, J.C.; Payo, D.A.; Coppejans, E. A revised classification of the Dictyoteae (Dictyotales, Phaeophyceae) based on rbcL and 26S ribosomal DNA sequence analyses. J. Phycol. 2006, 42, 1271–1288. [Google Scholar] [CrossRef]
  123. Vieira, C.; D’hondt, S.; De Clerck, O.; Payri, C.E. Toward an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia. J. Phycol. 2014, 50, 1101–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Gray, A.; Cavers, S. Island biogeography, the effects of taxonomic effort and the importance of island niche diversity to single-island endemic species. Syst. Biol. 2014, 63, 55–65. [Google Scholar] [CrossRef] [Green Version]
  125. Lagourgue, L.; Rousseau, F.; Zubia, M.; Payri, C.E. Diversity of the genus Avrainvillea (Dichotomosiphonaceae, Chlorophyta): New insights and eight new species. Eur. J. Phycol. 2023, 1–28. [Google Scholar] [CrossRef]
  126. Vieira, C.; Camacho, O.; Wynne, M.J.; Mattio, L.; Anderson, R.; Bolton, J.J.; Sansón, M.; D’Hondt, S.; Leliaert, F.; Fredericq, S.; et al. Shedding new light on old algae: Matching names and sequences in the brown algal genus Lobophora (Dictyotales, Phaeophyceae). Taxon 2016, 65, 689–707. [Google Scholar] [CrossRef] [Green Version]
  127. Emmett, M. The Distribution and Morphology of Seagrass (Halophila decipiens) in Moorea, French Polynesia, 1996; Unpublished.
  128. N’Yeurt, A.D.R.; South, G.R. Biodiversity and biogeography of benthic marine algae in the southwest Pacific, with specific reference to Rotuma and Fiji. Pac. Sci. 1997, 51, 18–28. [Google Scholar]
  129. Bellwood, D.R.; Meyer, C.P. Searching for heat in a marine biodiversity hotspot. J. Biogeogr. 2009, 36, 569–576. [Google Scholar] [CrossRef]
  130. Elliott, T.L.; Davies, T.J. Challenges to barcoding an entire flora. Mol. Ecol. Resour. 2014, 14, 883–891. [Google Scholar] [CrossRef]
  131. Buglass, S.; Kawai, H.; Hanyuda, T.; Harvey, E.; Donner, S.; De la Rosa, J.; Keith, I.; Bermúdez, J.R.; Altamirano, M. Novel mesophotic kelp forests in the Galápagos archipelago. Mar. Biol. 2022, 169, 156. [Google Scholar] [CrossRef]
  132. Stiger, V.; Payri, C.E. Spatial and temporal patterns of settlement of the brown macroalgae Turbinaria ornata and Sargassum mangarevense in a coral reef on Tahiti. Mar. Ecol. Prog. Ser. 1999, 191, 91–100. [Google Scholar] [CrossRef] [Green Version]
  133. Engel, M.S.; Ceríaco, L.M.; Daniel, G.M.; Dellapé, P.M.; Löbl, I.; Marinov, M.; Reis, R.E.; Young, M.T.; Dubois, A.; Agarwal, I. The taxonomic impediment: A shortage of taxonomists, not the lack of technical approaches. Zool. J. Linn. Soc. 2021, 193, 381–387. [Google Scholar] [CrossRef]
  134. Gaytán, Á.; Bergsten, J.; Canelo, T.; Pérez-Izquierdo, C.; Santoro, M.; Bonal, R. DNA Barcoding and geographical scale effect: The problems of undersampling genetic diversity hotspots. Ecol. Evol. 2020, 10, 10754–10772. [Google Scholar] [CrossRef] [PubMed]
  135. Zhang, H.; Bu, W. Exploring large-scale patterns of genetic variation in the COI gene among Insecta: Implications for DNA barcoding and threshold-based species delimitation studies. Insects 2022, 13, 425. [Google Scholar] [CrossRef] [PubMed]
  136. Conte, É.; Payri, C. La consommation des algues en Polynésie française: Premiers résultats d’une enquête. J. De La Société Des Océanistes 2002, 114–115, 165–172. [Google Scholar] [CrossRef] [Green Version]
  137. Conte, E.; Payri, C. Present day consumption of edible algae in French Polynesia: A study of the survival of pre-European practices. J. Polyn. Soc. 2006, 115, 77–93. [Google Scholar]
  138. Novaczek, I.; Athy, A. Sea Vegetable Recipes for the Pacific Islands; University of the South Pacific: Suva, Fiji, 2001; Volume 3. [Google Scholar]
  139. Zubia, M.; Draisma, S.G.; Morrissey, K.L.; Varela-Álvarez, E.; De Clerck, O. Concise review of the genus Caulerpa J.V. Lamouroux. J. Appl. Phycol. 2020, 32, 23–39. [Google Scholar] [CrossRef]
  140. Stiger-Pouvreau, V.; Zubia, M. Macroalgal diversity for sustainable biotechnological development in French tropical overseas territories. Bot. Mar. 2020, 63, 17–41. [Google Scholar] [CrossRef] [Green Version]
  141. Andréfouët, S.; Adjeroud, M. French Polynesia. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 827–854. [Google Scholar]
  142. Stiger, V.; Payri, C. Spatial and seasonal variations in the biological characteristics of two invasive brown algae, Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell (Sargassaceae, Fucales) spreading on the reefs of Tahiti (French Polynesia). Bot. Mar. 1999, 42, 295–306. [Google Scholar] [CrossRef]
  143. Ojaveer, H.; Galil, B.S.; Carlton, J.T.; Alleway, H.; Goulletquer, P.; Lehtiniemi, M.; Marchini, A.; Miller, W.; Occhipinti-Ambrogi, A.; Peharda, M. Historical baselines in marine bioinvasions: Implications for policy and management. PLoS ONE 2018, 13, e0202383. [Google Scholar] [CrossRef] [Green Version]
  144. Wood, S.A.; Smith, K.F.; Banks, J.C.; Tremblay, L.A.; Rhodes, L.; Mountfort, D.; Cary, S.C.; Pochon, X. Molecular genetic tools for environmental monitoring of New Zealand’s aquatic habitats, past, present and the future. N. Z. J. Mar. Freshwat. Res. 2013, 47, 90–119. [Google Scholar] [CrossRef] [Green Version]
  145. Zaiko, A.; Pochon, X.; Garcia-Vazquez, E.; Olenin, S.; Wood, S.A. Advantages and limitations of environmental DNA/RNA tools for marine biosecurity: Management and surveillance of non-indigenous species. Front. Mar. Sci. 2018, 5, 322. [Google Scholar] [CrossRef] [Green Version]
  146. Ammon, U.v.; Wood, S.A.; Laroche, O.; Zaiko, A.; Tait, L.; Lavery, S.; Inglis, G.J.; Pochon, X. Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci. Rep. 2018, 8, 16290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  147. Ardura, A.; Fernandez, S.; Haguenauer, A.; Planes, S.; Garcia-Vazquez, E. Ship-driven biopollution: How aliens transform the local ecosystem diversity in Pacific islands. Mar. Pollut. Bull. 2021, 166, 112251. [Google Scholar] [CrossRef] [PubMed]
  148. WoRMS Editorial Board. World Register of Marine Species. 2023. Available online: http://www.marinespecies.org (accessed on 26 April 2023).
  149. Avise, J.C. Phylogeography: The History and Formation of Species; Harvard University Press: Cambridge, MA, USA, 2000. [Google Scholar]
  150. Lee, K.M.; Boo, S.M.; Sherwood, A.R. Cryptic diversity and biogeography of the widespread brown alga Colpomenia sinuosa (Ectocarpales, Phaeophyceae). Bot. Mar. 2013, 56, 15–25. [Google Scholar] [CrossRef]
  151. Ayres-Ostrock, L.; Mauger, S.; Plastino, E.; Oliveira, M.; Guillemin, M.; Destombe, C.; Valero, M. Phylogeographic patterns of Gracilaria caudata (Gracilariales, Rhodophyta) along the Brazilian coast. Phycologia 2017, 56, 12. [Google Scholar]
Figure 1. Map of French Polynesia showing the five main archipelagos.
Figure 1. Map of French Polynesia showing the five main archipelagos.
Biology 12 01124 g001
Figure 2. Illustrations of some marine flora from French Polynesia. Two cyanobacteria—Caldora pennicilata (A), Anabaena sp.1 (B), and some macroalgae—Gibsmithia dotyi (C), Trichogloea requienii (D), Caulerpa chemnitzia (E), Caulerpa webbiana var. pickeringii (F), Manzaea minuta (G), Colpomenia claytoniae (H).
Figure 2. Illustrations of some marine flora from French Polynesia. Two cyanobacteria—Caldora pennicilata (A), Anabaena sp.1 (B), and some macroalgae—Gibsmithia dotyi (C), Trichogloea requienii (D), Caulerpa chemnitzia (E), Caulerpa webbiana var. pickeringii (F), Manzaea minuta (G), Colpomenia claytoniae (H).
Biology 12 01124 g002
Table 1. Catalog of marine flora (Alismatales, Chlorophyta, Cyanobacteria, Ochrophyta, Rhodophyta) from French Polynesia based on molecular and morphological identifications and compiled from published past records and the present study.
Table 1. Catalog of marine flora (Alismatales, Chlorophyta, Cyanobacteria, Ochrophyta, Rhodophyta) from French Polynesia based on molecular and morphological identifications and compiled from published past records and the present study.
