Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; ISBN 978-3-947851-20-1. [Google Scholar]
- Reed, D.H.; Frankham, R. Correlation between Fitness and Genetic Diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Frankham, R. Genetics and extinction. Biol. Conserv. 2005, 126, 131–140. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Dirzo, R.; Raven, P.H. Global State of Biodiversity and Loss. Annu. Rev. Environ. Resour. 2003, 28, 137–167. [Google Scholar] [CrossRef]
- Laikre, L.; Allendorf, F.W.; Aroner, L.C.; Baker, C.S.; Gregovich, D.P.; Hansen, M.M.; Jackson, J.A.; Kendall, K.C.; McKelvey, K.; Neel, M.C.; et al. Neglect of Genetic Diversity in Implementation of the Convention on Biological Diversity. Conserv. Biol. 2010, 24, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.N.; Sgrò, C.M. Aligning science and policy to achieve evolutionarily enlightened conservation. Conserv. Biol. 2017, 31, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Mcowen, C.J.; Ivory, S.; Dixon, M.J.R.; Regan, E.C.; Obrecht, A.; Tittensor, D.P.; Teller, A.; Chenery, A.M. Sufficiency and Suitability of Global Biodiversity Indicators for Monitoring Progress to 2020 Targets. Conserv. Lett. 2016, 9, 489–494. [Google Scholar] [CrossRef]
- Laikre, L.; Hoban, S.; Bruford, M.W.; Segelbacher, G.; Allendorf, F.W.; Gajardo, G.; González Rodríguez, A.; Hedrick, P.W.; Heuertz, M.; Hohenlohe, P.A.; et al. Post-2020 goals overlook genetic diversity. Science 2020, 367, 1083–1085. [Google Scholar] [CrossRef]
- Ette, J.; Geburek, T. Why European biodiversity reporting is not reliable. Ambio 2021, 50, 929–941. [Google Scholar] [CrossRef]
- Hoban, S.; Campbell, C.D.; da Silva, J.M.; Ekblom, R.; Funk, W.C.; Garner, B.A.; Godoy, J.A.; Kershaw, F.; MacDonald, A.J.; Mergeay, J.; et al. Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biol. Conserv. 2021, 261, 109233. [Google Scholar] [CrossRef]
- Hoban, S.; Bruford, M.W.; Funk, W.C.; Galbusera, P.; Griffith, M.P.; Grueber, C.E.; Heuertz, M.; Hunter, M.E.; Hvilsom, C.; Kalamujic Stroil, B.; et al. Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. Bioscience 2021, 71, 964–976. [Google Scholar] [CrossRef]
- Pflüger, F.J.; Signer, J.; Balkenhol, N. Habitat loss causes non-linear genetic erosion in specialist species. Glob. Ecol. Conserv. 2018, 17, e00507. [Google Scholar] [CrossRef]
- Convention on Biological Diversity. Decision adopted by the Conference of the Parties to the Convention on Biological Diversity [CBD/COP/DEC/15/4]. Kunming-Montreal Global Biodiversity Framework. 2022. Available online: https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf (accessed on 25 December 2023).
- Montgomery, M.E.; Woodworth, L.M.; Nurthen, R.K.; Gilligan, D.M.; Briscoe, D.A.; Frankham, R. Relationships between population size and loss of genetic diversity: Comparisons of experimental results with theoretical predictions. Conserv. Genet. 2000, 1, 33–43. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics, 1st ed.; Cambridge University Press: Cambridge, UK, 2002; ISBN 978-0-521-63985-9. [Google Scholar]
- WWF. Living Planet Report 2022—Building a Nature-Positive Society. WWF Living Planet Report. 2022. Available online: https://wwflpr.awsassets.panda.org/downloads/lpr_2022_full_report.pdf (accessed on 9 December 2023).
