Reversible Contraception in Males: An Obtainable Target?
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Male Reproductive Physiology and Spermatogenesis
1.2. Male Contraception in Humans
2. Surgical (Irreversible) Contraception
3. Nonsurgical Contraception
4. Nonhormonal Contraception
5. Male Hormonal Contraception
6. Methods of Contraception in Veterinary Medicine
7. Veterinary Surgical Contraception
8. Veterinary Nonsurgical Contraception
9. Veterinary Hormonal Contraception
10. Veterinary Immunocontraception
11. Veterinary Nonhormonal Contraception
12. A New Frontier for Contraceptives of the Future: Experimental Nonhormonal Contraceptives
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daniels, K.; Mosher, W.D. Contraceptive Methods Women Have ever Used: United States, 1982–2010; National Center for Health Statistics: Hyattsville, MD, USA, 2013; pp. 1–15. [Google Scholar]
- Martin, C.W.; Anderson, R.A.; Cheng, L.; Ho, P.C.; Van derSpuy, Z.; Smith, K.B.; Glasier, A.F.; Everington, D.; Baird, D.T. Potential impact of hormonal male contraception: Cross-cultural implications for development of novel preparations. Hum. Reprod. 2000, 15, 637–645. [Google Scholar] [CrossRef]
- Weston, G.C.; Schlipalius, M.L.; Vollenhoven, B.J. Migrant fathers and their attitudes to potential male hormonal contraceptives. Contraception 2002, 66, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Amouroux, M.; Mieusset, R.; Desbriere, R.; Opinel, P.; Karsenty, G.; Paci, M.; Fernandes, S.; Courbiere, B.; Perrin, J. Are men ready to use thermal male contraception? Acceptability in two French populations: New fathers and new providers. PLoS ONE 2018, 13, e0195824. [Google Scholar] [CrossRef] [PubMed]
- Glasier, A.F.; Anakwe, R.; Everington, D.; Martin, C.W.; van der Spuy, Z.; Cheng, L.; Ho, P.C.; Anderson, R.A. Would women trust their partners to use a male pill? Hum. Reprod. 2000, 15, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M. Contraceptive effectiveness of a polyurethane condom and a latex condom: A randomized controlled trial. Obstet. Gynecol. 2003, 101, 539–547. [Google Scholar] [CrossRef]
- Killick, S.R.; Leary, C.; Trussell, J.; Guthrie, K.A. Sperm content of pre-ejaculatory fluid. Hum. Fertil. 2011, 14, 48–52. [Google Scholar] [CrossRef]
- Kovavisarach, E.; Lorthanawanich, S.; Muangsamran, P. Presence of Sperm in Pre-Ejaculatory Fluid of Healthy Males. J. Med. Assoc. Thai 2016, 99 (Suppl. S2), S38–S41. [Google Scholar] [PubMed]
- Nguyen, B.T.; Jacobsohn, T.L. Men’s willingness to use novel male contraception is linked to gender-equitable attitudes: Results from an exploratory online survey. Contraception 2023, 123, 110001. [Google Scholar] [CrossRef] [PubMed]
- Moresco, A.; Feltrer-Rambaud, Y.; Wolfman, D.; Agnew, D.W. Reproductive one health in primates. Am. J. Primatol. 2022, 84, e23325. [Google Scholar] [CrossRef]
- Promoting the science of One Health. Nat. Commun. 2023, 14, 4735. [CrossRef]
- Murdoch, F.E.; Goldberg, E. Male contraception: Another holy grail. Bioorg. Med. Chem. Lett. 2014, 24, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Qin, W.; Zheng, H.; Schegg, K.; Han, L.; Liu, X.; Wang, Y.; Wang, Z.; McSwiggin, H.; Peng, H.; et al. Triptonide is a reversible non-hormonal male contraceptive agent in mice and non-human primates. Nat. Commun. 2021, 12, 1253. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B.; Dilower, I.; Marsh, C.A.; Wolfe, M.W.; Masumi, S.; Upadhyaya, S.; Rumi, M.A.K. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022, 11, 1146. [Google Scholar] [CrossRef] [PubMed]
- De Maddalena, C.; Vodo, S.; Petroni, A.; Aloisi, A.M. Impact of testosterone on body fat composition. J. Cell. Physiol. 2012, 227, 3744–3748. [Google Scholar] [CrossRef] [PubMed]
