Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Extraction of DNA
2.2. PCR and Sequencing
2.3. Delimitation of Species
2.4. Biostatical Analysis
3. Results
3.1. Fecal Microbial Diversity in Sex
3.2. Effects of Sex on the Genera of the Intestinal Microbiota of Bovines
3.3. Differential Abundance Analysis of the Bovine Gut Microbiota
3.4. Microbial Community Dynamics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, E. 138 Analytical Methods for Organometallic Chelation Testing. J. Anim. Sci. 2020, 98, 141–142. [Google Scholar] [CrossRef]
- Castillo-González, A.R.; Burrola-Barraza, M.E.; Domínguez-Viveros, J.; Chávez-Martínez, A. Rumen Microorganisms and Fermentation. | Archivos de Medicina Veterinaria | EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.4067%2FS0301-732X2014000300003?sid=ebsco:plink:crawler&id=ebsco:doi:10.4067%2FS0301-732X2014000300003 (accessed on 3 September 2024).
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host Genetics Influence the Rumen Microbiota and Heritable Rumen Microbial Features Associate with Feed Efficiency in Cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Kamra, D.N.; Chaudhary, L.C. Rumen Microbial Ecosystem of Domesticated Ruminants. In Rumen Microbiology: From Evolution to Revolution; Puniya, A.K., Singh, R., Kamra, D.N., Eds.; Springer India: New Delhi, India, 2015; pp. 17–30. ISBN 978-81-322-2401-3. [Google Scholar]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring; Oxford University Press: New York, NY, USA, 2018; ISBN 978-0-19-876722-0. [Google Scholar]
- Kumar, K.R.; Cowley, M.J.; Davis, R.L. Next-Generation Sequencing and Emerging Technologies. Semin. Thromb. Hemost. 2019, 45, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Coissac, E.; Riaz, T.; Puillandre, N. Bioinformatic Challenges for DNA Metabarcoding of Plants and Animals. Mol. Ecol. 2012, 21, 1834–1847. [Google Scholar] [CrossRef] [PubMed]
- Pont, D.; Valentini, A.; Rocle, M.; Maire, A.; Delaigue, O.; Jean, P.; Dejean, T. The Future of Fish-Based Ecological Assessment of European Rivers: From Traditional EU Water Framework Directive Compliant Methods to eDNA Metabarcoding-Based Approaches. J. Fish Biol. 2021, 98, 354–366. [Google Scholar] [CrossRef]
- Sim, S.; Lee, H.; Yoon, S.; Seon, H.; Park, C.; Kim, M. The Impact of Different Diets and Genders on Fecal Microbiota in Hanwoo Cattle. J. Anim. Sci. Technol. 2022, 64, 897–910. [Google Scholar] [CrossRef]
- Elbir, H.; Alhumam, N.A. Sex Differences in Fecal Microbiome Composition and Function of Dromedary Camels in Saudi Arabia. Animals 2022, 12, 3430. [Google Scholar] [CrossRef]
- He, Y.; Wang, H.; Yu, Z.; Niu, W.; Qiu, Q.; Su, H.; Cao, B. Effects of the Gender Differences in Cattle Rumen Fermentation on Anaerobic Fermentation of Wheat Straw. J. Clean. Prod. 2018, 205, 845–853. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yu, Z.; Zhang, F.; Liang, S.; Liu, H.; Chen, H.; Lü, M. The Gut Microbiome and Sex Hormone-Related Diseases. Front. Microbiol. 2021, 12, 711137. [Google Scholar] [CrossRef]
- Calcaterra, V.; Rossi, V.; Massini, G.; Regalbuto, C.; Hruby, C.; Panelli, S.; Bandi, C.; Zuccotti, G. Precocious Puberty and Microbiota: The Role of the Sex Hormone–Gut Microbiome Axis. Front. Endocrinol. 2022, 13, 1000919. [Google Scholar] [CrossRef]
