Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Architecture Perception: Role of Parahippocampal Place Area (PPA) and Anterior Cingulate Cortex (ACC)
2.1. How the Brain Perceives Our Surroundings: From Ambiguity to a Clear Image
2.2. Role of Parahippocampal Place Area (PPA) and Anterior Cingulate Cortex (ACC)
3. Spatial Navigation, Wayfinding, and the Hippocampus
3.1. Place Neurons: Spatial Navigation in the Built Environment
3.2. Wayfinding as a Design Tool
4. The Built Environment and Embodied Simulation
4.1. Mirror Neurons: Feeling Empathetic toward Buildings and Others
4.2. Emotional and Behavioral Responses to Environment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eberhard, J.P. Applying Neuroscience to Architecture. Neuron 2009, 62, 753–756. [Google Scholar] [CrossRef]
- Pallasmaa, J. Body, Mind, and Imagination: The Mental Essence of Architecture. In Mind in Architecture: Neuroscience, Embodiment, and the Future of Design; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Merleu-Ponty, M. The Visible and the Invisible: Followed by Working Notes; Northwestern University Press: Evanston, IL, USA, 1968. [Google Scholar]
- Thompson, E. Mind in Life: Biology, Phenomenology, and the Sciences of Mind; Belknap Press/Harvard University Press: Cambridge, MA, USA, 2007; p. 543. [Google Scholar]
- De Paiva, A.; Jedon, R. Short- and long-term effects of architecture on the brain: Toward theoretical formalization. Front. Arch. Res. 2019, 8, 564–571. [Google Scholar] [CrossRef]
- Neuroscience for Architecture: How Building Design Can Influence Behaviors and Performance|Andrea Paiva—Academia.edu. Available online: https://www.academia.edu/37516133/Neuroscience_for_Architecture_How_Building_Design_Can_Influence_Behaviors_and_Performance (accessed on 18 September 2023).
- Castilla, N.; Higuera-Trujillo, J.L.; Llinares, C. The effects of illuminance on students′ memory. A neuroarchitecture study. J. Affect. Disord. 2023, 228, 109833. [Google Scholar] [CrossRef]
- Maier, A. Visual Perception: Human Brain Cells Cause a Change of View. Curr. Biol. 2020, 30, R939–R941. [Google Scholar] [CrossRef] [PubMed]
- The Eye and Vision: An Overview|Request. Available online: https://www.researchgate.net/publication/355308981_The_eye_and_vision_An_overview (accessed on 18 September 2023).
- Smythies, J. How the brain decides what we see. J. R. Soc. Med. 2005, 98, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Shimojo, S.; Paradiso, M.; Fujita, I. What visual perception tells us about mind and brain. Proc. Natl. Acad. Sci. USA 2001, 98, 12340–12341. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S.; Rakic, P. Preface: Cerebral Cortex Has Come of Age. Cereb. Cortex 1991, 1, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.F.; Paradiso, M.A. Feature-specific effects of selective visual attention. Vis. Res. 1995, 35, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Chastain, G.; Burnham, C.A. The first glimpse determines the perception of an ambiguous figure. Percept. Psychophys. 1975, 17, 221–224. [Google Scholar] [CrossRef]
- The Senses: Design Beyond Vision|Cooper Hewitt, Smithsonian Design Museum. Available online: https://www.cooperhewitt.org/publications/the-senses-design-beyond-vision/ (accessed on 17 December 2023).