OrderFamilySpecies NameMolecular ConfirmationEndemicMorphologyRegional DNA
Sequence
ReferencesMarkers
Sequenced
AcrochaetialesAcrochaetiaceaeAcrochaetium barbadense (Vickers) BørgesenN.S.NYN[16]
AcrochaetialesAcrochaetiaceaeAcrochaetium microscopicum (Nägeli ex Kützing) NägeliN.S.NYN[16]
BonnemaisonialesBonnemaisoniaceaeAsparagopsis taxiformis (Delile) TrevisanCONF.NYYThis study, [16,56]cox1, rbcL, 28S
CeramialesCallithamniaceaeAglaothamnion boergesenii (Aponte & D.L.Ballantine) L’Hardy-Halos & RuenessN.S.NYN[77]
CeramialesCallithamniaceaeAglaothamnion sp.1FPN.L.YYYThis studyrbcL
CeramialesCallithamniaceaeAglaothamnion sp.2FPN.L.YYYThis studyrbcL
CeramialesCallithamniaceaeCrouania attenuata (C.Agardh) J.AgardhCONF.NYY [16]rbcL
CeramialesCallithamniaceaeSeirospora orientalis KraftN.S.NYN[16]
CeramialesCallithamniaceaeSpyridia americana DurantN.L.NYYThis studyrbcL
CeramialesCallithamniaceaeSpyridia filamentosa (Wulfen) HarveyN.S.NYN[16]
CeramialesCallithamniaceaeSpyridia hypnoides (Bory) PapenfussN.S.NYN[16]
CeramialesCallithamniaceaeSpyridia sp.1FPN.L.YYYThis studyrbcL
CeramialesCallithamniaceaeSpyridia sp.2FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeAcrothamnion butlerae (Collins) KylinN.S.NYN[77]
CeramialesCeramiaceaeAntithamnion antillanum BørgesenN.S.NYN[16]
CeramialesCeramiaceaeAntithamnion decipiens (J.Agardh) AthanasiadisN.S.NYN[16]
CeramialesCeramiaceaeAntithamnionella breviramosa (E.Y.Dawson) WollastonN.S.NYN[16]
CeramialesCeramiaceaeAntithamnionella elegans (Berthold) J.H.Price & D.M.JohnN.S.NYY[77]
CeramialesCeramiaceaeCentroceras clavulatum (C.Agardh) MontagneN.S.NYN[16]
CeramialesCeramiaceaeCentroceras minutum YamadaN.S.NYN[16]
CeramialesCeramiaceaeCentroceras sp.1FP (cf. Centroceras gasparrinii)N.L.YYYThis studyrbcL
CeramialesCeramiaceaeCentroceras sp.2FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCentroceras sp.3FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCentroceras sp.4FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCentroceras sp.5FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCeramium aduncum NakamuraN.S.NYN[16]
CeramialesCeramiaceaeCeramium borneense Weber BosseN.S.NYN[16]
CeramialesCeramiaceaeCeramium codii (H.Richards) MazoyerN.S.NYN[16]
CeramialesCeramiaceaeCeramium sp.1FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCeramium sp.2FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCeramium sp.3FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCeramium sp.4FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCeramium sp.5FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeCeramium upolense G.R.South & SkeltonN.S.NYN[16]
CeramialesCeramiaceaeCeramium vagans P.C.SilvaN.S.NYN[16]
CeramialesCeramiaceaeCorallophila kleiwegii Weber BosseN.S.NYN[16]
CeramialesCeramiaceaeGayliella macrotricha (Feldmann-Mazoyer) HuismanN.S.NYN[16]
CeramialesCeramiaceaeGayliella sp.1 FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeGayliella sp.2 FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeGayliella sp.3 FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeGayliella sp.4 FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeGayliella sp.5 FPN.L.YYYThis studyrbcL
CeramialesCeramiaceaeGayliella transversalis (Collins & Hervey) T.O.Cho & FredericqN.S.NY N[16]
CeramialesDelesseriaceaeDasya anastomosans (Weber Bosse) M.J.WynneCONF.NYYThis study, [16]rbcL
CeramialesDelesseriaceaeDasya iyengarii BørgesenN.S.NYN[16]
CeramialesDelesseriaceaeDasya mollis HarveyN.S.NYN[16]
CeramialesDelesseriaceaeDasya murrayana I.A.Abbott & A.J.K.MillarN.S.NYN[16]
CeramialesDelesseriaceaeDasya palmatifida (Weber Bosse) A.J.K.Millar & CoppejansN.S.NYN[16]
CeramialesDelesseriaceaeDasya pedicellata (C.Agardh) C.AgardhN.S.NYN [16]
CeramialesDelesseriaceaeDasya sp.1FPN.L.YYYThis studyrbcL
CeramialesDelesseriaceaeDasya sp.2FPN.L.YYYThis studyrbcL
CeramialesDelesseriaceaeDasya sp.3FPN.L.YYYThis studyrbcL
CeramialesDelesseriaceaeHypoglossum simulans M.J.Wynne, I.R.Price & D.L.Ballantinecf. Hypoglossum sp.1NYN[16]
CeramialesDelesseriaceaeHypoglossum sp.1FPN.L.YYYThis studyrbcL
CeramialesDelesseriaceaeMartensia fragilis HarveyN.S.NYN[16]
CeramialesDelesseriaceaeMyriogramme cartilaginea (Harvey) WomersleyN.S.NYN[16]
CeramialesDelesseriaceaeNitophyllum adhaerens M.J.WynneN.S.NYN[16]
CeramialesNeuroglosseaeSchizoseris sp.1FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeAcanthophora pacifica (Setchell) KraftN.S.NYYThis study, [16]
CeramialesRhodomelaceaeAcanthophora spicifera (M.Vahl) BørgesenCONF.NYYThis study, [16]rbcL
CeramialesRhodomelaceaeAmansia rhodantha (Harvey) J.AgardhN.L.NYYThis study, [16]rbcL
CeramialesRhodomelaceaeBostrychia moritzian (Sonder ex Kützing) J.AgardhN.S.NYN[16]
CeramialesRhodomelaceaeBostrychia tenella (J.V.Lamouroux) J.AgardhN.S.NYN[16]
CeramialesRhodomelaceaeChondria arcuata HollenbergN.S.NYN[16]
CeramialesRhodomelaceaeChondria bullata N’Yeurt & PayriN.S.NYN[16]
CeramialesRhodomelaceaeChondria dangeardii E.Y.DawsonN.S.NYN[16]
CeramialesRhodomelaceaeChondria dasyphylla (Woodward) C.AgardhN.S.NYN[16]
CeramialesRhodomelaceaeChondria minutula Weber BosseN.S.NYN[16]
CeramialesRhodomelaceaeChondria repens BørgesenN.S.NYN[16]
CeramialesRhodomelaceaeChondria simpliciuscula Weber BosseN.S.NYN[16]
CeramialesRhodomelaceaeChondria sp.1FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondria sp.2FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondria sp.3FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondria sp.4FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondria sp.5FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondria sp.6FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondria sp.7FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondrophycus sp.1FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondrophycus sp.2FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondrophycus sp.3FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeChondrophycus succisus (A.B.Cribb) K.W.NamN.S.NYN[16]
CeramialesRhodomelaceaeDitria reptans HollenbergN.S.NYN[16]
CeramialesRhodomelaceaeHerposiphonia delicatula HollenbergN.S.NYN[16]
CeramialesRhodomelaceaeHerposiphonia dendroidea HollenbergN.S.NYN[16]
CeramialesRhodomelaceaeHerposiphonia pacifica HollenbergN.S.NYN[16]
CeramialesRhodomelaceaeHerposiphonia parca SetchellN.S.NYN[16]
CeramialesRhodomelaceaeHerposiphonia secunda (C.Agardh) AmbronnN.S.NYN[16]
CeramialesRhodomelaceaeHerposiphonia sp.1FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeHerposiphonia sp.2FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeHerposiphonia sp.3FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeHeterosiphonia crispella var. laxa (Børgesen) M.J.WynneN.S.NYN[16]
CeramialesRhodomelaceaeHeterosiphonia gibbesii (Harvey) FalkenbergN.S.NYN[16]
CeramialesRhodomelaceaeLaurencia caraibica P.C.SilvaN.S.NYN[16]
CeramialesRhodomelaceaeLaurencia claviformis BørgesenN.S.NYN[16]
CeramialesRhodomelaceaeLaurencia decumbens KützingN.S.NYN[16]
CeramialesRhodomelaceaeLaurencia glandulifera (Kützing) KützingN.S.NYN[16]
CeramialesRhodomelaceaeLaurencia sp.1FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeLaurencia sp.2FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeLaurencia sp.3FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeLaurencia sp.4FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeMelanothamnus apiculatus (Hollenberg) Díaz- Tapia & MaggsN.S.NYN[16]
CeramialesRhodomelaceaeMelanothamnus delicatulus (Hollenberg) HuismanN.S.NYN[16]
CeramialesRhodomelaceaeMelanothamnus ecorticatus (R.E.Norris) Díaz-Tapia & MaggsN.S.NYN[16]
CeramialesRhodomelaceaeMelanothamnus ferulaceus (Suhr ex J.Agardh) Díaz-Tapia & MaggsN.S.NYN[16]
CeramialesRhodomelaceaeMelanothamnus savatieri (Hariot) Díaz-Tapia & MaggsN.S.NYN[16]
CeramialesRhodomelaceaeMelanothamnus sphaerocarpus (Børgesen) Díaz-Tapia & MaggsN.S.NYN[16]
CeramialesRhodomelaceaeMelanothamnus tongatensis (Harvey ex Kützing) Díaz-Tapia & MaggsN.S.NYN[16]
CeramialesRhodomelaceaeMelanothamnus upolensis (Grunow) Díaz-Tapia & MaggsN.S.NYN[16]
CeramialesRhodomelaceaeOhelopapa flexilis (Setchell) F.Rousseau, Martin-Lescanne, Payri & L.Le GallCONF.NYYThis study, [16,63]rbcL