- Estrada, R.; Romero, Y.; Figueroa, D.; Coila, P.; Hañari-Quispe, R.D.; Aliaga, M.; Galindo, W.; Alvarado, W.; Casanova, D.; Quilcate, C. Effects of Age in Fecal Microbiota and Correlations with Blood Parameters in Genetic Nucleus of Cattle. Microorganisms 2024, 12, 1331. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–15. ISBN 978-1-118-44511-2. [Google Scholar]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical Analysis of Taxonomic and Functional Profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
- Kim, M.; Wells, J.E. A Meta-Analysis of Bacterial Diversity in the Feces of Cattle. Curr. Microbiol. 2016, 72, 145–151. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Kuehn, L.A.; Bono, J.L.; Berry, E.D.; Kalchayanand, N.; Freetly, H.C.; Benson, A.K.; Wells, J.E. Investigation of Bacterial Diversity in the Feces of Cattle Fed Different Diets. J. Anim. Sci. 2014, 92, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen Microbial Community Composition Varies with Diet and Host, but a Core Microbiome Is Found across a Wide Geographical Range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Morrison, M.; Yu, Z. Status of the Phylogenetic Diversity Census of Ruminal Microbiomes. FEMS Microbiol. Ecol. 2011, 76, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Ma, T.; Tang, W.; Li, D.; Mishra, S.K.; Xu, Z.; Wang, Q.; Jie, H. Gut Microbiome of Chinese Forest Musk Deer Examined across Gender and Age. BioMed Res. Int. 2019, 2019, 9291216. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sha, Y.; Lv, W.; Pu, X.; Liu, X.; Luo, Y.; Hu, J.; Wang, J.; Li, S.; Zhao, Z. Sex Differences in Rumen Fermentation and Microbiota of Tibetan Goat. Microb. Cell Factories 2022, 21, 55. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Li, B.; Hao, W.; Yin, W.; Ai, S.; Han, J.; Wang, R.; Duan, Z. Depicting Fecal Microbiota Characteristic in Yak, Cattle, Yak-Cattle Hybrid and Tibetan Sheep in Different Eco-Regions of Qinghai-Tibetan Plateau. Microbiol. Spectr. 2022, 10, e00021-22. [Google Scholar] [CrossRef]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut Biogeography of the Bacterial Microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef]
- Brown, E.M.; Clardy, J.; Xavier, R.J. Gut Microbiome Lipid Metabolism and Its Impact on Host Physiology. Cell Host Microbe 2023, 31, 173. [Google Scholar] [CrossRef]
- Ilina, L.; Filippova, V.; Yildirim, E.; Layshev, K. Archaea in the Microbial Community of the Reindeer Rumen in the Russian Arctic. BIO Web Conf. 2020, 27, 00066. [Google Scholar] [CrossRef]
- O’Hara, E.; Kenny, D.A.; McGovern, E.; Byrne, C.J.; McCabe, M.S.; Guan, L.L.; Waters, S.M. Investigating Temporal Microbial Dynamics in the Rumen of Beef Calves Raised on Two Farms during Early Life. FEMS Microbiol. Ecol. 2020, 96, fiz203. [Google Scholar] [CrossRef]
- Gan, Y.; Wu, Y.; Dong, Y.; Li, Q.; Wu, S.; Jin, Y.; Lu, T. The Study on the Impact of Sex on the Structure of Gut Microbiota of Bamboo Rats in China. Front. Microbiol. 2023, 14, 1276620. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, H.; Hu, L.; Ma, L.; Xu, S.; Xu, T.; Zhao, N.; Wang, X.; Chen, Y. Impact of Sex and Age on the Bacterial Composition in Rumen of Tibetan Sheep in Qinghai China. Livest. Sci. 2020, 238, 104030. [Google Scholar] [CrossRef]