- O’Keefe, J.; Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971, 34, 171–175. [Google Scholar] [CrossRef]
- Epstein, R.A.; Ward, E.J. How Reliable Are Visual Context Effects in the Parahippocampal Place Area? Cereb. Cortex 2010, 20, 294–303. [Google Scholar] [CrossRef]
- Epstein, R.; Harris, A.; Stanley, D.; Kanwisher, N. The Parahippocampal Place Area: Recognition, Navigation, or Encoding? Neuron 1999, 23, 115–125. [Google Scholar] [CrossRef]
- Marchette, S.A.; Vass, L.K.; Ryan, J.; Epstein, R.A. Outside Looking In: Landmark Generalization in the Human Navigational System. J. Neurosci. 2015, 35, 14896–14908. [Google Scholar] [CrossRef]
- Epstein, R.; Graham, K.S.; Downing, P.E. Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex. Neuron 2003, 37, 865–876. [Google Scholar] [CrossRef]
- Aguirre, G.K.; D’Esposito, M. Topographical disorientation: A synthesis and taxonomy. Brain 1999, 122, 1613–1628. [Google Scholar] [CrossRef] [PubMed]
- Janzen, G.; Van Turennout, M. Selective neural representation of objects relevant for navigation. Nature Neurosci. 2004, 7, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Chaisilprungraung, T.; Park, S. Scene’ From Inside: The Representation of Observer’s Space in High-Level Visual Cortex. Neuropsychologia 2021, 161, 108010. [Google Scholar] [CrossRef]
- Park, S.; Chun, M.M. Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. NeuroImage 2009, 47, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Epstein, R.A.; Parker, W.E.; Feiler, A.M. Where Am I Now? Distinct Roles for Parahippocampal and Retrosplenial Cortices in Place Recognition. J. Neurosci. 2007, 27, 6141–6149. [Google Scholar] [CrossRef]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef]
- Epstein, R.A.; Vass, L.K. Neural systems for landmark-based wayfinding in humans. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120533. [Google Scholar] [CrossRef]
- Hartley, T.; Maguire, E.A.; Spiers, H.J.; Burgess, N. The Well-Worn Route and the Path Less Traveled: Distinct Neural Bases of Route Following and Wayfinding in Humans. Neuron 2003, 37, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.-B.; Rowland, D.C.; Moser, E.I. Place Cells, Grid Cells, and Memory. Cold Spring Harb. Perspect. Biol. 2015, 7, a021808. [Google Scholar] [CrossRef]
- Arbib, M.A. Brains, machines and buildings: Towards a neuromorphic architecture. Intell. Build. Int. 2012, 4, 147–168. [Google Scholar] [CrossRef]
- Dickerson, B.C.; Eichenbaum, H. The Episodic Memory System: Neurocircuitry and Disorders. Neuropsychopharmacology 2009, 35, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Scoville, W.B.; Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 1957, 20, 11–21. [Google Scholar] [CrossRef]
- Knudsen, E.B.; Wallis, J.D. Hippocampal neurons construct a map of an abstract value space. Cell 2021, 184, 4640–4650.e10. [Google Scholar] [CrossRef]
- Markus, E.; Qin, Y.; Leonard, B.; Skaggs, W.; McNaughton, B.; Barnes, C. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 1995, 15, 7079–7094. [Google Scholar] [CrossRef]
- Jeffery, K.J.; Donnett, J.G.; Burgess, N.; O’Keefe, J.M. Directional control of hippocampal place fields. Exp. Brain Res. 1997, 117, 131–142. [Google Scholar] [CrossRef]
- O’Keefe, J.; Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature 1996, 381, 425–428. [Google Scholar] [CrossRef]
- Golledge, R.G. Place recognition and wayfinding: Making sense of space. Geoforum 1992, 23, 199–214. [Google Scholar] [CrossRef]
- Kuliga, S.; Berwig, M.; Roes, M. Wayfinding in People with Alzheimer’s Disease: Perspective Taking and Architectural Cognition—A Vision Paper on Future Dementia Care Research Opportunities. Sustainability 2021, 13, 1084. [Google Scholar] [CrossRef]
- Sestito, M.; Raballo, A.; Stanghellini, G.; Gallese, V. Editorial: Embodying the Self: Neurophysiological Perspectives on the Psychopathology of Anomalous Bodily Experiences. Front. Hum. Neurosci. 2017, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- Graziano, M.S. A System of Multimodal Areas in the Primate Brain. Neuron 2001, 29, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Sinigaglia, C.; Anderson, F. Mirrors in the Brain—How Our Minds Share Actions and Emotions; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Bonini, L.; Maranesi, M.; Livi, A.; Fogassi, L.; Rizzolatti, G. Space-Dependent Representation of Objects and Other’s Action in Monkey Ventral Premotor Grasping Neurons. J. Neurosci. 2014, 34, 4108–4119. [Google Scholar] [CrossRef] [PubMed]
- Ebisch, S.J.H.; Perrucci, M.G.; Ferretti, A.; Del Gratta, C.; Romani, G.L.; Gallese, V. The Sense of Touch: Embodied Simulation in a Visuotactile Mirroring Mechanism for Observed Animate or Inanimate Touch. J. Cogn. Neurosci. 2008, 20, 1611–1623. [Google Scholar] [CrossRef] [PubMed]
- Henrich Wölfflin, Woelfflin, Prolegomena to A Psychology of Architecture (German Text and English Translation). 2017. Available online: https://archive.org/details/woelfflin-prolegomena-to-a-psychology-of-architecture-german-text-and-english-translation (accessed on 17 December 2023).