- Leigh, D.M.; Hendry, A.P.; Vázquez-Domínguez, E.; Friesen, V.L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 2019, 12, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Farhadinia, M.S.; Johnson, P.J.; Zimmermann, A.; McGowan, P.J.K.; Meijaard, E.; Stanley-Price, M.; Macdonald, D.W. Ex situ management as insurance against extinction of mammalian megafauna in an uncertain world. Conserv. Biol. 2020, 34, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Keulartz, J. Towards a Futureproof Zoo. Animals 2023, 13, 998. [Google Scholar] [CrossRef] [PubMed]
- Pizzutto, C.S.; Colbachini, H.; Jorge-Neto, P.N. One Conservation: The integrated view of biodiversity conservation. Anim. Reprod. 2021, 18, e20210024. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, J.R.; Fernandez, N.B.; Lamb, M.C.; Ivy, J.A.; Lacy, R.C.; DeWoody, J.A. The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Mol. Ecol. 2015, 24, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Witzenberger, K.A.; Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 2011, 20, 1843–1861. [Google Scholar] [CrossRef]
- Gooley, R.M.; Tamazian, G.; Castañeda-Rico, S.; Murphy, K.R.; Dobrynin, P.; Ferrie, G.M.; Haefele, H.; Maldonado, J.E.; Wildt, D.E.; Pukazhenthi, B.S.; et al. Comparison of genomic diversity and structure of sable antelope (Hippotragus niger) in zoos, conservations centers, and private ranches in North America. Evol. Appl. 2020, 13, 2143–2154. [Google Scholar] [CrossRef]
- Kubátová, A.; Štochlová, K.; Brandlová, K.; Jůnková Vymyslická, P.; Černá Bolfíková, B. Comparison of divergent breeding management strategies in two species of semi-captive eland in Senegal. Sci. Rep. 2020, 10, 8841. [Google Scholar] [CrossRef]
- Ogden, R.; Chuven, J.; Gilbert, T.; Hosking, C.; Gharbi, K.; Craig, M.; Al Dhaheri, S.S.; Senn, H. Benefits and pitfalls of captive conservation genetic management: Evaluating diversity in scimitar-horned oryx to support reintroduction planning. Biol. Conserv. 2020, 241, 108244. [Google Scholar] [CrossRef]
- Alvarez-Estape, M.; Fontsere, C.; Serres-Armero, A.; Kuderna, L.F.K.; Dobrynin, P.; Guidara, H.; Pukazhenthi, B.S.; Koepfli, K.; Marques-Bonet, T.; Moreno, E.; et al. Insights from the rescue and breeding management of Cuvier’s gazelle (Gazella cuvieri) through whole-genome sequencing. Evol. Appl. 2022, 15, 351–364. [Google Scholar] [CrossRef]
- Klimova, A.; Gutiérrez-Rivera, J.N.; Sánchez-Sotomayor, V.; Hoffman, J.I. The genetic consequences of captive breeding, environmental change and human exploitation in the endangered peninsular pronghorn. Sci. Rep. 2022, 12, 11253. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.A.; Lacy, R.C. Using molecular methods to improve the genetic management of captive breeding programs for threatened species. In Molecular Approaches in Natural Resource Conservation and Management, 1st ed.; DeWoody, J.A., Bickham, J.W., Michler, C.H., Nichols, K.M., Rhodes, G.E., Woeste, K.E., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 267–295. ISBN 978-0-521-51564-1. [Google Scholar]
- Norman, A.J.; Putnam, A.S.; Ivy, J.A. Use of molecular data in zoo and aquarium collection management: Benefits, challenges, and best practices. Zoo Biol. 2019, 38, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Zemanová, H.; Černá Bolfíková, B.; Brandlová, K.; Hejcmanová, P.; Hulva, P. Conservation genetics of the Western Derby eland (Taurotragus derbianus derbianus) in Senegal: Integration of pedigree and microsatellite data. Mamm. Biol. 2015, 80, 328–332. [Google Scholar] [CrossRef]
- Hogg, C.J.; Wright, B.; Morris, K.M.; Lee, A.V.; Ivy, J.A.; Grueber, C.E.; Belov, K. Founder relationships and conservation management: Empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Anim. Conserv. 2019, 22, 348–361. [Google Scholar] [CrossRef]
- Ito, H.; Ogden, R.; Langenhorst, T.; Inoue-Murayama, M. Contrasting Results from Molecular and Pedigree-Based Population Diversity Measures in Captive Zebra Highlight Challenges Facing Genetic Management of Zoo Populations. Zoo Biol. 2017, 36, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Oliehoek, P.A.; Bijma, P. Effects of pedigree errors on the efficiency of conservation decisions. Genet. Sel. Evol. 2009, 41, 9. [Google Scholar] [CrossRef] [PubMed]
- Fienieg, E.S.; Galbusera, P. The use and integration of molecular DNA information in conservation breeding programmes: A review. J. Zoo Aquar. Res. 2013, 1, 44–51. [Google Scholar] [CrossRef]
- Miller-Butterworth, C.M.; Vacco, K.; Russell, A.L.; Gaspard, J.C., III. Genetic Diversity and Relatedness among Captive African Painted Dogs in North America. Genes 2021, 12, 1463. [Google Scholar] [CrossRef] [PubMed]
- IUCN SSC Antelope Specialist Group. Tragelaphus imberbis. The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/22053/115165887 (accessed on 9 December 2023).