CeramialesRhodomelaceaePalisada cervicornis (Harvey) Collado-Vides, Cassano & M.T.FujiiN.S.NYN[16]
CeramialesRhodomelaceaePalisada crustiformans (K.J.McDermid) A.R.Sherwood, A.Kurihara & K.W.NamN.S.NYN[16]
CeramialesRhodomelaceaePalisada parvipapillata (C.K.Tseng) K.W.NamN.S.NYN[16]
CeramialesRhodomelaceaePalisada perforata (Bory) K.W.NamN.S.NYN[16]
CeramialesRhodomelaceaePalisada sp.1FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaePalisada sp.2FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaePalisada sp.3FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaePalisada yamadana (M.Howe) K.W.NamN.S.NYN[16]
CeramialesRhodomelaceaePhaeocolax kajimurae HollenbergN.S.NYN[16]
CeramialesRhodomelaceaePolysiphonia dotyi HollenbergN.S.NYN[16]
CeramialesRhodomelaceaePolysiphonia homoia Setchell & N.L.GardnerN.S.NYN[16]
CeramialesRhodomelaceaePolysiphonia poko HollenbergN.S.NYN[16]
CeramialesRhodomelaceaePolysiphonia scopulorum HarveyN.S.NYN[16]
CeramialesRhodomelaceaePolysiphonia sp.1FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaePolysiphonia sp.2FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaePolysiphonia sp.3FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaePolysiphonia sp.4FPN.L.YYYThis studyrbcL
CeramialesRhodomelaceaePolysiphonia sp.5FP Polysiphonia sertularioides complexN.L.YYYThis studyrbcL
CeramialesRhodomelaceaeSpirocladia barodensis BørgesenN.S.NYN[16]
CeramialesRhodomelaceaeWomersleyella herpa (Hollenberg) R.E.NorrisN.S.NYN[16]
CeramialesRhodomelaceaeWomersleyella setacea (Hollenberg) R.E.NorrisN.S.NYN[16]
CeramialesWrangeliaceaeAnotrichium sp.1FPN.L.YYYThis studyrbcL
CeramialesWrangeliaceaeAnotrichium sp.2FPN.L.YYYThis studyrbcL
CeramialesWrangeliaceaeAnotrichium tenue (C.Agardh) NägeliN.S.NYN[16]
CeramialesWrangeliaceaeGriffithsia schousboei MontagneN.S.NYN[16]
CeramialesWrangeliaceaeGriffithsia sp.1FPN.L.YYYThis studyrbcL
CeramialesWrangeliaceaeGriffithsia sp.2FPN.L.YYYThis studyrbcL
CeramialesWrangeliaceaeGriffithsia sp.3FPN.L.YYYThis studyrbcL
CeramialesWrangeliaceaeGriffithsia sp.4FPN.L.YYYThis studyrbcL
CeramialesWrangeliaceaeHaloplegma duperreyi MontagneN.S.NYN[16]
CeramialesWrangeliaceaeHaloplegma sp.1FPN.L.YYYThis studyrbcL
CeramialesWrangeliaceaePtilothamnion cladophorae (Yamada & T.Tanaka) G.Feldmann-MazoyerN.S.NYN[16]
CeramialesWrangeliaceaeWrangelia sp.1FPN.L.YYYThis studyrbcL
CorallinalesCorallinaceaeDawsoniolithon conicum (E.Y.Dawson) Caragnano, Foetisch, Maneveldt & PayriCONF.NYY[16,59]cox1, psbA, SSU, LSU
CorallinalesCorallinaceaeEllisolandia elongata (J.Ellis & Solander) K.R.Hind & G.W.SaundersN.S.NYN[16]
CorallinalesCorallinaceaeJania acutiloba (Decaisne) J.H.Kim, Guiry & H.-G.Choicf. Jania sp.1NYN[16]
CorallinalesCorallinaceaeJania articulata N’Yeurt & PayriN.S.NYN[16]
CorallinalesCorallinaceaeJania pedunculata var. adhaerens (J.V.Lamouroux) A.S.Harvey, Woelkerling & ReviersN.S.NYN[16]
CorallinalesCorallinaceaeJania pumila J.V.LamourouxN.S.NYN[16]
CorallinalesCorallinaceaeJania rubens (Linnaeus) J.V.LamourouxN.S.NYN[16]
CorallinalesCorallinaceaeJania sp.1FPN.L.YYYThis studyrbcL
CorallinalesCorallinaceaeJania sp.2FPN.L.YYYThis studyrbcL
CorallinalesCorallinaceaeJania spectabilis (Harvey ex Grunow) J.H.Kim, Guiry & H.-G.ChoiN.S.NYN[16]
CorallinalesCorallinaceaeJania subulata (Ellis & Solander) SonderN.S.NYN[16]
CorallinalesCorallinaceaeParvicellularium sp.1FPCONF.Y? Y[59]psbA, LSU
CorallinalesHydrolithaceaeHydrolithon boergesenii (Foslie) FoslieN.S.NYN[16]
CorallinalesHydrolithaceaeHydrolithon boreale (Foslie) Y.M.ChamberlainN.S.NYN[16]
CorallinalesHydrolithaceaeHydrolithon farinosum (J.V.Lamouroux) Penrose & Y.M.ChamberlainN.S.NYN[16]
CorallinalesHydrolithaceaeHydrolithon murakoshii Iryu & MatsudaN.S.NYN[16]
CorallinalesLithophyllaceaeAmphiroa anceps (Lamarck) DecaisneN.S.NYN[16]
CorallinalesLithophyllaceaeAmphiroa foliacea J.V.LamourouxN.S.NYN[16]
CorallinalesLithophyllaceaeAmphiroa sp.1FPN.L.YYYThis studyrbcL
CorallinalesLithophyllaceaeAmphiroa sp.2FPN.L.YYYThis studyrbcL
CorallinalesLithophyllaceaeAmphiroa sp.3FPN.L.YYYThis studyrbcL
CorallinalesLithophyllaceaeAmphiroa valonioides YendoN.L.NYYThis study, [16]rbcL
CorallinalesLithophyllaceaeLithophyllum sp.1FPYES: [60]YYY[60]rbcL
CorallinalesLithophyllaceaeLithophyllum flavescens KeatsN.S.NYN[16]
CorallinalesLithophyllaceaeLithophyllum insipidum W.H.Adey, R.A.Townsend & BoykinsN.S.NYN[16]
CorallinalesLithophyllaceaeLithophyllum kotschyanum UngerN.S.NYN[16]
CorallinalesLithophyllaceaeTitanoderma pustulatum (J.V.Lamouroux) NägeliN.S.NYN[16]
CorallinalesMastophoraceaeMastophora pacifica (Heydrich) FoslieNOT CONF.NYN[16]rbcL
CorallinalesMesophyllumaceaeMesophyllum erubescens (Foslie) Me.LemoineN.S.NYN[16]
CorallinalesMesophyllumaceaeMesophyllum funafutiense (Foslie) VerheijN.S.NYN[16]
CorallinalesPorolithaceaeHarveylithon rupestre (Foslie) A.Rösler, Perfectti, V.Peña & J.C.BragaN.S.NYN[16]
CorallinalesPorolithaceaeHarveylithon samoënse (Foslie) A.Rösler, Perfectti, V.Peña & J.C.BragaN.S.NYN[16]
CorallinalesPorolithaceaePorolithon gardineri (Foslie) FoslieN.S.NYN[16]
CorallinalesPorolithaceaePorolithon onkodes (Heydrich) FoslieN.S.NYN[16]
CorallinalesPorolithaceaePorolithon sp.1FPCONF.Y?Y[59]cox1, psbA, SSU, LSU
CorallinalesPorolithaceaePorolithon sp.2FPCONF.Y?Y[59]cox1, psbA, SSU, LSU
CorallinalesSpongitidaceaeNeogoniolithon brassica-florida (Harvey) Setchell & L.R.MasonCONF.NYY[16,61]28S
CorallinalesSpongitidaceaeNeogoniolithon fosliei (Heydrich) Setchell & L.R.MasonCONF.NYY[16,61]18S, 23S
CorallinalesSpongitidaceaeNeogoniolithon frutescens (Foslie) Setchell & L.R.MasonCONF.N?Y[61,62]cox1, psbA, rbcL, 28S
CorallinalesSpongitidaceaeNeogoniolithon megalocystum (Foslie) Setchell & L.R.MasonN.S.NYN[16]
CorallinalesSpongitidaceaeSpongites sp.1FPCONF.Y?Y[59]cox1, psbA, rbcL, 28S
ErythropeltalesErythrotrichiaceaeErythrotrichia carnea (Dillwyn) J.AgardhN.S.NYN[16]
GelidialesGelidiaceaeGelidium isabelae W.R.TaylorN.S.NYN[16]
GelidialesGelidiaceaeGelidium samoense ReinboldN.S.NYN[16]
GelidialesGelidiellaceaeGelidiella acerosa (Forsskål) Feldmann & HamelCONF.NYYThis study, [16]rbcL
GelidialesGelidiellaceaeGelidiella damseliana Huisman, G.H.Boo & S.M.BooN.L.NYYThis studyrbcL
GelidialesGelidiellaceaeGelidiella fanii S.- M.LinN.R.NYYThis study, [54]cox1, rbcL
GelidialesGelidiellaceaeGelidiella machrisiana E.Y.DawsonN.S.NYN[16]
GelidialesGelidiellaceaeParviphycus antipae (Celan) B.SantelicesN.S.NYN[16]
GelidialesOrthogonacladiaceaeAphanta ligulata Huisman, G.H.Boo & S.M.BooN.L.NYYThis studyrbcL
GelidialesPterocladiaceaePterocladiella sp.1FPN.L.YYYThis studyrbcL
GelidialesPterocladiaceaePterocladiella sp.2FPN.L.YYYThis studyrbcL
GelidialesPterocladiaceaePterocladiella sp.3FPN.L.YYYThis studyrbcL
GelidialesPterocladiaceaePterocladiella caerulescens (Kützing) Santelices & HommersandN.S.NYN[16]
GelidialesPterocladiaceaePterocladiella caloglossoides (M.Howe) SantelicesN.S.NYN[16]
GigartinalesCaulacanthaceaeCaulacanthus ustulatus (Turner) KützingN.S.NYN[16]
GigartinalesChondrymeniaceaeDissimularia tauensis G.T.Kraft & G.W.SaundersN.L.NYYThis studyrbcL
GigartinalesChondrymeniaceaeDissimularia umbraticola (E.Y.Dawson) G.T.Kraft & G.W.SaundersCONF.NYYThis study, [16]rbcL
GigartinalesCorynocystaceaeCorynocystis prostrata KraftN.L.NYYThis study, [16]rbcL
GigartinalesCystocloniaceaeCalliblepharis saidana (Holmes) M.Y.Yang & M.S.KimN.S.NYN[16]
GigartinalesCystocloniaceaeHypnea esperi Bory, nom. illeg.N.S.NYN[16]
GigartinalesCystocloniaceaeHypnea pannosa J.AgardhCONF.NYYThis study, [16]rbcL
GigartinalesCystocloniaceaeHypnea sp.1FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.2FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.3FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.4FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.5FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.6FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.7FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.8FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea sp.9FPN.L.?YYThis studyrbcL
GigartinalesCystocloniaceaeHypnea spinella (C.Agardh) KützingN.S.NYN[16]