- Sun, B.; Gu, Z.; Wang, X.; Huffman, M.A.; Garber, P.A.; Sheeran, L.K.; Zhang, D.; Zhu, Y.; Xia, D.-P.; Li, J. Season, Age, and Sex Affect the Fecal Mycobiota of Free-Ranging Tibetan Macaques (Macaca thibetana). Am. J. Primatol. 2018, 80, e22880. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Di Paola, M.; Stefanini, I.; Albanese, D.; Rizzetto, L.; Lionetti, P.; Calabrò, A.; Jousson, O.; Donati, C.; Cavalieri, D.; et al. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract. Front. Microbiol. 2016, 7, 1227. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Qin, X.; Chen, L.; Chen, Z.; Hao, R.; Zhang, S.; Yang, S.; Wang, L.; Cui, Y.; Li, Y.; et al. Serum Biochemical Parameters, Rumen Fermentation, and Rumen Bacterial Communities Are Partly Driven by the Breed and Sex of Cattle When Fed High-Grain Diet. Microorganisms 2022, 10, 323. [Google Scholar] [CrossRef]
- Fan, P.; Bian, B.; Teng, L.; Nelson, C.D.; Driver, J.; Elzo, M.A.; Jeong, K.C. Host Genetic Effects upon the Early Gut Microbiota in a Bovine Model with Graduated Spectrum of Genetic Variation. ISME J. 2020, 14, 302–317. [Google Scholar] [CrossRef]
- Qin, W.; Li, S.; Wu, N.; Wen, Z.; Xie, J.; Ma, H.; Zhang, S. Main Factors Influencing the Gut Microbiota of Datong Yaks in Mixed Group. Animals 2022, 12, 1777. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.; Wang, X.; Han, L.; Yang, Y.; Wang, Q.; Yu, Q. Metagenomic and Transcriptomic Analyses Reveal the Differences and Associations Between the Gut Microbiome and Muscular Genes in Angus and Chinese Simmental Cattle. Front. Microbiol. 2022, 13, 815915. [Google Scholar] [CrossRef]
- Li, A.; Wang, Y.; Li, Z.; Qamar, H.; Mehmood, K.; Zhang, L.; Liu, J.; Zhang, H.; Li, J. Probiotics Isolated from Yaks Improves the Growth Performance, Antioxidant Activity, and Cytokines Related to Immunity and Inflammation in Mice. Microb. Cell Factories 2019, 18, 112. [Google Scholar] [CrossRef]
- Sadek, A.; Taminiau, B.; Daube, G.; Sapountzis, P.; Chaucheyras-Durand, F.; Castex, M.; Coucheney, F.; Drider, D. Impact of Dietary Regime and Seasonality on Hindgut’s Mycobiota Diversity in Dairy Cows. Microorganisms 2024, 12, 84. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Y.; He, Y.; Kulyar, M.F.-A.; Iqbal, M.; Li, K.; Liu, J. Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks. J. Fungi 2021, 7, 559. [Google Scholar] [CrossRef]
- Zhu, Y.; Cidan, Y.; Sun, G.; Li, X.; Shahid, M.A.; Luosang, Z.; Suolang, Z.; Suo, L.; Basang, W. Comparative Analysis of Gut Fungal Composition and Structure of the Yaks under Different Feeding Models. Front. Vet. Sci. 2023, 10, 1193558. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, S.; Yang, M.; Wang, L.; Li, Z.; Yang, L.; Li, G.; Wen, T. Gut Fungal Community Composition Analysis of Myostatin Mutant Cattle Prepared by CRISPR/Cas9. Front. Vet. Sci. 2023, 9, 1084945. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, S.L.; Sundset, M.A.; Crouse, J.; Wright, A.-D.G. High-Throughput DNA Sequencing of the Moose Rumen from Different Geographical Locations Reveals a Core Ruminal Methanogenic Archaeal Diversity and a Differential Ciliate Protozoal Diversity. Microb. Genom. 2015, 1, e000034. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shen, H.; Lv, Y.; He, J.; Xie, X.; Xu, Z.; Yang, P.; Qian, W.; Bai, T.; Hou, X. Age over Sex: Evaluating Gut Microbiota Differences in Healthy Chinese Populations. Front. Microbiol. 2024, 15, 1412991. [Google Scholar] [CrossRef] [PubMed]