- IUCN SSC Antelope Specialist Group. Tragelaphus eurycerus ssp. isaaci. The IUCN Red List of Threatened Species. 2017. Available online: https://www.iucnredlist.org/species/22057/50197212 (accessed on 9 December 2023).
- Davis, N.; Humphreys, A. European/Mountain Bongo EEP (Tragelaphus eurycerus isaaci) Annual Studbook Report 2021; Chester Zoo: Chester, UK, 2022. [Google Scholar]
- Steck, B. Lesser Kudu Tragelaphus imberbis (Blyth, 1869) European Studbook 2021; Zoo Basel: Basel, Switzerland, 2022. [Google Scholar]
- Zoological Information Management Software. Species360. Available online: https://zims.species360.org (accessed on 31 December 2022).
- IUCN SSC Antelope Specialist Group. Tragelaphus spekii. The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/22050/115164901 (accessed on 9 December 2023).
- IUCN SSC Antelope Specialist Group. Tragelaphus oryx. The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/22055/115166135 (accessed on 9 December 2023).
- IUCN SSC Antelope Specialist Group. Tragelaphus angasii. The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/22052/115165681 (accessed on 9 December 2023).
- IUCN SSC Antelope Specialist Group. Tragelaphus strepsiceros. The IUCN Red List of Threatened Species. 2020. Available online: https://www.iucnredlist.org/species/22054/166487759 (accessed on 9 December 2023).
- Jebram, J. European Studbook for the Greater Kudu (Tragelaphus strepsiceros); ZOOM Erlebniswelt Gelsenkirchen: Gelsenkirchen, Germany, 2012. [Google Scholar]
- Nolasco, S. European Studbook for the Lowland Nyala Tragelaphus angasii (Gray, 1849); Lisbon Zoo: Lisbon, Portugal, 2019. [Google Scholar]
- Zwanzger, P. Identification of the Founders of the Present European Population of Western Sitatunga (Tragelaphus spekii gratus). 2003; unpublished manuscript. [Google Scholar]
- Zwanzger, P.; (Cologne Zoo, Cologne, Germany). Personal communication, 2023.
- Árnason, Ú.; Gullberg, A.; Johnsson, E.; Ledje, C. The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J. Mol. Evol. 1993, 37, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, B.T.; Siegismund, H.R.; Arctander, P. Population structure of African buffalo inferred from mtDNA sequences and microsatellite loci: High variation but low differentiation. Mol. Ecol. 1998, 7, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Belkhir, K.; Borsa, P.; Chikhi, L.; Raufaste, N.; Bonhomme, F. GENETIX 4.05, Logiciel sous Windows TM pour la Génétique des Populations; Laboratoire Génome, Populations, Interactions, Université de Montpellier II: Montpellier, France, 1994–2006; Available online: https://kimura.univ-montp2.fr/genetix/ (accessed on 29 January 2024).