GigartinalesDicranemataceaeTylotus sp.1FPN.L.?YYThis studyrbcL
GigartinalesDumontiaceaeDudresnaya hawaiiensis R.K.S.LeeN.S.NYN[16]
GigartinalesDumontiaceaeGibsmithia dotyi Kraft & R.W.RickerCONF.NYY[77]; This studyrbcL
GigartinalesDumontiaceaeGibsmithia hawaiiensis DotyN.S.NYY[16]
GigartinalesDumontiaceaeGibsmithia indopacifica D.Gabriel, Draisma & FredericqN.R.NYYThis study, [55]cox1, rbcL, 23S
GigartinalesDumontiaceaeGibsmithia larkumii KraftN.S.NYN[16]
GigartinalesDumontiaceaeGibsmithia sp.1FPN.L.YYYThis study rbcL
GigartinalesGloiosiphoniaceaePeleophycus multiprocarpius I.A.AbbottN.S.NYN[16]
GigartinalesKallymeniaceaeKallymenia thompsonii I.A.Abbott & McDermidN.S.NYN[16]
GigartinalesKallymeniaceaeMeredithia sp.1FPN.L.YYYThis studyrbcL
GigartinalesPhyllophoraceaeAhnfeltiopsis pygmaea (J.Agardh) P.C.Silva & DeCewN.S.NYN[16]
GigartinalesRhizophyllidaceaePortieria hornemannii (Lyngbye) P.C.SilvaN.S.NYN [16]
GigartinalesSolieriaceaeMeristotheca sp.1FPN.L.YYYThis studyrbcL
GigartinalesSolieriaceaeMeristotheca procumbens P.W.Gabrielson & KraftN.S.NYN[16]
GigartinalesSolieriaceaeSarconema filiforme (Sonder) KylinN.S.NYN[16]
GigartinalesSolieriaceaeWurdemannia miniata (Sprengel) Feldmann & HamelN.S.NYN[16]
GracilarialesGracilariaceaeGracilaria abbottiana M.D.HoyleN.S.NY N[16]
GracilarialesGracilariaceaeGracilaria caudata J.AgardhN.R.NYYThis studyrbcL
GracilarialesGracilariaceaeGracilaria flabelliformis (P.Crouan & H.Crouan) Fredericq & GurgelN.R.NYYThis studyrbcL
GracilarialesGracilariaceaeGracilaria isabellana Gurgel, Fredericq & J.N.NorrisN.R.NYYThis studyrbcL
GracilarialesGracilariaceaeGracilaria parvispora I.A.AbbottN.S.NY N[16]
GracilarialesGracilariaceaeGracilaria sp.1FPN.L.YYYThis studyrbcL
HalymenialesGrateloupiaceaeGrateloupia filicina (J.V.Lamouroux) C.AgardhCONF.NYYThis study, [16,58]rbcL, 28S
HalymenialesGrateloupiaceaeGrateloupia filiformis KützingN.R.NYYThis study
HalymenialesGrateloupiaceaeGrateloupia hawaiiana E.Y.DawsonN.R.NYYThis studyrbcL
HalymenialesGrateloupiaceaeGrateloupia phuquocensis Tanaka & Pham-Hoàng HôN.S.NYN[16]
HalymenialesHalymeniaceaeCryptonemia palmetta (S.G.Gmelin) Woelkering, G.Furnari, Cormaci & McNeillN.S.NYN[16]
HalymenialesHalymeniaceaeHalymenia actinophysa M.HoweN.S.NYN[16]
HalymenialesHalymeniaceaeHalymenia nukuhivensis N’Yeurt & PayriN.S.NYN[16]
HalymenialesTsengiaceaeTsengia abbottiana (J.N.Norris & Bucher) J.N.Norris & BucherN.S.NYN[16]
NemalialesGalaxauraceaeActinotrichia fragilis (Forsskål) BørgesenCONF.NYYThis study, [16]rbcL
NemalialesGalaxauraceaeActinotrichia sp.1FPN.L.YYYThis studyrbcL
NemalialesGalaxauraceaeActinotrichia sp.2FPN.L.YYYThis studyrbcL
NemalialesGalaxauraceaeActinotrichia sp.3FPN.L.YYYThis studyrbcL
NemalialesGalaxauraceaeDichotomaria marginata (J.Ellis & Solander) LamarckCONF.NYYThis study, [16]rbcL
NemalialesGalaxauraceaeDichotomaria obtusata (J.Ellis & Solander) LamarckCONF.NYYThis study, [16]rbcL
NemalialesGalaxauraceaeGalaxaura divaricata (Linnaeus) Huisman & R.A.TownsendCONF.NYYThis study, [16]rbcL
NemalialesGalaxauraceaeGalaxaura filamentosa R.C.Y.ChouCONF.NYY This study, [16]rbcL
NemalialesGalaxauraceaeGalaxaura pacifica TanakaN.L.NYYThis studyrbcL
NemalialesGalaxauraceaeGalaxaura rugosa (J.Ellis & Solander) J.V.LamourouxCONF.NYYThis study, [16]rbcL
NemalialesGalaxauraceaeGalaxaura sp.1FPN.L.YYYThis studyrbcL
NemalialesGalaxauraceaeTricleocarpa cylindrica (J.Ellis & Solander) Huisman & BorowitzkaN.S.NYN[16]
NemalialesLiagoraceaeDermonema virens (J.Agardh) Pedroche & Ávila OrtízN.S.NYN[16]
NemalialesLiagoraceaeGanonema papenfussii (I.A.Abbott) J.M.Huisman, I.A.Abbott & A.R.SherwoodN.S.NYN[16]
NemalialesLiagoraceaeGanonema sp.1FPN.S. YYYLin (unpubl.)rbcL
NemalialesLiagoraceaeHommersandiophycus sp.1FPN.S. YYYLin (unpubl.)rbcL
NemalialesLiagoraceaeLiagora albicans J.V.LamourouxN.S.NYN[16]
NemalialesLiagoraceaeLiagora ceranoides J.V.LamourouxN.S.NYN[16]
NemalialesLiagoraceaeLiagora divaricata C.K.TsengN.S.NYN[16]
NemalialesLiagoraceaeLiagora sp. IneditN.S.YYN[16]
NemalialesLiagoraceaeLiagora sp.1FPN.L.YYYThis studyrbcL
NemalialesLiagoraceaeTitanophycus validus (Harvey) Huisman, G.W.Saunders & A.R.SherwoodN.S.NYN[16]
NemalialesLiagoraceaeTrichogloea requienii (Montagne) KützingCONF.NYYThis study, [16]rbcL
NemalialesScinaiaceaeGloiophloea articulata Weber BosseN.S.NYN[16]
NemalialesYamadaellaceaeYamadaella caenomyce (Decaisne) I.A.AbbottN.S.NYN[16]
NemastomatalesNemastomataceaePredaea incraspeda KraftN.S.NYN[16]
NemastomatalesNemastomataceaePredaea laciniosa KraftN.S.NYN[16]
NemastomatalesNemastomataceaePredaea weldii Kraft & I.A.AbbottN.S.NYN[16]
NemastomatalesSchizymeniaceaePlatoma cyclocolpum (Montagne) F.SchmitzN.S.NYNThis study, [16]
NemastomatalesSchizymeniaceaeTitanophora weberae BørgesenN.S.NYN[16]
PeyssonnelialesPeyssonneliaceaeAgissea inamoena (Pilger) Pestana, Lyra, Cassano & J.M.C. NunesN.S.NYN[16]
PeyssonnelialesPeyssonneliaceaePeyssonnelia bornetii Boudouresque & DenizotN.S.NYN[16]
PeyssonnelialesPeyssonneliaceaePeyssonnelia sp.1FPN.L.YYYThis studyrbcL
PeyssonnelialesPeyssonneliaceaePeyssonnelia sp.2FPN.L.YYYThis studyrbcL
PeyssonnelialesPeyssonneliaceaePeyssonnelia sp.3FPN.L. YYYThis studyrbcL
PeyssonnelialesPeyssonneliaceaePolystrata sp.1FPN.L.YYYThis studyrbcL
PlocamialesPlocamiaceaePlocamium sandvicense J.AgardhN.S.NYN[16]
RhodogorgonalesRhodogorgonaceaeRenouxia antillana Fredericq & J.N.NorrisN.S.NYN[16]
RhodymenialesChampiaceaeChampia compressa HarveyN.S.NYN[16]
RhodymenialesChampiaceaeChampia parvula (C.Agardh) HarveyN.S.NYN[16]
RhodymenialesChampiaceaeChampia sp.1FPN.L.YYYThis studyrbcL
RhodymenialesChampiaceaeChampia sp.2FPN.L.YYYThis studyrbcL
RhodymenialesChampiaceaeChampia sp.3FPN.L.YYYThis studyrbcL
RhodymenialesChampiaceaeChampia vieillardii KützingN.S.NYN[16]
RhodymenialesChampiaceaeCoelothrix irregularis (Harvey) BørgesenCONF.NYYThis study, [16]rbcL
RhodymenialesFaucheaceaeGloiocladia sp. ineditN.S.NYN[16]
RhodymenialesFaucheaceaeGloioderma iyoense OkamuraN.S.NYN[16]
RhodymenialesHymenocladiaceaeAsteromenia anastomosans (Weber Bosse) G.W.Saunders, C.E.Lane, C.W.Schneider & KraftN.S.NYN[16]
RhodymenialesHymenocladiaceaeAsteromenia pseudocoalescens (Sonder ex Kützing) J.AgardhN.S.NYN[16]
RhodymenialesHymenocladiaceaeAsteromenia sp.1FPN.L.YYYThis studyrbcL
RhodymenialesLomentariaceaeCeratodictyon intricatum (C.Agardh) R.E.NorrisN.S.NYN[16]
RhodymenialesLomentariaceaeCeratodictyon scoparium (Montagne & Millardet) R.E.NorrisN.S.NYN[16]
RhodymenialesLomentariaceaeCeratodictyon sp.1FPN.L.YYYThis studyrbcL
RhodymenialesLomentariaceaeCeratodictyon variabile (J.Agardh) R.E.NorrisN.S.NYN[16]
RhodymenialesLomentariaceaeLomentaria corallicola BørgesenN.S.NYN[16]
RhodymenialesRhodymeniaceaeBotryocladia skottsbergii (Børgesen) LevringN.S.NYN[16]
RhodymenialesRhodymeniaceaeBotryocladia sp.1FPN.L.YYYThis studyrbcL
RhodymenialesRhodymeniaceaeBotryocladia sp.2FPN.L.YYYThis studyrbcL
RhodymenialesRhodymeniaceaeChamaebotrys boergesenii (Weber Bosse) HuismanN.S.NYN[16]
RhodymenialesRhodymeniaceaeChrysymenia kaernbachii GrunowN.S.NY?[77]
RhodymenialesRhodymeniaceaeChrysymenia sp.1FPN.L.YYYThis studyrbcL
RhodymenialesRhodymeniaceaeGloiosaccion brownii HarveyN.S.NYN [16]
RhodymenialesRhodymeniaceaeHalichrysis cf. H. concrescens (J.Agardh) De ToniN.S.NYN[16]
RhodymenialesRhodymeniaceaeHalichrysis sp.1FPN.L.YYYThis studyrbcL
RhodymenialesRhodymeniaceaeHalichrysis sp.2FPN.L.YYYThis studyrbcL
RhodymenialesRhodymeniaceaeHalopeltis australis (J.Agardh) G.W.SaundersN.S.NYN[16]
RhodymenialesRhodymeniaceaeHalopeltis cuneata (Harvey) G.W.SaundersN.S.NYN[16]
RhodymenialesRhodymeniaceaeHalopeltis sp.1FPN.L.YYYThis studyrbcL
RhodymenialesRhodymeniaceaeRhodymenia corallina (Bory) GrevilleN.S.NYN[16]
RhodymenialesRhodymeniaceaeRhodymenia leptophylla J.AgardhN.S.NYN[16]
RhodymenialesRhodymeniaceaeRhodymenia sp. IneditN.S.NYN[16]
RhodymenialesRhodymeniaceaeRhodymenia sp. IneditN.S.NYN[16]
SporolithalesSporolithaceaeSporolithon episoredion (W.H.Adey, R.A.Townsend & Boykins) VerheijN.S.NYN[16]
SporolithalesSporolithaceaeSporolithon ptychoides HeydrichN.S.NYN[16]