- Nieschlag, E. Clinical trials in male hormonal contraception. Contraception 2010, 82, 457–470. [Google Scholar] [CrossRef]
- Nunan, E.; Wright, C.L.; Semola, O.A.; Subramanian, M.; Balasubramanian, P.; Lovern, P.C.; Fancher, I.S.; Butcher, J.T. Obesity as a premature aging phenotype—implications for sarcopenic obesity. GeroScience 2022, 44, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Zeitler, M.; Rayala, B. Outpatient Vasectomy: Safe, Reliable, and Cost-effective. Prim. Care 2021, 48, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Bellows, B.K.; Tak, C.R.; Sanders, J.N.; Turok, D.K.; Schwarz, E.B. Cost-effectiveness of emergency contraception options over 1 year. Am. J. Obstet. Gynecol. 2018, 218, 508.e1–508.e9. [Google Scholar] [CrossRef] [PubMed]
- Farah, D.; De Moraes Andrade, T.R.; Sansone, D.; Batista Castello Girão, M.J.; Fonseca, M.C.M. A Cost Effectiveness Model of Long-Acting Reversible Contraceptive Methods in the Brazilian National Health System. Am. J. Prev. Med. 2022, 62, 114–121. [Google Scholar] [CrossRef]
- Walsh, T.L.; Frezieres, R.G.; Peacock, K.; Nelson, A.L.; Clark, V.A.; Bernstein, L. Evaluation of the efficacy of a nonlatex condom: Results from a randomized, controlled clinical trial. Perspect. Sex. Reprod. Health 2003, 35, 79–86. [Google Scholar]
- D’Anna, L.H.; Korosteleva, O.; Warner, L.; Douglas, J.; Paul, S.; Metcalf, C.; McIlvaine, E.; Malotte, C.K. Factors Associated With Condom Use Problems During Vaginal Sex With Main and Non-Main Partners. Sex. Transm. Dis. 2012, 39, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, A.; Vaughan, B.; Kost, K.; Bankole, A.; Finer, L.; Singh, S.; Trussell, J. Contraceptive Failure in the United States: Estimates from the 2006–2010 National Survey of Family Growth. Perspect Sex. Reprod. 2017, 49, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Daniels, K.; Daugherty, J.; Jones, J.; Mosher, W. Current Contraceptive Use and Variation by Selected Characteristics among Women Aged 15–44: United States, 2011–2013; National Center for Health Statistics: Hyattsville, MD, USA, 2015; pp. 1–14. [Google Scholar]
- World Health Organization Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of testosterone-induced azoospermia in normal men. Lancet 1990, 336, 955–959. [Google Scholar] [CrossRef]
- Bagatell, C.J.; Matsumoto, A.M.; Christensen, R.B.; Rivier, J.E.; Bremner, W.J. Comparison of a gonadotropin releasing-hormone antagonist plus testosterone (T) versus T alone as potential male contraceptive regimens. J. Clin. Endocrinol. Metab. 1993, 77, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Page, S.T.; Amory, J.K.; Anawalt, B.D.; Irwig, M.S.; Brockenbrough, A.T.; Matsumoto, A.M.; Bremner, W.J. Testosterone Gel Combined with Depomedroxyprogesterone Acetate Is an Effective Male Hormonal Contraceptive Regimen and Is Not Enhanced by the Addition of a GnRH Antagonist. J. Clin. Endocrinol. Metab. 2006, 91, 4374–4380. [Google Scholar] [CrossRef] [PubMed]
- LaMorte, A.; Kumar, N.; Wayne Bardin, C.; Sundaram, K. Aromatization of 7α-Methyl-19-nortestosterone by human placental microsomes in vitro. J. Steroid Biochem. Mol. Biol. 1994, 48, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Attardi, B.J.; Marck, B.T.; Matsumoto, A.M.; Koduri, S.; Hild, S.A. Long-Term Effects of Dimethandrolone 17β-Undecanoate and 11β-Methyl-19-Nortestosterone 17β-Dodecylcarbonate on Body Composition, Bone Mineral Density, Serum Gonadotropins, and Androgenic/Anabolic Activity in Castrated Male Rats. J. Androl. 2011, 32, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Sitruk-Ware, R.; Nath, A. The use of newer progestins for contraception. Contraception 2010, 82, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Anawalt, B.D.; Roth, M.Y.; Ceponis, J.; Surampudi, V.; Amory, J.K.; Swerdloff, R.S.; Liu, P.Y.; Dart, C.; Bremner, W.J.; Sitruk-Ware, R.; et al. Combined nestorone–testosterone gel suppresses serum gonadotropins to concentrations associated with effective hormonal contraception in men. Andrology 2019, 7, 878–887. [Google Scholar] [CrossRef]