- Higuera-Trujillo, J.L.; Llinares, C.; Macagno, E. The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors 2021, 21, 2193. [Google Scholar] [CrossRef] [PubMed]
- Bogaert, B. Moving Toward Person-Centered Care: Valuing Emotions in Hospital Design and Architecture. Health. Environ. Res. Des. J. 2021, 15, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Khaleghimoghaddam, N.; Bala, H.A.; Özmen, G.; Öztürk, Ş. Neuroscience and architecture: What does the brain tell to an emotional experience of architecture via a functional MR study? Front. Arch. Res. 2022, 11, 877–890. [Google Scholar] [CrossRef]
- Abdelmoula, N.B.; Abdelmoula, E. Architecture and mental health wellbeing versus architecture therapy for mental disorders. Eur. Psychiatry 2023, 66, S990–S991. [Google Scholar] [CrossRef]
- Pallasmaa, J.; Mallgrave, H.F.; Robinson, S.; Gallese, V. Architecture and Empathy; Tapio Wirkkala Rut Bryk Foundation: Espoo, Finland, 2015. [Google Scholar]
- Leather, P.; Pyrgas, M.; Beale, D.; Lawrence, C. Windows in the Workplace: Sunlight, view, and occupational stress. Environ. Behav. 1998, 30, 739–762. [Google Scholar] [CrossRef]
- Aries, M.B.; Veitch, J.A.; Newsham, G.R. Windows, view, and office characteristics predict physical and psychological discomfort. J. Environ. Psychol. 2010, 30, 533–541. [Google Scholar] [CrossRef]
- Curtis, S.; Gesler, W.; Priebe, S.; Francis, S. New spaces of inpatient care for people with mental illness: A complex ‘rebirth’ of the clinic? Health Place 2009, 15, 340–348. [Google Scholar] [CrossRef]
- Bautrant, T.; Grino, M.; Peloso, C.; Schiettecatte, F.; Planelles, M.; Oliver, C.; Franqui, C. Impact of Environmental Modifications to Enhance Day-Night Orientation on Behavior of Nursing Home Residents with Dementia. J. Am. Med. Dir. Assoc. 2019, 20, 377–381. [Google Scholar] [CrossRef]
- Fan, E.P.; Abbott, S.M.; Reid, K.J.; Zee, P.C.; Maas, M.B. Abnormal environmental light exposure in the intensive care environment. J. Crit. Care 2017, 40, 11–14. [Google Scholar] [CrossRef]
- Durrington, H.J.; Clark, R.; Greer, R.; Martial, F.P.; Blaikley, J.; Dark, P.; Lucas, R.J.; Ray, D.W. ‘In a dark place, we find ourselves’: Light intensity in critical care units. Intensiv. Care Med. Exp. 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Engwall, M.; Fridh, I.; Johansson, L.; Bergbom, I.; Lindahl, B. Lighting, sleep and circadian rhythm: An intervention study in the intensive care unit. Intensiv. Crit. Care Nurs. 2015, 31, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Youn, C.S.; Nam, Y.J.; Hong, S.; Cho, Y.H.; Son, S.J.; Hong, C.H.; Roh, H.W. Neuroarchitecture from the Perspective of Circadian Rhythm, Physical, and Mental Health. Chrono Med. 2023, 5, 3–6. [Google Scholar] [CrossRef]
- Bower, I.S.; Clark, G.M.; Tucker, R.; Hill, A.T.; Lum, J.A.; Mortimer, M.A.; Enticott, P.G. Built environment color modulates autonomic and EEG indices of emotional response. Psychophysiology 2022, 59, e14121. [Google Scholar] [CrossRef]
- Mitchell Beazley|Independent Publishers Group. Available online: https://www.ipgbook.com/mitchell-beazley-publisher-MBZ.php (accessed on 18 March 2024).
- Gupta, A. Architecture and Human Behavior Does Design Affect Our Senses. Available online: https://www.academia.edu/39726567/Architecture_and_Human_Behavior_Does_Design_Affect_Our_Senses (accessed on 17 March 2024).
- Strong-Wilson, T.; Ellis, J. Children and Place: Reggio Emilia’s Environment as Third Teacher. Theory Into Pr. 2007, 46, 40–47. [Google Scholar] [CrossRef]
- Cadwell, L.B. Bringing Learning to Life A Reggio Approach to Early Childhood Education; New York Teachers College Press: New York, NY, USA, 2002; Available online: https://www.scirp.org/reference/referencespapers?referenceid=1500495 (accessed on 18 March 2024).