StylonematalesStylonemataceaeRhodaphanes sp.1FPN.L.YYYThis studyrbcL
StylonematalesStylonemataceaeStylonema alsidii (Zanardini) K.M.DrewN.S.NYN[16]
BryopsidalesBoodleaceaeBoodlea composita (Harvey) F.BrandN.S.NY N[15]
BryopsidalesBoodleaceaeBoodlea sp.1FPaN.L. YYYThis studyITS
BryopsidalesBoodleaceaeBoodlea sp.1FPbN.L.YYYThis studyITS
BryopsidalesBoodleaceaeBoodlea sp.1FPcN.L.YYYThis studyITS
BryopsidalesBryopsidaceaeBryopsis pennata J.V.LamourouxCONF.NYYThis studyrbcL, tufA
BryopsidalesBryopsidaceaeBryopsis pennata var. secunda (Harvey) Collins & HerveyCONF.NYY[15,77], This studyrbcL, tufA
BryopsidalesBryopsidaceaeBryopsis plumosa (Hudson) C.AgardhN.S.NYN[15]
BryopsidalesBryopsidaceaeBryposis sp.1FPN.L.YYYThis studytufA
BryopsidalesBryopsidaceaeBryposis sp.2FPN.L. YYYThis studyrbcL, tufA
BryopsidalesCaulerpaceaeCaulerpa bikinensis W.R.TaylorCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa chemnitzia (Esper) J.V.Lamouroux.CONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa chemnitzia var. turbinata (J.Agardh) Fernández-García & Riosmena-RodríguezN.S.NYN[15]
BryopsidalesCaulerpaceaeCaulerpa cupressoides (Vahl) C.AgardhCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa cupressoides var. lycopodium Weber BosseN.S.NYN[15]
BryopsidalesCaulerpaceaeCaulerpa cupressoides var. mamillosa (Montagne) Weber BosseN.S.NYN[15]
BryopsidalesCaulerpaceaeCaulerpa nummularia Harvey ex J.AgardhCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa oligophylla MontagneN.L.NYYThis studytufA
BryopsidalesCaulerpaceaeCaulerpa racemosa (Forsskål) J.AgardhCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa racemosa var. macrophysa (Sonder ex Kützing) W.R.TaylorN.L.NYYThis studytufA
BryopsidalesCaulerpaceaeCaulerpa serrulata (Forsskål) J.AgardhCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa sertularioides (S.G.Gmelin) M.HoweCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa seuratii Weber BosseN.S.NYN[15]
BryopsidalesCaulerpaceaeCaulerpa taxifolia (M.Vahl) C.AgardhCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa taxifolia f. tristichophylla SvedeliusN.S.NYN[15]
BryopsidalesCaulerpaceaeCaulerpa urvilleana MontagneCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa verticillata J.AgardhCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa webbiana MontagneCONF.NYYThis study, [15]tufA
BryopsidalesCaulerpaceaeCaulerpa webbiana var. pickeringii (Harvey & Bailey) EubankN.S.NYN[15]tufA
BryopsidalesCodiaceaeCodium arabicum KützingCONF.NYYThis study, [15]tufA
BryopsidalesCodiaceaeCodium geppiorum O.C.SchmidtCONF.NYYThis study, [15]tufA
BryopsidalesCodiaceaeCodium lucasii SetchellN.L.N YYThis studytufA
BryopsidalesCodiaceaeCodium mamillosum HarveyN.S.NYN[15]
BryopsidalesCodiaceaeCodium ovale ZanardiniN.S.NYN[77]
BryopsidalesCodiaceaeCodium repens P.Crouan & H.CrouanN.L.N YYThis studytufA
BryopsidalesCodiaceaeCodium saccatum OkamuraN.S.NYN[16]
BryopsidalesCodiaceaeCodium sursum Kraft & A.J.K.MillarN.L.NYYThis studytufA
BryopsidalesDerbesiaceaeDerbesia marina (Lyngbye) SolierN.S.NYN[15]
BryopsidalesDichotomosiphonaceaeAvrainvillea amadelpha (Montagne) A.Gepp & E.S.GeppN.L. NYYThis studytufA
BryopsidalesDichotomosiphonaceaeAvrainvillea calathina Kraft & Olsen-StojkovichCONF. N YY[125]tufA
BryopsidalesDichotomosiphonaceaeAvrainvillea erecta (Berkeley) A.Gepp & E.S.GeppN.S.NYN[15]
BryopsidalesDichotomosiphonaceaeAvrainvillea lacerata J.AgardhCONF.NYYThis study, [15]tufA
BryopsidalesDichotomosiphonaceaeAvrainvillea obscura (C.Agardh) J.AgardhN.S.NYN[15]
BryopsidalesDichotomosiphonaceaeAvrainvillea ridleyi A.Gepp & E.S.GeppN.S.NYN[15]
BryopsidalesDichotomosiphonaceaeAvrainvillea sp.1FPN.L.YYY[125]tufA
BryopsidalesDichotomosiphonaceaeAvrainvillea spongiosaCONF.N YY[125]rbcL, tufA
BryopsidalesHalimedaceaeChlorodesmis fastigiata (C.Agardh) S.C.DuckerN.S.NYN[15]
BryopsidalesHalimedaceaeHalimeda borneensis W.R.TaylorCONF.NYYThis study, [15,64,65]tufA
BryopsidalesHalimedaceaeHalimeda discoidea DecaisneCONF.NYYThis study, [15,64]tufA
BryopsidalesHalimedaceaeHalimeda distorta (Yamada) Hillis-ColinvauxCONF.NYY[15]
BryopsidalesHalimedaceaeHalimeda distorta.1 (Yamada) Hillis-ColinvauxCONF.NYYThis study, [64,66]tufA
BryopsidalesHalimedaceaeHalimeda distorta.2 (Yamada) Hillis-ColinvauxCONF.NYY[64,66]tufA
BryopsidalesHalimedaceaeHalimeda gracilis Harvey ex J.AgardhCONF.NYY[15,65,66,67]tufA
BryopsidalesHalimedaceaeHalimeda heteromorpha N’YeurtCONF.NYYThis study, [15,64,65]tufA
BryopsidalesHalimedaceaeHalimeda lacunalis f. lata (W.R.Taylor) L.W.HillisN.S.NYN[15]
BryopsidalesHalimedaceaeHalimeda lacunalis W.R.TaylorN.L.NYYThis studytufA
BryopsidalesHalimedaceaeHalimeda macroloba DecaisneCONF.NYYThis study, [15]tufA
BryopsidalesHalimedaceaeHalimeda melanesica ValetCONF.NYYThis study, [15]tufA
BryopsidalesHalimedaceaeHalimeda micronesica YamadaCONF.NYYThis study, [15]tufA
BryopsidalesHalimedaceaeHalimeda minima (W.R.Taylor) Hillis-ColinvauxCONF.NYYThis study, [15,66]tufA
BryopsidalesHalimedaceaeHalimeda opuntia (Linnaeus) J.V.LamourouxCONF.NYYThis study, [15,64,65,68]tufA
BryopsidalesHalimedaceaeHalimeda taenicola W.R.TaylorCONF.NYYThis study, [15,64,65,67]tufA
BryopsidalesHalimedaceaeRhipidosiphon javensis MontagneN.S.NYN[15]
CladophoralesAnadyomenaceaeAnadyomene saldanhae A.B.Joly & E.C.OliveiraN.L.NYYThis study
CladophoralesAnadyomenaceaeMicrodictyon sp.1FPN.L. YYYThis study28S
CladophoralesAnadyomenaceaeMicrodictyon boergesenii SetchellN.L.N YYThis study28S
CladophoralesAnadyomenaceaeMicrodictyon okamurae SetchellN.S.NYN[15]
CladophoralesAnadyomenaceaeMicrodictyon sp. N.S.NYN[15]
CladophoralesAnadyomenaceaeMicrodictyon umbilicatum (Velley) ZanardiniCONF.NYYThis study, [15]28S
CladophoralesBoodleaceaeCladophoropsis fasciculata (Kjellman) WilleN.S.NYN[15]
CladophoralesBoodleaceaePhyllodictyon anastomosans (Harvey) Kraft & M.J.WynneN.S.NYN[15]18S
CladophoralesBoodleaceaeStruveopsis sp.N.S.NYN[15]
CladophoralesCladophoraceaeChaetomorpha antennina (Bory) KützingN.S.NYN[15]
CladophoralesCladophoraceaeChaetomorpha basiretrorsa SetchellN.S.NYN[15]
CladophoralesCladophoraceaeChaetomorpha fibrosa (Kützing) KützingN.S.NYN[15]
CladophoralesCladophoraceaeChaetomorpha linum (O.F.Müller) KützingN.S.NYN[15]
CladophoralesCladophoraceaeCladophora aokii YamadaN.S.NYN[15]
CladophoralesCladophoraceaeCladophora catenata KützingCONF.NYYThis study, [15]28S
CladophoralesCladophoraceaeCladophora glomerata (Linnaeus) KützingN.S.NYN[77]
CladophoralesCladophoraceaeCladophora goweri A.H.S.Lucas N.S.NYN[77]
CladophoralesCladophoraceaeCladophora patentiramea (Montagne) KützingN.S.NYN[15]
CladophoralesCladophoraceaeCladophora sericea (Hudson) KützingN.S.NYN[15]
CladophoralesCladophoraceaeCladophora sibogae ReinboldN.L.NYYThis study18S, 28S
CladophoralesCladophoraceaeCladophora socialis KützingCONF.NYYThis study, [15]18S, 28S
CladophoralesCladophoraceaeCladophora vagabunda (Linnaeus) HoekN.L.NYYThis study28S
CladophoralesCladophoraceaeLychaete feredayoides (Kraft & A.J.K.Millar) M.J.WynneN.S.NYN[15]
CladophoralesCladophoraceaeLychaete herpestica (Montagne) M.J.WynneN.S.NYN[15]
CladophoralesCladophoraceaeLychaete ohkuboana (Holmes) M.J.WynneN.S.NYN[15]
CladophoralesCladophoraceaeLychaete sp.1FPN.L.YYYThis study18S, 28S
CladophoralesCladophoraceaePseudorhizoclonium africanum (Kützing) BoedekerN.S.NYN[15]
CladophoralesCladophoraceaeRhizoclonium riparium (Roth) HarveyN.S.NYN[15]
CladophoralesSiphonocladaceaeBoergesenia forbesii (Harvey) FeldmannN.S.NYN[77]
CladophoralesSiphonocladaceaeDictyosphaeria cavernosa (Forsskål) BørgesenN.S.NYN[15]
CladophoralesSiphonocladaceaeDictyosphaeria sp.1FPN.L.YYYThis study28S
CladophoralesSiphonocladaceaeDictyosphaeria sp.2FPN.L.YYYThis study28S
CladophoralesSiphonocladaceaeDictyosphaeria sp.3FPN.L.YYYThis study28S
CladophoralesSiphonocladaceaeDictyosphaeria sp.4FPN.L. YYYThis study28S
CladophoralesSiphonocladaceaeDictyosphaeria sp.5FPN.L.YYYThis study28S
CladophoralesSiphonocladaceaeDictyosphaeria versluysii Weber BosseN.S.NYN[15]
CladophoralesSiphonocladaceaeSiphonocladaceae sp.1FPN.L.YYYThis study18S, 28S
CladophoralesSiphonocladaceaeSiphonocladus tropicus (P.Crouan & H.Crouan) J.AgardhN.S.NYN[15]