- Tanyapanyachon, P.; Dana, P.; Thumsongsiri, N.; Chonniyom, W.; Saengkrit, N. Interrupting the blood-testis barrier with a flutamide-loaded nanostructured lipid carrier: A novel nonsurgical contraceptive approach for male animals. Theriogenology 2023, 206, 96–105. [Google Scholar] [CrossRef]
- Wang, C.; Festin, M.P.R.; Swerdloff, R.S. Male Hormonal Contraception: Where Are We Now? Curr. Obstet. Gynecol. Rep. 2016, 5, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Thirumalai, A.; Page, S.T. Male Hormonal Contraception. Annu. Rev. Med. 2020, 71, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Amory, J.K. Development of Novel Male Contraceptives. Clin. Transl. Sci. 2020, 13, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Sharlip, I.D.; Belker, A.M.; Honig, S.; Labrecque, M.; Marmar, J.L.; Ross, L.S.; Sandlow, J.I.; Sokal, D.C. Vasectomy: AUA Guideline. J. Urol. 2012, 188, 2482–2491. [Google Scholar] [CrossRef] [PubMed]
- Waites; Wang; Griffin Gossypol: Reasons for its failure to be accepted as a safe, reversible male antifertility drug. Int. J. Androl. 1998, 21, 8–12. [CrossRef]
- Service, C.A.; Puri, D.; Hsieh, T.-C.; Patel, D.P. Emerging concepts in male contraception: A narrative review of novel, hormonal and non-hormonal options. Ther. Adv. Reprod. Health 2023, 17, 26334941221138323. [Google Scholar] [CrossRef] [PubMed]
- Abbe, C.R.; Page, S.T.; Thirumalai, A. Male Contraception. Yale J. Biol. Med. 2020, 93, 603–613. [Google Scholar] [PubMed]
- Balbach, M.; Rossetti, T.; Ferreira, J.; Ghanem, L.; Ritagliati, C.; Myers, R.W.; Huggins, D.J.; Steegborn, C.; Miranda, I.C.; Meinke, P.T.; et al. On-demand male contraception via acute inhibition of soluble adenylyl cyclase. Nat. Commun. 2023, 14, 637. [Google Scholar] [CrossRef] [PubMed]
- Mok, K.-W.; Mruk, D.D.; Lie, P.P.Y.; Lui, W.-Y.; Cheng, C.Y. Adjudin, a potential male contraceptive, exerts its effects locally in the seminiferous epithelium of mammalian testes. Reproduction 2011, 141, 571–580. [Google Scholar] [CrossRef] [PubMed]
- O’Rand, M.G.; Hamil, K.G.; Adevai, T.; Zelinski, M. Inhibition of sperm motility in male macaques with EP055, a potential non-hormonal male contraceptive. PLoS ONE 2018, 13, e0195953. [Google Scholar] [CrossRef]
- Meyers, S.A.; Rosenberger, A.E. A Plasma Membrane-Associated Hyaluronidase Is Localized to the Posterior Acrosomal Region of Stallion Sperm and Is Associated with Spermatozoal Function. Biol. Reprod. 1999, 61, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Carlson, E.J.; Francis, R.; Liu, Y.; Li, P.; Lyon, M.; Santi, C.M.; Hook, D.J.; Hawkinson, J.E.; Georg, G.I. Discovery and Characterization of Multiple Classes of Human CatSper Blockers. ChemMedChem 2022, 17, e202000499. [Google Scholar] [CrossRef] [PubMed]