- d’Afflitto, M.; Upadhyaya, A.; Green, A.; Peiris, M. Association Between Sex Hormone Levels and Gut Microbiota Composition and Diversity—A Systematic Review. J. Clin. Gastroenterol. 2022, 56, 384. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Peter, H.; Allison, S.D.; Baho, D.; Berga, M.; Buergmann, H.; Huber, D.H.; Langenheder, S.; Lennon, J.T.; Martiny, J.B.; et al. Fundamentals of Microbial Community Resistance and Resilience. Front. Microbiol. 2012, 3, 417. [Google Scholar] [CrossRef]
- Ortona, E.; Pierdominici, M.; Rider, V. Editorial: Sex Hormones and Gender Differences in Immune Responses. Front. Immunol. 2019, 10, 1076. [Google Scholar] [CrossRef]
- Shepherd, R.; Cheung, A.S.; Pang, K.; Saffery, R.; Novakovic, B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front. Immunol. 2021, 11, 604000. [Google Scholar] [CrossRef]
- Evans, N.J.; Brown, J.M.; Murray, R.D.; Getty, B.; Birtles, R.J.; Hart, C.A.; Carter, S.D. Characterization of Novel Bovine Gastrointestinal Tract Treponema Isolates and Comparison with Bovine Digital Dermatitis Treponemes. Appl. Environ. Microbiol. 2011, 77, 138–147. [Google Scholar] [CrossRef]
- Fregulia, P.; Neves, A.L.A.; Dias, R.J.P.; Campos, M.M. A Review of Rumen Parameters in Bovines with Divergent Feed Efficiencies: What Do These Parameters Tell Us about Improving Animal Productivity and Sustainability? Livest. Sci. 2021, 254, 104761. [Google Scholar] [CrossRef]
- Bay, V.; Griffiths, B.; Carter, S.; Evans, N.J.; Lenzi, L.; Bicalho, R.C.; Oikonomou, G. 16S rRNA Amplicon Sequencing Reveals a Polymicrobial Nature of Complicated Claw Horn Disruption Lesions and Interdigital Phlegmon in Dairy Cattle. Sci. Rep. 2018, 8, 15529. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Bachar, D.; Yasir, M.; Musso, D.; Djossou, F.; Gaborit, B.; Brah, S.; Diallo, A.; Ndombe, G.M.; Mediannikov, O.; et al. Treponema Species Enrich the Gut Microbiota of Traditional Rural Populations but Are Absent from Urban Individuals. New Microbes New Infect. 2019, 27, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Nelson, C.D.; Driver, J.D.; Elzo, M.A.; Jeong, K.C. Animal Breed Composition Is Associated with the Hindgut Microbiota Structure and β-Lactam Resistance in the Multibreed Angus-Brahman Herd. Front. Microbiol. 2019, 10, 1846. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Brass, A.; Knight, C.G.; Cruickshank, S.M. Gut Eosinophils and Their Impact on the Mucus-Resident Microbiota. Immunology 2019, 158, 194–205. [Google Scholar] [CrossRef]
- Huang, S.; Ji, S.; Yan, H.; Hao, Y.; Zhang, J.; Wang, Y.; Cao, Z.; Li, S. The Day-to-Day Stability of the Ruminal and Fecal Microbiota in Lactating Dairy Cows. MicrobiologyOpen 2020, 9, e990. [Google Scholar] [CrossRef]
- Everard, A.; Matamoros, S.; Geurts, L.; Delzenne, N.M.; Cani, P.D. Saccharomyces Boulardii Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low-Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic Db/Db Mice. mBio 2014, 5, e01011-14. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, C.; Qin, X.; Zhou, B.; Liu, X.; Liu, T.; Xie, R.; Liu, J.; Wang, B.; Cao, H. Saccharomyces Boulardii, a Yeast Probiotic, Inhibits Gut Motility through Upregulating Intestinal Serotonin Transporter and Modulating Gut Microbiota. Pharmacol. Res. 2022, 181, 106291. [Google Scholar] [CrossRef]
- Garcia, L.S.; Procop, G.W. Diagnostic Medical Parasitology. In Manual of Commercial Methods in Clinical Microbiology; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 284–308. ISBN 978-1-119-02187-2. [Google Scholar]