- Scoditti, S.; Clavica, F.; Caroli, M. Review of architecture and interior designs in Italian kindergartens and their relationship with motor development. Pediatr. Obes. 2011, 6, 16–21. [Google Scholar] [CrossRef]
- Jin, S.; Peng, L. Classroom perception in higher education: The impact of spatial factors on student satisfaction in lecture versus active learning classrooms. Front. Psychol. 2022, 13, 941285. [Google Scholar] [CrossRef] [PubMed]
- Gerhart-Hines, Z.; Lazar, M.A. Circadian Metabolism in the Light of Evolution. Endocr. Rev. 2015, 36, 289–304. [Google Scholar] [CrossRef]
- Bhadra, U.; Thakkar, N.; Das, P.; Bhadra, M.P. Evolution of circadian rhythms: From bacteria to human. Sleep Med. 2017, 35, 49–61. [Google Scholar] [CrossRef]
- Sanders, D.; Frago, E.; Kehoe, R.; Patterson, C.; Gaston, K.J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 2020, 5, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Benton, M.L.; Abraham, A.; LaBella, A.L.; Abbot, P.; Rokas, A.; Capra, J.A. The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 2021, 22, 269–283. [Google Scholar] [CrossRef]
- Haim, A.; Zubidat, A.E. Artificial light at night: Melatonin as a mediator between the environment and epigenome. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140121. [Google Scholar] [CrossRef]
- Gooley, J.J.; Chamberlain, K.; Smith, K.A.; Khalsa, S.B.S.; Rajaratnam, S.M.W.; Van Reen, E.; Zeitzer, J.M.; Czeisler, C.A.; Lockley, S.W. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J. Clin. Endocrinol. Metab. 2011, 96, E463–E472. [Google Scholar] [CrossRef] [PubMed]
- Paksarian, D.; Rudolph, K.E.; Stapp, E.K.; Dunster, G.P.; He, J.; Mennitt, D.; Hattar, S.; Casey, J.A.; James, P.; Merikangas, K.R. Association of Outdoor Artificial Light at Night with Mental Disorders and Sleep Patterns Among US Adolescents. JAMA Psychiatry 2020, 77, 1266–1275. [Google Scholar] [CrossRef]
- Cho, Y.; Ryu, S.-H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chrono Int. 2015, 32, 1294–1310. [Google Scholar] [CrossRef]
- Tabikh, M.; Chahla, C.; Okdeh, N.; Kovacic, H.; Sabatier, J.-M.; Fajloun, Z. Parkinson disease: Protective role and function of neuropeptides. Peptides 2021, 151, 170713. [Google Scholar] [CrossRef] [PubMed]
- Jaroudi, W.; Garami, J.; Garrido, S.; Hornberger, M.; Keri, S.; Moustafa, A.A. Factors underlying cognitive decline in old age and Alzheimer’s disease: The role of the hippocampus. Prog. Neurobiol. 2017, 28, 705–714. [Google Scholar] [CrossRef]
- Shan, W.; Xiu, C.; Ji, R. Creating a Healthy Environment for Elderly People in Urban Public Activity Space. Int. J. Environ. Res. Public Health 2020, 17, 7301. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Markevych, I.; Tilov, B.; Arabadzhiev, Z.; Stoyanov, D.; Gatseva, P.; Dimitrova, D.D. Lower Noise Annoyance Associated with GIS-Derived Greenspace: Pathways through Perceived Greenspace and Residential Noise. Int. J. Environ. Res. Public Health 2018, 15, 1533. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, M.; Chen, R.; Li, Z. Correlation Analysis between Noise Reduction Function and Biological Structure of Acer truncatum Crown; IOP Publishing: Bristol, UK, 2023; Available online: https://iopscience.iop.org/article/10.1088/1755-1315/1171/1/012040 (accessed on 17 December 2023).
- Passchier-Vermeer, W.; Passchier, W.F. Noise Exposure and Public Health. Environ. Health Perspect. 2000, 108, 123. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, S.; Okdeh, N.; Roufayel, R.; Kovacic, H.; Sabatier, J.-M.; Fajloun, Z.; Abi Khattar, Z. Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. Biology 2024, 13, 220. https://doi.org/10.3390/biology13040220
Abbas S, Okdeh N, Roufayel R, Kovacic H, Sabatier J-M, Fajloun Z, Abi Khattar Z. Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. Biology. 2024; 13(4):220. https://doi.org/10.3390/biology13040220
Chicago/Turabian StyleAbbas, Sarah, Nathalie Okdeh, Rabih Roufayel, Hervé Kovacic, Jean-Marc Sabatier, Ziad Fajloun, and Ziad Abi Khattar. 2024. "Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain" Biology 13, no. 4: 220. https://doi.org/10.3390/biology13040220
APA StyleAbbas, S., Okdeh, N., Roufayel, R., Kovacic, H., Sabatier, J. -M., Fajloun, Z., & Abi Khattar, Z. (2024). Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. Biology, 13(4), 220. https://doi.org/10.3390/biology13040220