- Hild, S.A.; Reel, J.R.; Dykstra, M.J.; Mann, P.C.; Marshall, G.R. Acute Adverse Effects of the Indenopyridine CDB-4022 on the Ultrastructure of Sertoli Cells, Spermatocytes, and Spermatids in Rat Testes: Comparison to the Known Sertoli Cell Toxicant Di-n-pentylphthalate (DPP). J. Androl. 2007, 28, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Pozor, M.A.; Macpherson, M.L.; McDonnell, S.M.; Nollin, M.; Roser, J.F.; Love, C.; Runyon, S.; Thomas, B.F.; Troedsson, M.H. Indenopyride derivative RTI-4587-073(l): A candidate for male contraception in stallions. Theriogenology 2013, 80, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Hild, S.A.; Marshall, G.R.; Attardi, B.J.; Hess, R.A.; Schlatt, S.; Simorangkir, D.R.; Ramaswamy, S.; Koduri, S.; Reel, J.R.; Plant, T.M. Development of l -CDB-4022 as a Nonsteroidal Male Oral Contraceptive: Induction and Recovery from Severe Oligospermia in the Adult Male Cynomolgus Monkey (Macaca fascicularis). Endocrinology 2007, 148, 1784–1796. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sha, Y.; Wang, X.; Li, P.; Wang, J.; Kee, K.; Wang, B. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget 2017, 8, 19914–19922. [Google Scholar] [CrossRef] [PubMed]
- Vernet, N.; Dennefeld, C.; Rochette-Egly, C.; Oulad-Abdelghani, M.; Chambon, P.; Ghyselinck, N.B.; Mark, M. Retinoic Acid Metabolism and Signaling Pathways in the Adult and Developing Mouse Testis. Endocrinology 2006, 147, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Dufour, J.M.; Kim, K.H. Cellular and Subcellular Localization of Six Retinoid Receptors in Rat Testis during Postnatal Development: Identification of Potential Heterodimeric Receptors1. Biol. Reprod. 1999, 61, 1300–1308. [Google Scholar] [CrossRef]
- Lufkin, T.; Lohnes, D.; Mark, M.; Dierich, A.; Gorry, P.; Gaub, M.P.; LeMeur, M.; Chambon, P. High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc. Natl. Acad. Sci. USA 1993, 90, 7225–7229. [Google Scholar] [CrossRef]
- Schulze, G.E. BMS-189453, a Novel Retinoid Receptor Antagonist, Is a Potent Testicular Toxin. Toxicol. Sci. 2001, 59, 297–308. [Google Scholar] [CrossRef]
- Paik, J.; Haenisch, M.; Muller, C.H.; Goldstein, A.S.; Arnold, S.; Isoherranen, N.; Brabb, T.; Treuting, P.M.; Amory, J.K. Inhibition of Retinoic Acid Biosynthesis by the Bisdichloroacetyldiamine WIN 18,446 Markedly Suppresses Spermatogenesis and Alters Retinoid Metabolism in Mice. J. Biol. Chem. 2014, 289, 15104–15117. [Google Scholar] [CrossRef] [PubMed]
- Amory, J.K.; Muller, C.H.; Shimshoni, J.A.; Isoherranen, N.; Paik, J.; Moreb, J.S.; Amory, D.W.; Evanoff, R.; Goldstein, A.S.; Griswold, M.D. Suppression of Spermatogenesis by Bisdichloroacetyldiamines Is Mediated by Inhibition of Testicular Retinoic Acid Biosynthesis. J. Androl. 2011, 32, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Heller, C.G.; Moore, D.J.; Paulsen, C.A. Suppression of spermatogenesis and chronic toxicity in men by a new series of bis(dichloroacetyl) diamines. Toxicol. Appl. Pharmacol. 1961, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Munson, L. Contraception in felids. Theriogenology 2006, 66, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Root Kustritz, M.V. Population Control in Small Animals. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Lucas, X. Clinical Use of Deslorelin (GnRH agonist) in Companion Animals: A Review. Reprod. Domest. Anim. 2014, 49, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Srinivasan, V.A.; Suman, P.; Rajan, S.; Nagendrakumar, S.B.; Gupta, N.; Shrestha, A.; Joshi, P.; Panda, A.K. Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management. Am. J. Reprod. Immunol. 2011, 66, 51–62. [Google Scholar] [CrossRef]
- Kinsey, J.C.; Foster, J.A.; Snow, N.P.; Wishart, J.D.; Staples, L.D.; Bush, J.K.; VerCauteren, K.C. Assessment of spilled toxic bait by wild pigs and potential risk to non-target species. Pest. Manag. Sci. 2023, 79, 4589–4598. [Google Scholar] [CrossRef]
- Kirkpatrick, J.F.; Lyda, R.O.; Frank, K.M. Contraceptive vaccines for wildlife: A review. Am. J. Reprod. Immunol. 2011, 66, 40–50. [Google Scholar] [CrossRef]