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Templeton, A.R.; Crandall, K.A.; Sing, C.F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 1992, 132, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- O’Donoghue, P.; Gruber, K.; Bingaman Lackey, L.; Kitchener, A.C.; O’Donoghue, E.; Moodley, Y. Saving the mountain bongo (Tragelaphus eurycerus isaaci): Assessment of the genetic status of captive bongos as a source for genetic reinforcement of wild populations. J. Zoo Aquar. Res. 2017, 5, 123–130. [Google Scholar] [CrossRef]
- Sandri, T. Ecology and Conservation Genetics of the Endangered Mountain Bongo. Ph.D. Thesis, Manchester Metropolitan University, Manchester, UK, 2020. [Google Scholar]
- Bock, F.; Gallus, S.; Janke, A.; Hailer, F.; Steck, B.L.; Kumar, V.; Nilsson, M.A. Genomic Resources and Genetic Diversity of Captive Lesser Kudu (Tragelaphus imberbis). Zoo Biol. 2014, 33, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Ogden, R.; Ghazali, M.; Hopper, J.; Čulík, L.; King, T. Genetic assessments for antelope reintroduction planning in four European breeding programmes. J. Zoo Aquar. Res. 2018, 6, 79–84. [Google Scholar] [CrossRef]
- Combe, F.J.; Taylor-Cox, E.; Fox, G.; Sandri, T.; Davis, N.; Jones, M.J.; Cain, B.; Mallon, D.; Harris, W.E. Rapid isolation and characterization of microsatellites in the critically endangered mountain bongo (Tragelaphus eurycerus isaaci). J. Genet. 2018, 97, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Faria, P.J.; Kavembe, G.D.; Jung’a, J.O.; Kimwele, C.N.; Estes, L.D.; Reillo, P.R.; Mwangi, A.G.; Bruford, M.W. The use of non-invasive molecular techniques to confirm the presence of mountain bongo Tragelaphus eurycerus isaaci populations in Kenya and preliminary inference of their mitochondrial genetic variation. Conserv. Genet. 2011, 12, 745–751. [Google Scholar] [CrossRef]
- Pastor, T.; Garza, J.C.; Aguilar, A.; Tounta, E.; Androukaki, E. Genetic diversity and differentiation between the two remaining populations of the critically endangered Mediterranean monk seal. Anim. Conserv. 2007, 10, 461–469. [Google Scholar] [CrossRef]
- Johnson, J.A.; Tingay, R.E.; Culver, M.; Hailer, F.; Clarke, M.L.; Mindell, D.P. Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle. Mol. Ecol. 2009, 18, 54–63. [Google Scholar] [CrossRef]
- Chaves, P.B.; Alvarenga, C.S.; Possamai, C.B.; Dias, L.G.; Boubli, J.P.; Strier, K.B.; Mendes, S.L.; Fagundes, V. Genetic Diversity and Population History of a Critically Endangered Primate, the Northern Muriqui (Brachyteles hypoxanthus). PLoS ONE 2011, 6, e20722. [Google Scholar] [CrossRef]
- Dunn, J.C.; Shedden-González, A.; Cristóbal-Azkarate, J.; Cortés-Ortiz, L.; Rodríguez-Luna, E.; Knapp, L.A. Limited genetic diversity in the critically endangered Mexican howler monkey (Alouatta palliata mexicana) in the Selva Zoque, Mexico. Primates 2014, 55, 155–160. [Google Scholar] [CrossRef]
- Wang, W.; Qiao, Y.; Li, S.; Pan, W.; Yao, M. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus. Heredity 2017, 118, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, Y.; Zhao, J.; Yao, M. Low genetic diversity in a critically endangered primate: Shallow evolutionary history or recent population bottleneck? BMC Evol. Biol. 2019, 19, 134. [Google Scholar] [CrossRef]