- Sun, S.; Xu, X.; Liang, L.; Wang, X.; Bai, X.; Zhu, L.; He, Q.; Liang, H.; Xin, X.; Wang, L.; et al. Lactic Acid-Producing Probiotic Saccharomyces Cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Front. Immunol. 2021, 12, 777665. [Google Scholar] [CrossRef]
- Perricone, V.; Sandrini, S.; Irshad, N.; Comi, M.; Lecchi, C.; Savoini, G.; Agazzi, A. The Role of Yeast Saccharomyces Cerevisiae in Supporting Gut Health in Horses: An Updated Review on Its Effects on Digestibility and Intestinal and Fecal Microbiota. Animals 2022, 12, 3475. [Google Scholar] [CrossRef]
- Huebner, K.L.; Martin, J.N.; Weissend, C.J.; Holzer, K.L.; Parker, J.K.; Lakin, S.M.; Doster, E.; Weinroth, M.D.; Abdo, Z.; Woerner, D.R.; et al. Effects of a Saccharomyces Cerevisiae Fermentation Product on Liver Abscesses, Fecal Microbiome, and Resistome in Feedlot Cattle Raised without Antibiotics. Sci. Rep. 2019, 9, 2559. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Alugongo, G.M.; Ji, S.; Wu, Z.; Dong, S.; Li, S.; Yoon, I.; Chung, R.; Cao, Z. Effects of Saccharomyces Cerevisiae Fermentation Products on the Microbial Community throughout the Gastrointestinal Tract of Calves. Animals 2019, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, F.; Pierre, J.F.; Blaser, M.; Shanmuganayagam, D. Longitudinal Effects of Dietary Oxidized Lipids on the Gut Microbiome and Mycobiome in Pigs. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Summers, K.L.; Arfken, A.M. The Gut Mycobiome and Animal Health. In Gut Microbiota, Immunity, and Health in Production Animals; Kogut, M.H., Zhang, G., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 85–125. ISBN 978-3-030-90303-9. [Google Scholar]
- Jeyanathan, J.; Kirs, M.; Ronimus, R.S.; Hoskin, S.O.; Janssen, P.H. Methanogen Community Structure in the Rumens of Farmed Sheep, Cattle and Red Deer Fed Different Diets. FEMS Microbiol. Ecol. 2011, 76, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Daugaliyeva, A.; Daugaliyeva, S.; Ashanin, A.; Beltramo, C.; Mamyrova, L.; Yessembekova, Z.; Peletto, S. Prokaryotic Diversity of Ruminal Content and Its Relationship with Methane Emissions in Cattle from Kazakhstan. Life 2022, 12, 1911. [Google Scholar] [CrossRef]
- Rey, J.; Díaz de Otálora, X.; Atxaerandio, R.; Mandaluniz, N.; García-Rodríguez, A.; González-Recio, O.; López-García, A.; Ruiz, R.; Goiri, I. Effect of Chitosan on Ruminal Fermentation and Microbial Communities, Methane Emissions, and Productive Performance of Dairy Cattle. Animals 2023, 13, 2861. [Google Scholar] [CrossRef]
- Smith, P.E.; Kelly, A.K.; Kenny, D.A.; Waters, S.M. Differences in the Composition of the Rumen Microbiota of Finishing Beef Cattle Divergently Ranked for Residual Methane Emissions. Front. Microbiol. 2022, 13, 855565. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, D.; Mao, K.; Wang, M.; Wang, J.; Xun, W.; Huang, S. Exploring the Rumen Microbiota and Serum Metabolite Profile of Hainan Black Goats with Different Body Weights before Weaning. Animals 2024, 14, 425. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Liu, Y.; Nie, C.; Chen, C.; Niu, J.; Zhang, W. Comparison of Bacterial and Fungal Community Structure and Potential Function Analysis of Yak Feces Before and After Weaning. BioMed Res. Int. 2022, 2022, 6297231. [Google Scholar] [CrossRef]
- Larzábal, M.; Da Silva, W.M.; Multani, A.; Vagnoni, L.E.; Moore, D.P.; Marin, M.S.; Riviere, N.A.; Delgado, F.O.; Vilte, D.A.; Victorica, M.R.; et al. Early Immune Innate Hallmarks and Microbiome Changes across the Gut during Escherichia Coli O157: H7 Infection in Cattle. Sci. Rep. 2020, 10, 21535. [Google Scholar] [CrossRef]