- Benka, V.A.; Scarlett, J.M.; Sahrmann, J.; Rieke, K.; Briggs, J.R.; Ruple, A.; Zawistowski, S.; Morrison, J.A.; Spofford, N.; Romagnoli, S. Age at gonadectomy, sex, and breed size affect risk of canine overweight and obese outcomes: A retrospective cohort study using data from United States primary care veterinary clinics. J. Am. Vet. Med. Assoc. 2023, 261, 1316–1325. [Google Scholar] [CrossRef]
- Ewoldt, J.M. Surgery of the scrotum. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 253–266, vi. [Google Scholar] [CrossRef]
- Adams, C.E.; Wald, M. Risks and Complications of Vasectomy. Urol. Clin. N. Am. 2009, 36, 331–336. [Google Scholar] [CrossRef]
- Nikpasand, A.; Behfar, M.; Hashemi-Asl, M.; Tehrani, A.-A.; Mohammadi, V. Evaluation of bilateral vasocystostomy for canine sterilization. Theriogenology 2020, 156, 253–261. [Google Scholar] [CrossRef]
- Asa, C.S. Contraception in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Madbouly, H.; Korany, R.; El-Shahat, K.; Eissa, H.; Fathi, M. Efficacy of Intratesticular Glycerol Injection as Male Cat Contraception in Comparison with Two Surgical Approaches. Top. Companion Anim. Med. 2021, 42, 100493. [Google Scholar] [CrossRef]
- Fontaine, E.; Fontbonne, A. Clinical use of GnRH agonists in canine and feline species. Reprod. Domest. Anim. 2011, 46, 344–353. [Google Scholar] [CrossRef] [PubMed]
- England, G.C. Effect of progestogens and androgens upon spermatogenesis and steroidogenesis in dogs. J. Reprod. Fertil. Suppl. 1997, 51, 123–138. [Google Scholar]
- Squires, E.L.; Badzinski, S.L.; Amann, R.P.; McCue, P.M.; Nett, T.M. Effects of altrenogest on total scrotal width, seminal characteristics, concentrations of LH and testosterone and sexual behavior of stallions. Theriogenology 1997, 48, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Liu, I.K.M.; Bernoco, M.; Feldman, M. Contraception in mares heteroimmunized with pig zonae pellucidae. Reproduction 1989, 85, 19–29. [Google Scholar] [CrossRef]
- Kirkpatrick, J.F.; Jr, J.W.T.; Liu, I.K.M.; Fayrer-Hosken, R.; Rutberg, A.T. Case studies in wildlife immunocontraception: Wild and feral equids and white-tailed deer. Reprod. Fertil. Dev. 1997, 9, 105. [Google Scholar] [CrossRef]
- Fayrer-Hosken, R.A.; Grobler, D.; Van Altena, J.J.; Bertschinger, H.J.; Kirkpatrick, J.F. Immunocontraception of African elephants. Nature 2000, 407, 149. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.L.; King, J.L.; Stapp, P. Effects of prolonged immunocontraception on the breeding behavior of American bison. J. Mammal. 2017, 98, 1272–1287. [Google Scholar] [CrossRef] [PubMed]
- Naz, R.K. Contraceptive vaccines: Success, status, and future perspective. Am. J. Reprod. Immunol. 2011, 66, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Turkstra, J.A.; Van Der Meer, F.J.U.M.; Knaap, J.; Rottier, P.J.M.; Teerds, K.J.; Colenbrander, B.; Meloen, R.H. Effects of GnRH immunization in sexually mature pony stallions. Anim. Reprod. Sci. 2005, 86, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Pacheco, A.; Bolio-González, M.; Colin-Flores, R.; Sauri-Arceo, C.; Gutiérrez-Blanco, E.; Jiménez-Coello, M.; Linde Forsberg, C. Evaluation of a Burdizzo Castrator for Neutering of Dogs. Reprod. Domest. Anim. 2006, 41, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Santana, A.T.; Guelfi, M.; Medeiros, H.C.D.; Tavares, M.A.; Bizerra, P.F.V.; Mingatto, F.E. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E. Biol. Res. 2015, 48, 43. [Google Scholar] [CrossRef] [PubMed]
- Velasquez-Pereira, J.; Chenoweth, P.J.; McDowell, L.R.; Risco, C.A.; Staples, C.A.; Prichard, D.; Martin, F.G.; Calhoun, M.C.; Williams, S.N.; Wilkinson, N.S. Reproductive effects of feeding gossypol and vitamin E to bulls. J. Anim. Sci. 1998, 76, 2894. [Google Scholar] [CrossRef]