- Melo-Carrillo, A.; Dunn, J.C.; Cortés-Ortiz, L. Low genetic diversity and limited genetic structure across the range of the critically endangered Mexican howler monkey (Alouatta palliata mexicana). Am. J. Primatol. 2020, 82, e23160. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.P.; Ghazi, M.G.; Katdare, S.; Dasgupta, N.; Mondol, S.; Gupta, S.K.; Hussain, S.A. Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Sci. Rep. 2021, 11, 5627. [Google Scholar] [CrossRef] [PubMed]
- Bishop, R.P.; Odongo, D.O.; Dolan, T.T.; Dolan, R.B.; Skilton, R.A.; Sayer, P.D. Theilerosis in Mountain Bongo Repatriated to Kenya: A Clinical and Molecular Investigation. J. Zoo Wildl. Med. 2019, 50, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Willis, K.; Willis, R.E. How Many Founders, How Large a Population? Zoo Biol. 2010, 29, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Ralls, K.; Ballou, J.D. Captive Breeding and Reintroduction. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2013; Volume 1, pp. 662–667. ISBN 978-0-12-384719-5. [Google Scholar]
- Lees, C.M.; Wilcken, J. Sustaining the Ark: The challenges faced by zoos in maintaining viable populations. Int. Zoo Yearb. 2009, 43, 6–18. [Google Scholar] [CrossRef]
- Hvilsom, C.; Frandsen, P.; Børsting, C.; Carlsen, F.; Sallé, B.; Simonsen, B.T.; Siegismund, H.R. Understanding geographic origins and history of admixture among chimpanzees in European zoos, with implications for future breeding programmes. Heredity 2013, 110, 586–593. [Google Scholar] [CrossRef]
- Schmidt, F.; Franke, F.A.; Shirley, M.H.; Vliet, K.A.; Villanova, V.L. The importance of genetic research in zoo breeding programmes for threatened species: The African dwarf crocodiles (genus Osteolaemus) as a case study. Int. Zoo Yearb. 2015, 49, 125–136. [Google Scholar] [CrossRef]
- Banes, G.L.; Galdikas, B.M.F.; Vigilant, L. Reintroduction of confiscated and displaced mammals risks outbreeding and introgression in natural populations, as evidenced by orang-utans of divergent subspecies. Sci. Rep. 2016, 6, 22026. [Google Scholar] [CrossRef] [PubMed]
- Vilà, C.; Sundqvist, A.; Flagstad, Ø.; Seddon, J.; Björnerfeldt, S.; Kojola, I.; Casulli, A.; Sand, H.; Wabakken, P.; Ellegren, H. Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc. R. Soc. Lond. B 2003, 270, 91–97. [Google Scholar] [CrossRef]
- Johnson, W.E.; Onorato, D.P.; Roelke, M.E.; Land, E.D.; Cunningham, M.; Belden, R.C.; McBride, R.; Jansen, D.; Lotz, M.; Shindle, D.; et al. Genetic Restoration of the Florida Panther. Science 2010, 329, 1641–1645. [Google Scholar] [CrossRef] [PubMed]
- Biebach, I.; Keller, L.F. Genetic variation depends more on admixture than number of founders in reintroduced Alpine ibex populations. Biol. Conserv. 2012, 147, 197–203. [Google Scholar] [CrossRef]
- White, L.C.; Moseby, K.E.; Thomson, V.A.; Donnellan, S.C.; Austin, J.J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 2018, 219, 1–11. [Google Scholar] [CrossRef]
- McLennan, E.A.; Grueber, C.E.; Wise, P.; Belov, K.; Hogg, C.J. Mixing genetically differentiated populations successfully boosts diversity of an endangered carnivore. Anim. Conserv. 2020, 23, 700–712. [Google Scholar] [CrossRef]
- Zecherle, L.J.; Nichols, H.J.; Bar-David, S.; Brown, R.P.; Hipperson, H.; Horsburgh, G.J.; Templeton, A.R. Subspecies hybridization as a potential conservation tool in species reintroductions. Evol. Appl. 2021, 14, 1216–1224. [Google Scholar] [CrossRef]