CladophoralesValoniaceaeValonia aegagropila C.AgardhN.S.NYN[15]
CladophoralesValoniaceaeValonia fastigiata Harvey ex J.AgardhCONF.NYYThis study, [15]28S
CladophoralesValoniaceaeValonia macrophysa KützingN.S.NYN[15]
CladophoralesValoniaceaeValonia nutrix Kraft et A. MillarN.S.NYN[77]
CladophoralesValoniaceaeValonia ventricosa J.AgardhCONF.NYYThis study, [15]18S, 28S
CladophoralesValoniaceaeValoniopsis pachynema (G.Martens) BørgesenN.S.NYN[15]
DasycladalesDasycladaceaeNeomeris annulata DickieN.S.NYN[15]
DasycladalesDasycladaceaeNeomeris vanbosseae M.HoweN.S.NYN[15]
DasycladalesPolyphysaceaeParvocaulis parvulus (Solms-Laubach) S.Berger, Fettweiss, Gleissberg, Liddle, U.Richter, Sawitzky & ZuccarelloN.L.NYYThis study, [15]tufA
PalmophyllalesPalmophyllaceaeVerdigellas peltata D.L.Ballantine & J.N.NorrisN.S.NYN[15]
UlvalesUlvaceaeUlva cf. prolifera O.F.MüllerN.L.NYYThis studytufA
UlvalesUlvaceaeUlva cf. tepida Y.Masakiyo & S.ShimadaN.L.NYYThis studytufA
UlvalesUlvaceaeUlva clathrata (Roth) C.AgardhN.S.NYN[15]
UlvalesUlvaceaeUlva compressa LinnaeusCONF.NYY[15]
UlvalesUlvaceaeUlva flexuosa WulfenN.S.NYN[15]
UlvalesUlvaceaeUlva intestinalis LinnaeusN.S.NYN[77]
UlvalesUlvaceaeUlva lactuca LinnaeusCONF.NYYThis study, [15]tufA
UlvalesUlvaceaeUlva pilifera (Kützing) Škaloud & LeliaertN.L.NYYThis studytufA
UlvalesUlvaceaeUlva rigida C.AgardhN.S.NYN[15]
DictyotalesDictyotaceaeDictyopteris delicatula J.V.LamourouxCONF.NYYThis studyrbcL
DictyotalesDictyotaceaeDictyopteris sp.1FPCONF.NYYThis study, [14]rbcL
DictyotalesDictyotaceaeDictyota acutiloba J.AgardhN.S.NYN[14]
DictyotalesDictyotaceaeDictyota bartayresiana J.V.LamourouxCONF.NYYThis study, [14]cox1, psbA
DictyotalesDictyotaceaeDictyota ceylanica1CONF.NYYThis study, [14,70]cox1, cox3, psbA, 26S
DictyotalesDictyotaceaeDictyota friabilis SetchellCONF.NYY[14,71], This studycox1, cox3, psaA
DictyotalesDictyotaceaeDictyota hamifera SetchellCONF.NYY[14,71], This studycox1, cox3, nad1, psbA
DictyotalesDictyotaceaeDictyota rigida De Clerck & CoppejansCONF.N YYThis studypsbA
DictyotalesDictyotaceaeDictyota sp.10FPN.L.Y YYThis studycox1, psbA
DictyotalesDictyotaceaeDictyota sp.1FPN.L.Y YYThis studypsbA
DictyotalesDictyotaceaeDictyota sp.2FPN.L.YY YThis studycox1, psbA
DictyotalesDictyotaceaeDictyota sp.3FPN.L.YY YThis studycox1, psbA
DictyotalesDictyotaceaeDictyota sp.4FPN.L.Y YYThis studycox1, psbA
DictyotalesDictyotaceaeDictyota sp.5FPN.L.YY YThis studypsbA
DictyotalesDictyotaceaeDictyota sp.6FPN.L.Y YYThis studypsbA
DictyotalesDictyotaceaeDictyota sp.7FPN.L.YY YThis studypsbA
DictyotalesDictyotaceaeDictyota sp.8FPN.L.Y YYThis studycox1, psbA
DictyotalesDictyotaceaeDictyota sp.9FPN.L.YY YThis studypsbA
DictyotalesDictyotaceaeLobophora abscondita C.W.Vieira, Payri & De ClerckCONF.NYY[13]cox3, rbcL
DictyotalesDictyotaceaeLobophora aveiae C.W.Vieira, Payri & M.ZubiaCONF.NYY[13,126]cox3, rbcL
DictyotalesDictyotaceaeLobophora endeavouriae C.W.VieiraCONF.NYY[13]cox3, nad1, psbA, rbcL
DictyotalesDictyotaceaeLobophora gambierensis C.W.Vieira, Payri & M.ZubiaCONF.YYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora huifetuae C.W.Vieira & PayriCONF.NYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora lamourouxii Payri & C.W.VieiraCONF.NYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora marquisensis C.W.Vieira & PayriCONF.YYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora moanae C.W.Vieira, Payri & M.ZubiaCONF.NYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora motuae C.W.VieiraCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora obscura (Dickie) C.W.Vieira, De Clerck & PayriCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora pacifica (Setchell) C.W.Vieira, De Clerck & PayriCONF.NYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora petila C.W.Vieira, Payri & De ClerckCONF.NYY[13]cox3
DictyotalesDictyotaceaeLobophora polynesiensis C.W.Vieira, Payri & M.ZubiaCONF.YYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora providenceae C.W.VieiraCONF.NYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora puhoroae C.W.Vieira & M.ZubiaCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora rechercheae C.W.VieiraCONF.NYY[13]cox3
DictyotalesDictyotaceaeLobophora ruae C.W.Vieira, A.D.R.N’Yeurt & M.ZubiaCONF.NYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora ruamataiae C.W.Vieira & M.ZubiaCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora sawaikiae C.W.VieiraCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora setchellii C.W.Vieira & PayriCONF.NYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora societensis C.W.Vieira, Payri & M.ZubiaCONF.YYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora sonderi C.W.Vieira, De Clerck & PayriCONF.NYY[13,73]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora sp.103CONF.YYY[13]psbA, rbcL
DictyotalesDictyotaceaeLobophora sp.123CONF.YYY[13]cox3
DictyotalesDictyotaceaeLobophora sp.128CONF.YYY[13]cox3, rbcL
DictyotalesDictyotaceaeLobophora sp.129CONF.YYY[13]cox3, rbcL
DictyotalesDictyotaceaeLobophora sp.132CONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora sp.133CONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora sp.134CONF.YYY[13]psbA, rbcL
DictyotalesDictyotaceaeLobophora sp.32CONF.YYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora sp.70CONF.NYY[13,126]rbcL
DictyotalesDictyotaceaeLobophora taaroae C.W.Vieira & M.ZubiaCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora tangaroae C.W.Vieira, Payri & M.ZubiaCONF.NYY[13,73]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora tauruae C.W.Vieira & M.ZubiaCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora tuamotuensis C.W.VieiraCONF.YYY[13]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora tupaiae C.W.Vieira, Payri & M.ZubiaCONF.YYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeLobophora wakae C.W.Vieira, Payri & M.ZubiaCONF.NYY[13,126]cox3, psbA, rbcL
DictyotalesDictyotaceaeNewhousia imbricata Kraft, G.W.Saunders, I.A.Abbott & HarounCONF.NYY[21]cox1, cox3, psbA, rbcL, SSU
DictyotalesDictyotaceaePadina boergesenii Allender & KraftN.L.N YYThis studycox3
DictyotalesDictyotaceaePadina boryana ThivyCONF.NYY[14]cox3
DictyotalesDictyotaceaePadina jonesii TsudaN.L.NYYThis studycox3
DictyotalesDictyotaceaePadina melemele I.A.Abbott & MagruderN.S.NYN[14]
DictyotalesDictyotaceaePadina minor YamadaN.L.NYYThis studycox3
DictyotalesDictyotaceaePadina okinawaensis Ni-Ni-Win, S.Arai & H.KawaiN.L.NYYThis studycox3
DictyotalesDictyotaceaePadina pavonica (Linnaeus) ThivyN.S.NYN[14]
DictyotalesDictyotaceaePadina stipitata Tanaka & NozawaN.S.NYN[16]
DictyotalesDictyotaceaeStypopodium sp.1FPCONF.NYY[14]rbcL
EctocarpalesAcinetosporaceaeFeldmannia mitchelliae (Harvey) H.-S.KimN.S.NYN[14]
EctocarpalesChordariaceaeCladosiphon novae-caledoniae KylinN.S.NYN[14]
EctocarpalesScytosiphonaceaeChnoospora minima (Hering) PapenfussCONF.NYYThis study, [14]cox3, psbA, rbcL
EctocarpalesScytosiphonaceaeColpomenia claytoniae S.M.Boo, K.M.Lee, G.Y.Cho & W.NelsonN.L.NYYThis studycox3, rbcL
EctocarpalesScytosiphonaceaeColpomenia sinuosa (Mertens ex Roth) Derbès & SolierCONF.NYYThis study, [14]cox3, psbA, rbcL
EctocarpalesScytosiphonaceaeHydroclathrus clathratus (C.Agardh) M.HoweN.S.NYN[14]
EctocarpalesScytosiphonaceaeHydroclathrus rapanuii Santiañez, Macaya & KogameN.L.NYYThis studycox3, rbcL
EctocarpalesScytosiphonaceaeHydroclathrus tenuis C.K.Tseng & Lu BaroenN.L.NYYThis studycox3, psbA, rbcL
EctocarpalesScytosiphonaceaeHydroclathrus tilesii (Endlicher) Santiañez & M.J.WynneN.L.NYYThis studycox3, rbcL
EctocarpalesScytosiphonaceaeHydroclathrus tumulis Kraft & AbbottN.S.NYN[14]
EctocarpalesScytosiphonaceaeManzaea minuta (Santiañez & Kogame) Santiañez & KogameN.L.NYYThis studycox3, psbA, rbcL
EctocarpalesScytosiphonaceaePseudochnoospora implexa (J.Agardh) Santiañez, G.Y.Cho & KogameCONF.NYYThis study, [14]cox3, psbA, rbcL
EctocarpalesScytosiphonaceaeRosenvingea australis Huisman, G.H.Boo & S.M.BooN.L.NYYThis studycox3, rbcL
EctocarpalesScytosiphonaceaeRosenvingea endiviifolia (Martius) M.J.WynneCONF.NYYThis study, [14]cox3, psbA, rbcL
EctocarpalesScytosiphonaceaeRosenvingea sp.1FPN.L.YYYThis studycox3, psbA, rbcL