- Curci, L.; Carvajal, G.; Sulzyk, V.; Gonzalez, S.N.; Cuasnicú, P.S. Pharmacological Inactivation of CatSper Blocks Sperm Fertilizing Ability Independently of the Capacitation Status of the Cells: Implications for Non-hormonal Contraception. Front. Cell Dev. Biol. 2021, 9, 686461. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Dai, S.-M. A Chinese herb Tripterygium wilfordii Hook F in the treatment of rheumatoid arthritis: Mechanism, efficacy, and safety. Rheumatol. Int. 2011, 31, 1123–1129. [Google Scholar] [CrossRef]
- Tao, X.; Lipsky, P.E. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum. Dis. Clin. N. Am. 2000, 26, 29–50. [Google Scholar] [CrossRef]
- Song, J.; He, G.-N.; Dai, L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed. Pharmacother. 2023, 162, 114705. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.-D.; Chen, X.-L.; Xiao, X.-R.; Wang, Y.-K.; Liu, F.; Zhao, Q.; Li, X.; Yang, X.-W.; Li, F. Comparative metabolism of tripolide and triptonide using metabolomics. Food Chem. Toxicol. 2018, 115, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, Y.; Luo, Y.; Luo, L.; Shen, F.; Huang, Z. Triptolide impairs glycolysis by suppressing GATA4/Sp1/PFKP signaling axis in mouse Sertoli cells. Toxicol. Appl. Pharmacol. 2021, 425, 115606. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.-C.; Qian, Q.; Gao, Y.-H.; Zhang, Y.-F.; Li, Y.-X.; Wang, X.; Fu, Y.; Ma, Y.-M.; Wang, Q. Toxic effects of Tripterygium glycoside tablets on the reproductive system of male rats by metabolomics, cytotoxicity, and molecular docking. Phytomedicine 2023, 114, 154813. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Cheng, W.; Guo, S.; Zou, Y.; Zhang, T.; He, L. Toxic effects of Tripterygium wilfordii Hook F on the reproductive system of adolescent male rats. Biomed. Pharmacother. 2017, 95, 1338–1345. [Google Scholar] [CrossRef] [PubMed]
- Mariani, N.A.P.; Silva, J.V.; Fardilha, M.; Silva, E.J.R. Advances in non-hormonal male contraception targeting sperm motility. Hum. Reprod. Update 2023, 29, 545–569. [Google Scholar] [CrossRef] [PubMed]
- Salicioni, A.M.; Gervasi, M.G.; Sosnik, J.; Tourzani, D.A.; Nayyab, S.; Caraballo, D.A.; Visconti, P.E. Testis-specific serine kinase protein family in male fertility and as targets for non-hormonal male contraceptiondagger. Biol. Reprod. 2020, 103, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Jaiswal, B.S.; Xie, F.; Krajnc-Franken, M.A.M.; Robben, T.J.A.A.; Strik, A.M.; Kuil, C.; Philipsen, R.L.A.; Van Duin, M.; Conti, M.; et al. Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc. Natl. Acad. Sci. USA 2004, 101, 2993–2998. [Google Scholar] [CrossRef]
- Long, J.E.; Lee, M.S.; Blithe, D.L. Update on Novel Hormonal and Nonhormonal Male Contraceptive Development. J. Clin. Endocrinol. Metab. 2021, 106, e2381–e2392. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, J.-Y.; Hong, K.H.; Mikles, D.C.; Georg, G.I.; Goldstein, A.S.; Amory, J.K.; Schönbrunn, E. Structural Basis of ALDH1A2 Inhibition by Irreversible and Reversible Small Molecule Inhibitors. ACS Chem. Biol. 2018, 13, 582–590. [Google Scholar] [CrossRef]
- Fauser, B.C.J.M.; Adamson, G.D.; Boivin, J.; Chambers, G.M.; De Geyter, C.; Dyer, S.; Inhorn, M.C.; Schmidt, L.; Serour, G.I.; Tarlatzis, B.; et al. Declining global fertility rates and the implications for family planning and family building: An IFFS consensus document based on a narrative review of the literature. Hum. Reprod. Update 2024, 30, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Reproductive Health—ANA Position Statement. Available online: https://www.nursingworld.org/practice-policy/nursing-excellence/official-position-statements/id/reproductive-health/ (accessed on 19 March 2024).