- Rick, K.; Ottewell, K.; Lohr, C.; Thavornkanlapachai, R.; Byrne, M.; Kennington, W.J. Population Genomics of Bettongia lesueur: Admixing Increases Genetic Diversity with no Evidence of Outbreeding Depression. Genes 2019, 10, 851. [Google Scholar] [CrossRef]
- Senn, H.; Banfield, L.; Wacher, T.; Newby, J.; Rabeil, T.; Kaden, J.; Kitchener, A.C.; Abaigar, T.; Silva, T.L.; Maunder, M.; et al. Splitting or Lumping? A Conservation Dilemma Exemplified by the Critically Endangered Dama Gazelle (Nanger dama). PLoS ONE 2014, 9, e98693. [Google Scholar] [CrossRef]
- Frankham, R. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 2015, 24, 2610–2618. [Google Scholar] [CrossRef]
- Waller, D.M. Genetic rescue: A safe or risky bet? Mol. Ecol. 2015, 24, 2595–2597. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, A.R.; Fitzpatrick, S.W.; Funk, W.C.; Tallmon, D.A. Genetic rescue to the rescue. Trends Ecol. Evol. 2015, 30, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Ralls, K.; Ballou, J.D.; Dudash, M.R.; Eldridge, M.D.B.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P.; Frankham, R. Call for a Paradigm Shift in the Genetic Management of Fragmented Populations. Conserv. Lett. 2018, 11, e12412. [Google Scholar] [CrossRef]
- Bishop, M.D.; Kappes, S.M.; Keele, J.W.; Stone, R.T.; Sunden, S.L.F.; Hawkins, G.A.; Solinas Toldo, S.; Fries, R.; Grosz, M.D.; Yoo, J.; et al. A Genetic Linkage Map for Cattle. Genetics 1994, 136, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Flynn, P. Characterisation of Rare Irish Cattle Breeds by Comparative Molecular Studies using Nuclear and Mitochondrial DNA Markers. Master’s Thesis, University College Dublin, Dublin, Ireland, 2009. [Google Scholar]
- Baylor College of Medicine. The Bovine Genome Project. Human Genome Sequencing Centre. 2006. Available online: https://www.hgsc.bcm.edu/other-mammals/bovine-genome-project (accessed on 12 September 2023).
- Solinas Toldo, S.; Fries, R.; Steffen, P.; Neibergs, H.L.; Barendse, W.; Womack, J.E.; Hetzel, D.J.; Stranzinger, G. Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes. Mamm. Genome 1993, 4, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Steffen, P.; Eggen, A.; Dietz, A.B.; Womack, J.E.; Stranzinger, G.; Fries, R. Isolation and mapping of polymorphic microsatellites in cattle. Anim. Genet. 1993, 24, 121–124. [Google Scholar] [CrossRef]
- Vaiman, D.; Osta, R.; Mercier, D.; Grohs, C.; Levéziel, H. Characterization of five new bovine dinucleotide repeats. Anim. Genet. 1992, 23, 537–541. [Google Scholar] [CrossRef]
- Moore, S.S.; Byrne, K.; Berger, K.T.; Barendse, W.; McCarthy, F.; Womack, J.E.; Hetzel, D.J.S. Characterization of 65 bovine microsatellites. Mamm. Genome 1994, 5, 84–90. [Google Scholar] [CrossRef]
- Vaiman, D.; Imam-Ghali, M.; Moazami-Goudarzi, K.; Guérin, G.; Grohs, C.; Levéziel, H.; Saïdi-Mehtar, N. Conservation of a syntenic group of microsatellite loci between cattle and sheep. Mamm. Genome 1994, 5, 310–314. [Google Scholar] [CrossRef]
- FAO. Molecular Genetic Characterization of Animal Genetic Resources. FAO Animal Production and Health Guidelines. 2011. Available online: https://www.fao.org/3/i2413e/i2413e00.pdf (accessed on 9 December 2023).