- Brulin, L.; Ducrocq, S.; Even, G.; Sanchez, M.P.; Martel, S.; Merlin, S.; Audebert, C.; Croiseau, P.; Estellé, J. Characterization of Bovine Vaginal Microbiota Using 16S rRNA Sequencing: Associations with Host Fertility, Longevity, Health, and Production. Sci. Rep. 2024, 14, 19277. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Du, H.; Guo, W.; Na, M.; Na, R. Alfalfa Supplementation Timing Changes the Rumen Archaeal and Fungal Community Composition and Colonization in Pre-Weaning Lambs. Front. Microbiol. 2024, 15, 1380322. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Liu, S.; Li, A.; Wang, Y.; Zhang, L.; Iqbal, M.; Jamil, T.; Shang, Z.; Suo, L.; Li, J. Characterization of Fungal Microbial Diversity in Healthy and Diarrheal Tibetan Piglets. BMC Microbiol. 2021, 21, 204. [Google Scholar] [CrossRef] [PubMed]
- Paudel, B.; Bhattarai, K.; Bhattarai, H.D. Antimicrobial and Antioxidant Activities of Two Polyketides from Lichen-Endophytic Fungus Preussia Sp. Z. Naturforschung C J. Biosci. 2018, 73, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Mapperson, R.R.; Kotiw, M.; Davis, R.A.; Dearnaley, J.D.W. The Diversity and Antimicrobial Activity of Preussia Sp. Endophytes Isolated from Australian Dry Rainforests. Curr. Microbiol. 2014, 68, 30–37. [Google Scholar] [CrossRef]
- Li, C.; Chen, N.; Zhang, X.; Shahzad, K.; Qi, R.; Zhang, Z.; Lu, Z.; Lu, Y.; Yu, X.; Zafar, M.H.; et al. Mixed Silage with Chinese Cabbage Waste Enhances Antioxidant Ability by Increasing Ascorbate and Aldarate Metabolism through Rumen Prevotellaceae UCG-004 in Hu Sheep. Front. Microbiol. 2022, 13, 978940. [Google Scholar] [CrossRef]
- Danielsson, R.; Dicksved, J.; Sun, L.; Gonda, H.; Müller, B.; Schnürer, A.; Bertilsson, J. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure. Front. Microbiol. 2017, 8, 226. [Google Scholar] [CrossRef]
- Danielsson, R.; Werner-Omazic, A.; Ramin, M.; Schnürer, A.; Griinari, M.; Dicksved, J.; Bertilsson, J. Effects on Enteric Methane Production and Bacterial and Archaeal Communities by the Addition of Cashew Nut Shell Extract or Glycerol—An in Vitro Evaluation. J. Dairy Sci. 2014, 97, 5729–5741. [Google Scholar] [CrossRef]
- Kittelmann, S.; Seedorf, H.; Walters, W.A.; Clemente, J.C.; Knight, R.; Gordon, J.I.; Janssen, P.H. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities. PLoS ONE 2013, 8, e47879. [Google Scholar] [CrossRef]
- Wu, X.; Xia, Y.; He, F.; Zhu, C.; Ren, W. Intestinal Mycobiota in Health and Diseases: From a Disrupted Equilibrium to Clinical Opportunities. Microbiome 2021, 9, 60. [Google Scholar] [CrossRef]
- Xiaofeng, N.; Jian, C.; Jingjing, W.; Zhanbo, Q.; Yifei, S.; Jing, Z.; Shuwen, H. Correlation of Gut Microbiota with Leukopenia after Chemotherapy in Patients with Colorectal Cancer. BMC Microbiol. 2023, 23, 349. [Google Scholar] [CrossRef]
- Uribe-Herranz, M.; Klein-González, N.; Rodríguez-Lobato, L.G.; Juan, M.; Fernández de Larrea, C. Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int. J. Mol. Sci. 2021, 22, 1026. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, J.; Murakami, H.; Sato, R.; Mizukami, K.; Suzuki, T.; Shima, A.; Ishihara, G.; Sogawa, K.; Sakaguchi, M. Examination of the Fecal Microbiota in Dairy Cows Infected with Bovine Leukemia Virus. Vet. Microbiol. 2020, 240, 108547. [Google Scholar] [CrossRef] [PubMed]