EctocarpalesScytosiphonaceaeScytosiphon lomentaria (Lyngbye) LinkN.S.NYN[77]
FucalesSargassaceaeSargassum echinocarpum J.AgardhCONF.NYY[14]cox3, rbcL, ITS
FucalesSargassaceaeSargassum obtusifolium J.AgardhCONF.NYY[74]cox3, rbcL, ITS
FucalesSargassaceaeSargassum pacificum BoryCONF.NYY[14]cox3, rbcL, ITS
FucalesSargassaceaeSpatoglossum sp.1FPN.L.NYYThis study, [14]rbcL
FucalesSargassaceaeTurbinaria ornata (Turner) J.AgardhCONF.NYY[14]rbcL, trnW-trnI, tufA, ITS
RalfsialesRalfsiaceaeNeoralfsia expansa (J.Agardh) P.-E.Lim & H.Kawai ex Cormaci & G.FurnariN.S.NYN[14]
ScytothamnalesAsteronemataceaeAsteronema breviarticulatum (J.Agardh) Ouriques & BouzonN.S.NYN[14]
SphacelarialesSphacelariaceaeSphacelaria rigidula KützingN.S.NYN[14]
SphacelarialesSphacelariaceaeSphacelaria tribuloides Meneghini N.S.NYN[14]
TilopteridalesCutleriaceaeCutleria irregularis I.A.Abbott & HuismanN.S.NYN[14]
TilopteridalesCutleriaceaeCutleria mollis Allender & KraftN.S.NYN[14]
ChroococcalesChroococcaceaeChroococcus membraninus (Meneghini) NägeliN.S.?YN[17]
ChroococcalesChroococcaceaeChroococcus minor (Kützing) NägeliN.S.?YN[17]
ChroococcalesChroococcaceaeChroococcus schizodermaticus WestN.S.?YN[17]
ChroococcalesChroococcaceaeChroococcus turgidus (Kützing) NägeliN.S.?YN[17]
ChroococcalesChroococcaceaeEntophysalis conferta (Kützing) Drouet & DailyN.S.?YN[17]
ChroococcalesChroococcaceaeEntophysalis crustacea (J.Agardh) Drouet et DailyN.S.?YN[17]
ChroococcalesChroococcaceaeEntophysalis granulosa KützingN.S.?YN[17]
ChroococcalesChroococcaceaeEntophysalis sp. N.S.?YN[17]
ChroococcalesAphanothecaceaeAphanothece microscopica NägeliN.S.?YN[17]
ChroococcalesAphanothecaceaeAphanothece sp.N.S.?YN[17]
ChroococcalesMicrocystaceaeAphanocapsa litoralis HansgirgN.S.?YN[17]
ChroococcalesMicrocystaceaeMicrocystis sp.N.S.?YN[17]
ChroococcidiopsidalesAliterellaceaeChlorogloea sp.N.S.?YN[17]
LeptolyngbyalesLeptolyngbyaceaeHeteroleibleinia erecta (Gardner) AnagnostidisN.S.?YN[17]
LeptolyngbyalesLeptolyngbyaceaeHeteroleibleinia gardneri (Geitler) Anagnostidis & KomárekN.S.?YN[17]
LeptolyngbyalesLeptolyngbyaceaeHeteroleibleinia infixa (Frémy) Anagnostidis & KomárekN.S.?YN[17]
LeptolyngbyalesLeptolyngbyaceaeHeteroleibleinia willei (Setchell & N.L.Gardner) Guiry & D.M.JohnN.S.?YN[17]
LeptolyngbyalesLeptolyngbyaceaePseudophormidium purpureum (Gomont) Anagnostidis & Komárek.N.S.?YN[17]
LeptolyngbyalesTrichocoleusaceaeSchizothrix giuseppei DrouetN.S.?YN[17]
LeptolyngbyalesTrichocoleusaceaeSchizothrix lacustris A.Braun ex GomontN.S.?YN[17]
LeptolyngbyalesTrichocoleusaceaeSchizothrix longiarticulata GardnerN.S.?YN[17]
LeptolyngbyalesTrichocoleusaceaeSchizothrix minuta (Forti) GeitlerCONF.?YYThis study, [20]16S
LeptolyngbyalesTrichocoleusaceaeSchizothrix sp.N.S.?YN[17]
LeptolyngbyalesTrichocoleusaceaeSchizothrix sp.1FPCONF.?YYThis study16S
LeptolyngbyalesTrichocoleusaceaeSchizothrix telephoroides GomontN.S.?YN[17]
LeptolyngbyalesTrichocoleusaceaeTrichocoleus acutissimus (N.L.Gardner) AnagnostidisN.S.?YN[17]
LeptolyngbyalesTrichocoleusaceaeTrichocoleus sp.CONF.?YY[20]
LeptolyngbyalesTrichocoleusaceaeTrichocoleus tenerrimus (Gomont) AnagnostidisN.S.?YN[17]
NostocalesAphanizomenonaceaeCylindrospermum licheniforme Kützing ex Bornet & FlahaultN.S.?YN[17]
NostocalesAphanizomenonaceaeNodularia hawaiiensis TildenN.S.?YN[17]
NostocalesAphanizomenonaceaeNodularia spumigena Mertens ex Bornet & FlahaultN.S.?YN[17]
NostocalesAphanizomenonaceaeNodularia spumigena var. major Bornet & FlahaultN.S.?YN[17]
NostocalesHapalosiphonaceaeFischerella ambigua (Kützing ex Bornet & Flahault) GomontN.S.?YN[17]
NostocalesHapalosiphonaceaeHapalosiphon pumilis Kirchner ex Bornet & FlahaultN.S.?YN[17]
NostocalesHapalosiphonaceaeMastigocoleus testarum Lagerheim ex Bornet & FlahaultN.S.?YN[17]
NostocalesHeteroscytonemataceaeHeteroscytonema sp.CONF.?YYThis study, [20]16S
NostocalesNostocaceaeAnabaena sp.1CONF.?YYThis study, [20]16S
NostocalesNostocaceaeAnabaena sp.2CONF.?YY[20]16S
NostocalesNostocaceaeAnabaena torulosa Lagerheim ex Bornet & FlahaultN.S.?YN[17]
NostocalesNostocaceaeDesmonostoc muscorum (Bornet & Flahault) Hrouzek & VenturaN.S.?YN[17]
NostocalesNostocaceaeNostoc commune Vaucher ex Bornet & FlahaultN.S.?YN[17]
NostocalesNostocaceaeNostoc ellipsosporum Rabenhorst ex Bornet & FlahaultN.S.?YN[17]
NostocalesNostocaceaeNostoc linckia Bornet ex Bornet & FlahaultN.S.?YN[17]
NostocalesNostocaceaeNostoc minutissimum Kützing ex Bornet & FlahaultN.S.?YN[17]
NostocalesOscillatoriaceaePhormidium holdenii (Forti) Branco, Sant’Anna, Azevedo & SormusN.S.?YN[17]
NostocalesRivulariaceaeCalothrix aeruginea Thuret ex Bornet & FlahaultN.S.?YN[17]
NostocalesRivulariaceaeCalothrix clavata WestN.S.?YN[17]
NostocalesRivulariaceaeCalothrix confervicola C.Agardh ex Bornet & Flahault N.S.?YN[17]
NostocalesRivulariaceaeCalothrix fusca Bornet et FlahaultN.S.?YN[17]
NostocalesRivulariaceaeCalothrix parietina Thuret ex Bornet & FlahaultN.S.?YN[17]
NostocalesRivulariaceaeCalothrix scopulorum C.Agardh ex Bornet & FlahaultN.S.?YN[17]
NostocalesRivulariaceaeDichothrix hosfordii BornetN.S.?YN[17]
NostocalesRivulariaceaeDichothrix rupicola CollinsN.S.?YN[17]
NostocalesRivulariaceaeKyrtuthrix maculans (Gomont) I.UmezakiN.S.?YN[17]
NostocalesRivulariaceaeMicrochaete grisea Thuret ex Bornet & FlahaultN.S.?YN[17]
NostocalesRivulariaceaeMicrochaete tapahiensis SetchellN.S.?YN[17]
NostocalesRivulariaceaeMicrochaete vitiensis AskenasyN.S.?YN[17]
NostocalesRivulariaceaeRivularia polyotis Roth ex Bornet & FlahaultN.S.?YN[17]
NostocalesScytonemataceaeBrachytrichia codii SetchellN.S.?YN[17]
NostocalesScytonemataceaeBrachytrichia quoyi Bornet & FlahaultN.S.?YN[17]
NostocalesScytonemataceaeScytonema coactile Montagne ex Bornet & FlahaultN.S.?YN[17]
NostocalesScytonemataceaeScytonema guyanense Bornet et FlahaultN.S.?YN[17]
NostocalesScytonemataceaeScytonema hoffmannii C.Agardh ex Bornet & FlahaultN.S.?YN[17]
NostocalesScytonemataceaeScytonema ocellatum Lyngbye ex Bornet & FlahaultN.S.?YN[17]
NostocalesScytonemataceaeScytonema polycystum Bornet et FlahaultN.S.?YN[17]
NostocalesScytonemataceaeScytonema saleyeriense Weber BosseN.S.?YN[17]
NostocalesScytonemataceaeScytonema varium Kützing ex Bornet & FlahaultN.S.?YN[17]
NostocalesScytonemataceaeScytonema wolleanum FortiN.S.?YN[17]
NostocalesScytonemataceaeScytonematopsis crustacea (Thuret ex Bornet & Flahault) Kováčik & Komárek.N.S.?YN[17]
NostocalesScytonemataceaeScytonematopsis pilosa (Bornet & Flahault) Umezaki & WatanabeN.S.?YN[17]
NostocalesTolypothrichaceaeHassallia byssoidea Hassall ex Bornet & Flahault.N.S.?YN[17]
OscillatorialesColeofasciculaceaeGeitlerinema sp.CONF.?YY[20]16S
OscillatorialesColeofasciculaceaeGeitlerinema sp.1FPCONF.?YYThis study16S
OscillatorialesColeofasciculaceaeGeitlerinema sp.2FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeArthrospira ardissonei FortiN.S.?YN[17]
OscillatorialesMicrocoleaceaeArthrospira margaritae (Frémy) Gomont ex Anagnostidis & KomárekN.S.?YN[17]
OscillatorialesMicrocoleaceaeArthrospira miniata GomontCONF.?YY[20]16S
OscillatorialesMicrocoleaceaeBlennothrix cantharidosma (Gomont) Anagnostidis & KomárekCONF.?YYThis study, [17]16S
OscillatorialesMicrocoleaceaeBlennothrix cantharidosma-B (Gomont) Anagnostidis & KomárekCONF.?YY[20]16S
OscillatorialesMicrocoleaceaeBlennothrix cantharidosma-R (Gomont) Anagnostidis & KomárekCONF.?YY[20]16S
OscillatorialesMicrocoleaceaeBlennothrix glutinosa (Gomont) Anagnostidis & KomárekCONF.?YY[17,20]16S
OscillatorialesMicrocoleaceaeBlennothrix lyngbyacea (Kützing ex Gomont) Anagnostidis & KomárekN.S.?YN[17]
OscillatorialesMicrocoleaceaeBlennothrix major-B (Holden) Anagnostidis & KomárekCONF.?YYThis study, [20]16S
OscillatorialesMicrocoleaceaeBlennothrix major-GB (Holden) Anagnostidis & KomárekCONF.?YY[20]
OscillatorialesMicrocoleaceaeCaldora penicillata (Gomont) Engene, Tronholm & V.J.PaulCONF.?YYThis study, [20]16S
OscillatorialesMicrocoleaceaeCaldora sp.1FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeColeofasciculus chthonoplastes (Gomont) M.Siegesmund, J.R.Johansen & T.FriedlN.S.?YN[17]