- Hassanin, A.; Delsuc, F.; Ropiquet, A.; Hammer, C.; Jansen van Vuuren, B.; Matthee, C.; Ruiz-Garcia, M.; Catzeflis, F.; Areskoug, V.; Nguyen, T.T.; et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biol. 2012, 335, 32–50. [Google Scholar] [CrossRef]
- Grobler, J.P.; Pretorius, D.M.; Botha, K.; Kotze, A.; Hallerman, E.M.; Jansen van Vuuren, B. An exploratory analysis of geographic genetic variation in southern African nyala (Tragelaphus angasii). Mamm. Biol. 2005, 70, 291–299. [Google Scholar] [CrossRef]
- Ntie, S.; Johnston, A.R.; Mickala, P.; Bowkett, A.E.; Jansen van Vuuren, B.; Colyn, M.; Telfer, P.; Maisels, F.; Hymas, O.; Rouyer, R.L.; et al. A molecular diagnostic for identifying central African forest artiodactyls from faecal pellets. Anim. Conserv. 2010, 13, 80–93. [Google Scholar] [CrossRef]
- Hassanin, A.; Houck, M.L.; Tshikung, D.; Kadjo, B.; Davis, H.; Ropiquet, A. Multi-locus phylogeny of the tribe Tragelaphini (Mammalia, Bovidae) and species delimitation in bushbuck: Evidence for chromosomal speciation mediated by interspecific hybridization. Mol. Phytogenet. Evol. 2018, 129, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Nersting, L.G.; Arctander, P. Phylogeography and conservation of impala and greater kudu. Mol. Ecol. 2001, 10, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.; Coetzer, W.G.; Grobler, J.P. A phylogeographic assessment of the greater kudu (Tragelaphus strepsiceros) across South Africa. Conserv. Genet. 2022, 23, 919–933. [Google Scholar] [CrossRef]
- Lorenzen, E.D.; Masembe, C.; Arctander, P.; Siegismund, H.R. A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: Insights from mtDNA and the common eland antelope. J. Biogeogr. 2010, 37, 571–581. [Google Scholar] [CrossRef]
Mountain Bongo | Nyala | Sitatunga | Lesser Kudu | Greater Kudu | Common Eland | |
---|---|---|---|---|---|---|
number of captive animals 1 | 174 | 337 | 459 | 82 | 226 | 626 |
% of pedigree known 2 | 97% | 26% | ~45% | 97.6% | 26.4% | unknown |
number of founders 3 | 33 | 13 | 25 | 24 | 24–25 | unknown |
IUCN status 4 | CR | LC | LC | NT | LC | LC |
studbook | yes | yes | no | yes | yes | no |
n1 | Na | Ne | Ho | He | Fis (95% CI) | n2 | Nh | Hd | π | |
---|---|---|---|---|---|---|---|---|---|---|
Mountain bongo | 10 | 2.10 | 1.48 | 0.164 | 0.208 * | 0.260 (0.059 to 0.441) | 8 | 1 | 0.0000 | 0.0000 |
Nyala | 63 | 3.00 | 1.50 | 0.363 | 0.322 | −0.119 (−0.189 to −0.063) | 9 | 4 | 0.7500 | 0.0087 |
Sitatunga | 24 | 4.80 | 2.89 | 0.612 | 0.618 | 0.034 (−0.111 to 0.118) | 13 | 5 | 0.8077 | 0.0153 |
Lesser kudu | 38 | 4.40 | 2.99 | 0.603 | 0.580 | −0.026 (−0.120 to 0.046) | 8 | 4 | 0.6429 | 0.0037 |
Greater kudu | 17 | 5.10 | 3.28 | 0.676 | 0.635 | −0.033 (−0.176 to 0.027) | 17 | 9 | 0.8529 | 0.0183 |
Common eland | 27 | 7.70 | 4.80 | 0.842 | 0.786 * | −0.051 (−0.127 to −0.018) | 18 | 10 | 0.8301 | 0.0160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetkovská, E.; Brandlová, K.; Ogden, R.; Černá Bolfíková, B. Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes. Biology 2024, 13, 104. https://doi.org/10.3390/biology13020104
Cetkovská E, Brandlová K, Ogden R, Černá Bolfíková B. Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes. Biology. 2024; 13(2):104. https://doi.org/10.3390/biology13020104
Chicago/Turabian StyleCetkovská, Ema, Karolína Brandlová, Rob Ogden, and Barbora Černá Bolfíková. 2024. "Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes" Biology 13, no. 2: 104. https://doi.org/10.3390/biology13020104
APA StyleCetkovská, E., Brandlová, K., Ogden, R., & Černá Bolfíková, B. (2024). Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes. Biology, 13(2), 104. https://doi.org/10.3390/biology13020104