- Greenwald, N.; Suckling, K.F.; Hartl, B.A.; Mehrhoff, L. Extinction and the U.S. Endangered Species Act. PeerJ 2019, 7, e6803. [Google Scholar] [CrossRef] [PubMed]
No. | Human Male Contraceptives | Mechanism of Contraception | Hormone Status Alteration | Contraceptive Efficacy | Main Disadvantage |
---|---|---|---|---|---|
1 | Vasectomy | Occlusive contraception by bilaterally ligating the vas deferens | - | Proven > 98% efficiency with an appropriate washout period [36] | Surgical risks |
2 | Condoms | Barrier contraception—no sperm in ejaculate | - | Only 70% effective if sole contraceptive method [23] | Efficacy is less than ideal [6,21] |
3 | Nal-Glu | GnRH antagonists—reduced endogenous GnRH production | Yes | Approx. 90% efficacy when combined with an androgen [27] | No proven efficacy if used as the sole contraceptive [26] |
4 | MENT, DMAU, 11ß-MNTDC | Androgen-based reduced endogenous androgen production | Yes | Yet to be proven beyond pilot studies | Extra-gonadal hormonal side effects [29] |
5 | Segesterone acetate | Progestin-based altered hormone cascade | Yes | Yet to be proven beyond initial clinical trials | No proven evidence of efficacy |
6 | Flutamide | Testosterone blocker—blocking testosterone receptors from binding with endogenous testosterone | Yes | Initial studies show promise, but carrier molecule must be further developed [32] | Low oral bioavailability [32] |
7 | Gossypol | Reduced semen quality—exact mechanism is yet to be discovered ** | - | 90% efficacy in human fertility trials [37] | Hypokalemic periodic paralysis [37] |
8 | Vas deferens occlusive device | Occlusive contraception by a reversible valve in an implantable device | - | Undergoing human clinical trials [38,39] | No proven evidence of efficacy |
9 | Soluble adenylyl cyclase (sAC) targeting | sAC is required to morphologically mature sperm between epididymal storage and ejaculation [40] | - | Yet to be proven beyond theoretical possibility [40] | No proven evidence of efficacy |
10 | Adjudin, gamendazole, CDB-4022 | Reduced binding ability of maturing sperm to Sertoli cells [41] | - | Yet to be proven beyond theoretical possibility [41] | No proven evidence of efficacy |
11 | Epididymal peptidase inhibitor (EPPIN) | Targeting a surface protein located on sperm; only expressed in the male reproductive tract | - | Pilot study showed promise for short-term contraception in cynomolgus monkeys with no listed efficacy [42] | Yet to be proven effective in fertility trials |
12 | Gendarussa leaves | Potentially reversing sperm hyaluronidase activity [43] ** | - | Yet to be proven beyond theoretical possibility | No proven evidence of efficacy |
13 | Calcium ion channel in sperm flagellum (CatSper) | Blocking the ion channel—reducing the motility of the sperm [44] | - | Yet to be proven beyond theoretical possibility | No proven evidence of efficacy |
14 | Indenopyridine derivatives | Preventing spermatids from binding to the seminiferous tubules | - | Studies done in rodents [45], miniature stallions [46], and primates [47] but no contraceptive efficacy listed | Initial studies show reversible contraception, but variability in libido and sexual behaviors |
15 | JQ1 bromodomain testis-specific protein (BRDT) inhibitor | Required for meiosis—causing morphologically abnormal sperm—specifically abnormally shaped sperm heads [48] | - | Pilot study done in mice showed promise, but no contraceptive efficacy listed [48] | Nonselective BRDT inhibition—multiple side effects and higher doses required for contraception |
16 | Vitamin A and metabolite retinoic acid | Binds to one of many retinoic acid receptors (RARs) [49]. RAR mice are noted to be sterile [50,51]. | - | Pilot study done in mice showed promise, but no contraceptive efficacy listed [52] | Liver inflammation seen in rats [52] |
17 | WIN 18,446 | Inhibiting retinoic acid biosynthesis by inhibiting certain dehydrogenase enzymes [53,54] | - | Clinical trial in men showed initial promise, but no contraceptive efficacy listed [55] | Severe side effects when combined with alcohol consumption—palpitations and nausea, etc. [55] |
No. | Veterinary Male Contraceptives | Mechanism of Contraception | Hormone Status Alteration | Contraceptive Efficacy | Main Disadvantage |
---|---|---|---|---|---|
1 | Gonadectomy/castration—surgical and with mechanical castrators | Permanent, bilateral removal of the testicles [62,77] | Yes | Proven 100% effective in all species [62] | Irreversible contraception with disruption to the hormone cascade [62] |
2 | Vasectomy | Occlusive contraception by bilaterally ligating the vas deferens | - | Proven 100% effective with appropriate washout period [63] | Irreversible contraception [63] |
3 | Epididymectomy | Occlusive contraception by bilaterally ligating the epididymis | - | Proven nearly 100% effective [63] with appropriate washout period | Irreversible contraception [63] |
4 | Vasocystotomy | Surgical redirection of the vas deferens, resulting in retrograde ejaculation into the urinary bladder [65] | - | Yet to be proven beyond pilot studies | Surgical risk and requirement of skilled personnel |
5 | Chemical castration with glycerol, calcium chloride, DMSO, formalin | Damages testicular parenchyma, which reduces spermatogenesis and testosterone production [67] | Yes | Can theoretically be used in any species [67]. Contraceptive efficacy varies by chemical. | Testicular necrosis and fibrosis with associated pain |
6 | GnRH agonists: deslorelin, leuprolide | Downregulation of receptor’s sensitivity to endogenous GnRH | Yes | Proven effective in many companion animals [58]. Contraceptive efficacy depends on the formulation. | Off-label use in most species due to limited formulations |
7 | Progestins like altrenogest | Progestin-based altered hormone cascade [69] | Yes | Proven effective in dogs [69], stallions [70], but contraceptive efficacy varies by formulation | Numerous side effects due to increased progesterone levels |
8 | Immunocontraception—GnRH vaccines | Causes an immune response to the GnRH molecule, thereby reducing endogenous production of GnRH | Yes | Proven effective in multiple domestic and wild species [71,72,73,74]. Contraceptive efficacy varies by species and vaccine formulation. | Not an ideal contraceptive in all species based on population dynamics [75,76] |
9 | Gene silencing | Prevents expression of critical genes by inhibiting their transcription ** | - | Yet to be proven beyond theoretical possibility | Very high degree of precision required for formulation |
10 | Testis-specific serine kinase (TSSK) protein targeting | Potential target since it is essential for sperm maturation and conserved among species | - | Yet to be proven beyond theoretical possibility | No proven evidence of efficacy |
11 | Reversible sperm inhibition—RISUG | Occlusive contraception temporarily blocks the release of sperm. Reversed with DMSO. | - | Yet to be proven beyond pilot studies | Yet to be proven effective in fertility trials |
12 | Triptonide | Altered spermatogenesis resulting in morphologically abnormal sperm—not fully understood ** | - | Proven effective in mice and monkeys with 100% penetrance [13] | Only available as an oral formulation requiring daily dosing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koilpillai, J.N.; Nunan, E.; Butler, L.; Pinaffi, F.; Butcher, J.T. Reversible Contraception in Males: An Obtainable Target? Biology 2024, 13, 291. https://doi.org/10.3390/biology13050291
Koilpillai JN, Nunan E, Butler L, Pinaffi F, Butcher JT. Reversible Contraception in Males: An Obtainable Target? Biology. 2024; 13(5):291. https://doi.org/10.3390/biology13050291
Chicago/Turabian StyleKoilpillai, Joanna Nandita, Emily Nunan, Landon Butler, Fabio Pinaffi, and Joshua T. Butcher. 2024. "Reversible Contraception in Males: An Obtainable Target?" Biology 13, no. 5: 291. https://doi.org/10.3390/biology13050291
APA StyleKoilpillai, J. N., Nunan, E., Butler, L., Pinaffi, F., & Butcher, J. T. (2024). Reversible Contraception in Males: An Obtainable Target? Biology, 13(5), 291. https://doi.org/10.3390/biology13050291