- Chénard, T.; Malick, M.; Dubé, J.; Massé, E. The Influence of Blood on the Human Gut Microbiome. BMC Microbiol. 2020, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Plaizier, J.C.; Mesgaran, M.D.; Derakhshani, H.; Golder, H.; Khafipour, E.; Kleen, J.L.; Lean, I.; Loor, J.; Penner, G.; Zebeli, Q. Review: Enhancing Gastrointestinal Health in Dairy Cows. Animal 2018, 12, s399–s418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, L.; He, Y.; Luo, X.; Zhao, S.; Jia, X. Composition of Fecal Microbiota in Grazing and Feedlot Angus Beef Cattle. Animals 2021, 11, 3167. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, G.; Xing, S.; Fu, W.; Liu, X.; Wu, H.; Zhou, X.; Ma, Y.; Zhang, X.; Chen, B. Structure and Diversity of Fungal Communities in Long-Term Copper-Contaminated Agricultural Soil. Sci. Total Environ. 2022, 806, 151302. [Google Scholar] [CrossRef]
- Ondari, E.; Calvino-Sanles, E.; First, N.J.; Gestal, M.C. Eosinophils and Bacteria, the Beginning of a Story. Int. J. Mol. Sci. 2021, 22, 8004. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, P.; Wang, C.; Huasai, S.; Chen, H.; Chen, A. Differences in the Intestinal Microbiota and Association of Host Metabolism with Hair Coat Status in Cattle. Front. Microbiol. 2024, 15, 1296602. [Google Scholar] [CrossRef]
- Holman, D.B.; Gzyl, K.E. A Meta-Analysis of the Bovine Gastrointestinal Tract Microbiota. FEMS Microbiol. Ecol. 2019, 95, fiz072. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Xu, D.; Zhang, D.; Zhang, Y.; Song, Q.; Li, X.; Zhao, Y.; Zhao, L.; Li, W.; et al. Relationship between Rumen Microbial Differences and Traits among Hu Sheep, Tan Sheep, and Dorper Sheep. J. Anim. Sci. 2022, 100, skac261. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Williams, B.A.; Mikkelsen, D.; Flanagan, B.M.; Gidley, M.J. Composition and Functional Profiles of Human Faecal Microbiota Fermenting Plant-Based Food Particles Are Related to Water-Holding Capacity More than Particle Size. Food Hydrocoll. 2023, 141, 108714. [Google Scholar] [CrossRef]
- Zhang, L.; Tepes, M.; Tong, A.; Lee, D. Microbial Diversity of Smokers Is Not Influenced by Dietary Fiber Intake Although Smoking Alters Functional Pathway Abundances. Undergrad. J. Exp. Microbiol. Immunol. 2023, 28. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Han, J.; You, C.; Liu, Z.; Wu, Z. Effect of Lacticaseibacillus casei LC2W Supplementation on Glucose Metabolism and Gut Microbiota in Subjects at High Risk of Metabolic Syndrome: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Probiotics Antimicrob. Proteins 2024, 16, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ge, X.; Xu, H.; Tan, B.; Tian, B.; Shi, Y.; Dai, Y.; Li, Y.; Hu, S.; Qian, J. Gut Microbiome and Mycobiome in Inflammatory Bowel Disease Patients with Clostridioides Difficile Infection. Front. Cell. Infect. Microbiol. 2023, 13, 1129043. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-W.; Ma, W.-J.; Wang, Y.; Ma, X.-H.; Xue, Y.-F.; Guan, J.; Chen, X. Comparison of the Effects of Probiotics, Rifaximin, and Lactulose in the Treatment of Minimal Hepatic Encephalopathy and Gut Microbiota. Front. Microbiol. 2023, 14, 1091167. [Google Scholar] [CrossRef]
- Savin, K.W.; Zawadzki, J.; Auldist, M.J.; Wang, J.; Ram, D.; Rochfort, S.; Cocks, B.G. Faecalibacterium Diversity in Dairy Cow Milk. PLoS ONE 2019, 14, e0221055. [Google Scholar] [CrossRef]
- Oikonomou, G.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C. Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth. PLoS ONE 2013, 8, e63157. [Google Scholar] [CrossRef]
- Weese, J.S.; Jelinski, M. Assessment of the Fecal Microbiota in Beef Calves. J. Vet. Intern. Med. 2017, 31, 176–185. [Google Scholar] [CrossRef]
- Fransen, F.; van Beek, A.A.; Borghuis, T.; Meijer, B.; Hugenholtz, F.; van der Gaast-de Jongh, C.; Savelkoul, H.F.; de Jonge, M.I.; Faas, M.M.; Boekschoten, M.V.; et al. The Impact of Gut Microbiota on Gender-Specific Differences in Immunity. Front. Immunol. 2017, 8, 754. [Google Scholar] [CrossRef]
- Siddiqui, R.; Makhlouf, Z.; Alharbi, A.M.; Alfahemi, H.; Khan, N.A. The Gut Microbiome and Female Health. Biology 2022, 11, 1683. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314. [Google Scholar] [CrossRef] [PubMed]
Items | Df | Sum of Sqs | R2 | F | Pr (>F) | |
---|---|---|---|---|---|---|
Bacteria | Jaccard | |||||
Year | 2 | 0.5312 | 0.11634 | 1.1475 | 0.0632 | |
Sex | 1 | 0.2852 | 0.06247 | 1.2323 | 0.0483 * | |
Year/sex | 2 | 0.509 | 0.11149 | 1.0997 | 0.125 | |
Residual | 14 | 3.2403 | 1 | |||
Total | 19 | 4.5657 | ||||
Fungi | Jaccard | |||||
Year | 2 | 0.7816 | 0.11981 | 1.1786 | 0.0099 ** | |
Sex | 1 | 0.3715 | 0.05694 | 1.1203 | 0.069 | |
Year/sex | 2 | 0.7287 | 0.1117 | 1.0989 | 0.055 | |
Residual | 14 | 4.6421 | 0.71155 | |||
Total | 19 | 6.5239 | 1 | |||
Unweighted Unifrac | ||||||
Year | 2 | 0.16777 | 0.18907 | 2.0254 | 0.032 * | |
Sex | 1 | 0.04423 | 0.04985 | 1.0679 | 0.374 | |
Year/sex | 2 | 0.0955 | 0.10763 | 1.1529 | 0.323 | |
Residual | 14 | 0.57982 | 0.65345 | |||
Total | 19 | 0.88731 | 1 | |||
Archaea | Unweighted Unifrac | |||||
Year | 2 | 0.05007 | 0.12172 | 1.3689 | 0.201 | |
Sex | 1 | 0.04789 | 0.11644 | 2.6188 | 0.0382 * | |
Year/sex | 2 | 0.05733 | 0.13937 | 1.5673 | 0.1322 | |
Residual | 14 | 0.25603 | 0.62247 | |||
Total | 19 | 0.41132 | 1 |
Bacteria | Jaccard | |||
---|---|---|---|---|
Mantel Test | Partial Mantel Test | |||
Variables | r | p | r | p |
HCT | 0.376950553 | 0.005 | 0.36636155 | 0.006 |
HGB | 0.342372916 | 0.022 | 0.326735683 | 0.021 |
Fungi | Weighted Unifrac | |||
Mantel Test | Partial Mantel Test | |||
Variables | r | p | r | p |
MCV | 0.3124 | 0.022 | 0.170249895 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, D.; Estrada, R.; Romero, Y.; Figueroa, D.; Quilcate, C.; Ganoza-Roncal, J.J.; Maicelo, J.L.; Coila, P.; Alvarado, W.; Cayo-Colca, I.S. Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle. Biology 2024, 13, 932. https://doi.org/10.3390/biology13110932
Rojas D, Estrada R, Romero Y, Figueroa D, Quilcate C, Ganoza-Roncal JJ, Maicelo JL, Coila P, Alvarado W, Cayo-Colca IS. Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle. Biology. 2024; 13(11):932. https://doi.org/10.3390/biology13110932
Chicago/Turabian StyleRojas, Diórman, Richard Estrada, Yolanda Romero, Deyanira Figueroa, Carlos Quilcate, Jorge J. Ganoza-Roncal, Jorge L. Maicelo, Pedro Coila, Wigoberto Alvarado, and Ilse S. Cayo-Colca. 2024. "Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle" Biology 13, no. 11: 932. https://doi.org/10.3390/biology13110932
APA StyleRojas, D., Estrada, R., Romero, Y., Figueroa, D., Quilcate, C., Ganoza-Roncal, J. J., Maicelo, J. L., Coila, P., Alvarado, W., & Cayo-Colca, I. S. (2024). Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle. Biology, 13(11), 932. https://doi.org/10.3390/biology13110932