OscillatorialesMicrocoleaceaeDapis pnigousa Engene, Tronholm & V.J.PaulCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeDapis sp.1FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeDapis sp.2FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeDapis sp.3FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeDapis sp.4FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeHydrocoleum coccineum GomontCONF.?YYThis study, [17,20]16S
OscillatorialesMicrocoleaceaeLeibleinia epiphytica (Hieronymus) CompèreN.S.?YN[17]
OscillatorialesMicrocoleaceaeLeibleinia gracilis (Rabenhorst ex Gomont) Anagnostidis & KomárekCONF.?YYThis study, [17,20]16S
OscillatorialesMicrocoleaceaeLimnospira maxima (Setchell & N.L.Gardner) Nowicka-Krawczyk, Mühlsteinová & HauerN.S.?YN[17]
OscillatorialesMicrocoleaceaeMicrocoleus paludosus GomontN.S.?YN[17]
OscillatorialesMicrocoleaceaeMicrocoleus sp.N.S.?YN[17]
OscillatorialesMicrocoleaceaeNeolyngbya sp.1FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeNeolyngbya sp.2FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeOkeania hirsuta Engene, Paul, Byrum, Gerwick, Thor & EllismanCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeOkeania plumata N.Engene, V.J.Paul, T.Byrum, W.H.Gerwick, A.Thor & M.H.EllismanCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeOkeania sp.1FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeOkeania sp.2FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaePlectonema mirabile Thuret ex GomontN.S.?YN[17]
OscillatorialesMicrocoleaceaePlectonema wollei f. gracilis FrémyN.S.?YN[17]
OscillatorialesMicrocoleaceaePorphyrosiphon fuscus Gomont ex FrémyN.S.?YN[17]
OscillatorialesMicrocoleaceaeSymploca atlantica GomontN.S.?YN[17]
OscillatorialesMicrocoleaceaeSymploca hydnoides Kützing ex GomontCONF.?YYThis study, [17,20]16S
OscillatorialesMicrocoleaceaeSymploca kieneri DrouetN.S.?YN[17]
OscillatorialesMicrocoleaceaeSymploca laeteviridis GomontN.S.?YN[17]
OscillatorialesMicrocoleaceaeSymploca muralis GomontN.S.?YN[17]
OscillatorialesMicrocoleaceaeSymploca sp.CONF.?YYThis study, [20]16S
OscillatorialesMicrocoleaceaeSymploca sp.1FPCONF.?YYThis study16S
OscillatorialesMicrocoleaceaeTychonema sp.1FPCONF.?YYThis study16S
OscillatorialesOscillatoriaceaeKamptonema formosum (Bory ex Gomont) Strunecký, Komárek & J.SmardaN.S.?YN[17]
OscillatorialesOscillatoriaceaeKamptonema laetevirens (H.M.Crouan & P.L.Crouan ex Gomont) Strunecký, Komárek & J.SmardaN.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya aestuari Liebman ex GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya confervoides C.Agardh ex GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya intermedia HansgirgN.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya lutea GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya majuscula Harvey ex GomontCONF.?YYThis study, [20]16S
OscillatorialesOscillatoriaceaeLyngbya martensiana Meneghini ex GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya semiplena J.Agardh ex Gomont N.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya sordida GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeLyngbya sp.1CONF.?YYThis study16S
OscillatorialesOscillatoriaceaeOscillatoria bonnemaisonii P.Crouan & H.Crouan ex GomontCONF.?YY[17,20]
OscillatorialesOscillatoriaceaeOscillatoria corallinae GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeOscillatoria limosa C.Agardh ex GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeOscillatoria maraaensis SetchellN.S.?YN[17]
OscillatorialesOscillatoriaceaeOscillatoria princeps Vaucher ex GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeOscillatoria sancta f. caldariorum ElenkinN.S.?YN[17]
OscillatorialesOscillatoriaceaeOscillatoria sancta f. tenuis (Woronichin) ElenkinN.S.?YN[17]
OscillatorialesOscillatoriaceaeOscillatoria sancta Kützing ex GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaeOscillatoria sp.1CONF.?YY[20]
OscillatorialesOscillatoriaceaeOscillatoria sp.2CONF.?YY[20]
OscillatorialesOscillatoriaceaeOscillatoria sp.3CONF.?YY[20]
OscillatorialesOscillatoriaceaeOscillatoria tahitensis Grunow ex GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium ambiguum GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium breve (Kützing ex Gomont) Anagnostidis & KomárekN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium gardneri MuzafarovN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium laysanense LemmermannN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium monile Setchell et GardnerN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium nigroviride (Thwaites ex Gomont) Anagnostidis & KomárekN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium papyraceum GomontN.S.?YN[17]
OscillatorialesOscillatoriaceaePhormidium sp.1CONF.?YY[20]
OscillatorialesOscillatoriaceaePhormidium sp.2CONF.?YY[20]
OscillatorialesOscillatoriaceaePhormidium sp.3CONF.?YYThis study16S
OscillatorialesOscillatoriaceaePhormidium terebriforme (C.Agardh ex Gomont) Anagnostidis & KomárekN.S.?YN[17]
PleurocapsalesDermocarpellaceaeDermocarpa sp.N.S.?YN[17]
PleurocapsalesPleurocapsaceaeHyella caespitosa Bornet et FlahaultN.S.?YN[17]
PleurocapsalesPleurocapsaceaeHyella sp.N.S.?YN[17]
SpirulinalesSpirulinaceaeSpirulina rosea P.Crouan & H.Crouan ex GomontCONF.?YY[20]16S
SpirulinalesSpirulinaceaeSpirulina sp.1FPCONF.?YYThis study16S
SpirulinalesSpirulinaceaeSpirulina subsalsa Oersted ex GomontCONF.?YY[17,20]16S
SpirulinalesSpirulinaceaeSpirulina tenerrima Kützing ex GomontN.S.?YN[17]
SynechococcalesLeptolyngbyaceaeLeptolyngbya calotrichoides (Gomont) Anagnostidis & KomárekN.S.?YN[17]
SynechococcalesLeptolyngbyaceaeLeptolyngbya crossbyana (Tilden) Anagnostidis & KomárekCONF.?YYThis study, [17]16S
SynechococcalesLeptolyngbyaceaeLeptolyngbya fragilis (Gomont) Anagnostidis & KomárekN.S.?YY[17]
SynechococcalesLeptolyngbyaceaeLeptolyngbya hendersonii (Howe) Anagnostidis & KomárekCONF.?YYThis study, [20]16S
SynechococcalesLeptolyngbyaceaeLeptolyngbya mucicola (Lemmermann) Anagnostidis & KomárekN.S.?YN[17]
SynechococcalesLeptolyngbyaceaeLeptolyngbya nostocorum (Bornet ex Gomont) Anagnostidis & KomárekN.S.?YN[17]
SynechococcalesLeptolyngbyaceaeLeptolyngbya sp.1CONF.?YYThis study, [20]16S
SynechococcalesLeptolyngbyaceaeLeptolyngbya sp.2CONF.?YYThis study, [20]16S
SynechococcalesLeptolyngbyaceaeLeptolyngbya sp.3CONF.?YYThis study16S
SynechococcalesLeptolyngbyaceaeLeptolyngbya sp.4CONF.?YYThis study16S
SynechococcalesLeptolyngbyaceaeLeptolyngbya terebrans (Bornet & Flahault ex Gomont) Anagnostidis & KomárekN.S.?YN[17]
SynechococcalesPseudanabaenaceaePseudanabaena lonchoides AnagnostidisCONF.?YY[20]16S
SynechococcalesPseudanabaenaceaePseudanabaena sp.1FPCONF.?YYThis study16S
AlismatalesHydrocharitaceaeHalophila decipiens OstenfeldN.S.NYN[127]
AlismatalesHydrocharitaceaeHalophila ovalis (R.Brown) Hooker f.CONF.NYYThis study, [AH]ITS
CONF.: Confirmed with molecular data; N.L.: New lineage/species; N.S.: No sequence; N.R.: New record; Y: Yes; N: No; ?: unknown.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Vieira, C.; Kim, M.S.; N’Yeurt, A.D.R.; Payri, C.; D’Hondt, S.; De Clerck, O.; Zubia, M. Marine Flora of French Polynesia: An Updated List Using DNA Barcoding and Traditional Approaches. Biology 2023, 12, 1124. https://doi.org/10.3390/biology12081124

AMA Style

Vieira C, Kim MS, N’Yeurt ADR, Payri C, D’Hondt S, De Clerck O, Zubia M. Marine Flora of French Polynesia: An Updated List Using DNA Barcoding and Traditional Approaches. Biology. 2023; 12(8):1124. https://doi.org/10.3390/biology12081124

Chicago/Turabian Style

Vieira, Christophe, Myung Sook Kim, Antoine De Ramon N’Yeurt, Claude Payri, Sofie D’Hondt, Olivier De Clerck, and Mayalen Zubia. 2023. "Marine Flora of French Polynesia: An Updated List Using DNA Barcoding and Traditional Approaches" Biology 12, no. 8: 1124. https://doi.org/10.3390/biology12081124

APA Style

Vieira, C., Kim, M. S., N’Yeurt, A. D. R., Payri, C., D’Hondt, S., De Clerck, O., & Zubia, M. (2023). Marine Flora of French Polynesia: An Updated List Using DNA Barcoding and Traditional Approaches. Biology, 12(8), 1124. https://doi.org/10.3390/biology12081124

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop