Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Anaplastic Thyroid Cancer
3. Differentiated Thyroid Cancer
3.1. Papillary Thyroid Cancer
3.2. Follicular Thyroid Cancer
4. Anaplastic Thyroid Cancer vs. Well-Differentiated Thyroid Cancers (Papillary Thyroid Cancer and Follicular Thyroid Cancer)
5. Current Thyroid Cancer Treatment Modalities
6. Studying lncRNAs
7. lncRNAs in Anaplastic Thyroid Cancer
8. lncRNAs in Well-Differentiated Thyroid Cancer
8.1. Papillary Thyroid Cancer
8.2. Follicular Thyroid Cancer
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TC | Thyroid cancer |
FNA | Fine needle aspiration |
PTC | Papillary thyroid cancer |
FTC | Follicular thyroid cancer |
ATC | Anaplastic thyroid cancer |
MAPK | Mitogen Activated Protein Kinase |
lncRNA | Long Non-Coding RNA |
nt | Nucleotides |
miRNA | MicroRNA |
mRNA | Messenger RNA |
Ce | Competing endogenous |
LN | Lymph node |
ETE | Extrathyroidal extension |
GEO | Gene Expression Omnibus |
NCBI | National Center for Biotechnology Information |
TANRIC | The Atlas of non-coding RNA in cancer |
BTN | Benign thyroid nodule |
MALAT1 | Metastasis Associated Lung Adenocarcinoma Transcript 1 |
FOXA1 | Forkhead Box A1 |
HOTAIRM1 | HOXA Transcript Antisense RNA |
pri-miRNA | Primary miRNA |
EMT | Epithelial-to-mesenchymal |
c-Myc | Cellular myc |
UCA1 | Urothelial Carcinoma-Associated 1 |
TME | Tumor microenvironment |
PD-L1 | Programmed death ligand-1 |
PD-1 | Programmed death-1 |
CTL | Cytotoxic T lymphocyte |
OS | Overall survival |
MANCR | Mitotically Associated Long Non-Coding RNA |
RNAi | RNA-interference |
siRNA | Short-interfering RNAs |
NEAT1 | Nuclear Paraspeckle Assembly Transcript 1 |
DDP | cis-diamminedichloroplatinum(II) |
SPAG9 | Sperm-Associated Antigen 9 |
PAR5 | Prader Willi/Angelman Region RNA5 |
(SOX2OT | SOX2 overlapping transcript |
DANCR | Differentiation antagonizing non-coding RNA |
TINCR | Tissue differentiation-induced non-coding RNA |
LUCAT1 | Lung Cancer Associated Transcript 1 |
HOTTIP | HOXA Transcript at the Distal Tip |
LINC | Long Intergenic Non-Coding |
BANCR | BRAF-Activated Non-Coding RNA |
COMET | Correlated-to-MET |
CASC2 | Cancer Susceptibility Candidate 2 |
ZEB1 | Zinc Finger E-box-Binding Homeobox 1 |
VEGF | Vascular Endothelial Growth Factor |
HCP5 | HLA complex P5 |
GAS5 | Growth arrest specific transcript 5 |
References
- Seib, C.D.; Sosa, J.A. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol. Metab. Clin. 2019, 48, 23–35. [Google Scholar] [CrossRef]
- Kim, J.; Gosnell, J.E.; Roman, S.A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol. 2020, 16, 17–29. [Google Scholar] [CrossRef]
- Bellevicine, C.; Migliatico, I.; Sgariglia, R.; Nacchio, M.; Vigliar, E.; Pisapia, P.; Iaccarino, A.; Bruzzese, D.; Fonderico, F.; Salvatore, D.; et al. Evaluation of BRAF, RAS, RET/PTC, and PAX8/PPARg alterations in different Bethesda diagnostic categories: A multicentric prospective study on the validity of the 7-gene panel test in 1172 thyroid FNAs deriving from different hospitals in South Italy. Cancer Cytopathol. 2019, 128, 107–118. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid Cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 3. [Google Scholar] [CrossRef]
- Fonseca-Montaño, M.A.; Blancas, S.; Herrera-Montalvo, L.A.; Hidalgo-Miranda, A. Cancer Genomics. Arch. Med. Res. 2022, 53, 723–731. [Google Scholar] [CrossRef]
- Khatami, F.; Tavangar, S.M. A Review of Driver Genetic Alterations in Thyroid Cancers. Iran. J. Pathol. 2018, 13, 125–135. [Google Scholar] [CrossRef]
- Ciampi, R.; Nikiforov, Y.E. RET/PTC Rearrangements and BRAF Mutations in Thyroid Tumorigenesis. Endocrinology 2007, 148, 936–941. [Google Scholar] [CrossRef]
- Zhao, H.; De Souza, C.; Kumar, V.E.; Nambiar, R.; Hao, D.; Zhu, X.; Luo, Y.; Zhang, L.; Zhu, J. Long non-coding RNA signatures as predictors of prognosis in thyroid cancer: A narrative review. Ann. Transl. Med. 2021, 9, 359. [Google Scholar] [CrossRef]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef]
- Winkler, L.; Dimitrova, N. A mechanistic view of long noncoding RNAs in cancer. WIREs RNA 2021, 13, e1699. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef]
- Aprile, M.; Costa, V.; Cimmino, A.; Calin, G. Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int. J. Cancer 2022, 152, 822–834. [Google Scholar] [CrossRef]
- Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer 2013, 108, 479–485. [Google Scholar] [CrossRef]
- Alarcón-Sánchez, B.R.; Pérez-Carreón, J.I.; Villa-Treviño, S.; Arellanes-Robledo, J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem. Pharmacol. 2021, 194, 114818. [Google Scholar] [CrossRef]
- Qi, X.; Lin, Y.; Chen, J.; Shen, B. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief. Bioinform. 2019, 21, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Y.; Liu, Z.; Dai, Y.; Jiao, X. Targeted inhibition of long non-coding RNA H19 blocks anaplastic thyroid carcinoma growth and metastasis. Bioengineered 2019, 10, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, R.M.; Haugen, B.; Perrier, N.D. Updated American Joint Committee on Cancer/ Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eigth Edition): What Changed and Why? Thyroid 2017, 6, 751–756. [Google Scholar] [CrossRef]
- Zivaljevic, V.; Tausanovic, K.; Paunovic, I.; Diklic, A.; Kalezic, N.; Zoric, G.; Sabljak, V.; Vekic, B.; Zivic, R.; Marinkovic, J.; et al. Age as a prognostic factor in anaplastic thyroid cancer. Int. J. Endocrinol. 2014, 2014, 240513. [Google Scholar] [CrossRef]
- Schlumberger, M.; Leboulleux, S. Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 2021, 17, 176–188. [Google Scholar] [CrossRef]
- Khan, U.; Al Afif, A.; Aldaihani, A.; MacKay, C.; Rigby, M.H.; Rajaraman, M.; Imran, S.A.; Bullock, M.J.; Taylor, S.M.; Trites, J.R.B.; et al. Patient and tumor factors contributing to distant metastasis in well-differentiated thyroid cancer: A retrospective cohort study. J. Otolaryngol.-Head Neck Surg. 2020, 49, 1. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.L.; Kloos, R.T.; Aunins, B.; Holm, T.M.; Roth, M.Y.; Yeh, M.W.; Randolph, G.W.; Tabangin, M.E.; Altaye, M.; Steward, D.L. Pathologic Features Associated With Molecular Subtypes of Well-Differentiated Thyroid Cancer. Endocr. Pract. 2021, 27, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Kilfoy, B.A.; Devesa, S.S.; Ward, M.H.; Zhang, Y.; Rosenberg, P.S.; Holford, T.R.; Anderson, W.F. Gender is an Age-Specific Effect Modifier for Papillary Cancers of the Thyroid Gland. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2022, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Jonklaas, J.; Nogueras-Gonzalez, G.; Munsell, M.; Litofsky, D.; Ain, K.B.; Bigos, S.T.; Brierley, J.D.; Cooper, D.S.; Haugen, B.R.; Ladenson, P.W.; et al. The Impact of Age and Gender on Papillary Thyroid Cancer Survival. J. Clin. Endocrinol. Metab. 2012, 97, E878–E887. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Kukulska, A.; Oczko-Wojciechowska, M.; Kotecka-Blicharz, A.; Drosik-Rutowicz, K.; Haras-Gil, M.; Jarzab, B.; Handkiewicz-Junak, D. Early Diagnosis of Low-Risk Papillary Thyroid Cancer Results Rather in Overtreatment Than in a Better Survival. Front. Endocrinol. 2020, 11, 571421. [Google Scholar] [CrossRef] [PubMed]
- Maksimovic, S.; Jakovljevic, B.; Gojkovic, Z. Lymph Node Metastases Papillary Thyroid Carcinoma and their Importance in Recurrence of Disease. Med. Arch. 2018, 72, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Mao JZhang, Q.; Zhang, H.; Zheng, L.; Wang, R.; Wang, G. Risk factors for Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 265. [Google Scholar] [CrossRef]
- Grebe, S.K.G.; Hay, I.D. Follicular Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 1995, 24, 761–801. [Google Scholar] [CrossRef]
- Santacroce, L.; Balducci, L. Follicular Thyroid Carcinoma; Medscape: New York, NY, USA, 2022. [Google Scholar]
- Zheng, H.; Xiao, Z.; Luo, S.; Wu, S.; Huang, C.; Hong, T.; He, Y.; Guo, Y.; Du, G. Improve follicular thyroid carcinoma diagnosis using computer aided diagnosis system on ultrasound images. Front. Oncol. 2022, 12, 939418. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Miao, Y.; Zhu, Q.; Gao, M.; Hao, F. Expression of long non-coding RNA H19 predicts distant metastasis in minimally invasive follicular thyroid carcinoma. Bioengineered 2019, 10, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Lee, Y.; Lu, Y.; Lin, S. Risk Factors and Prognosis for Metastatic Follicular Thyroid Cancer. Front. Endocrinol. 2022, 13, 791826. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Domrchev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Gugnoni, M.; Lorenzini, E.; Faria do Valle, I.; Remondini, D.; Castellani, G.; Torricelli EDonati, B.; Ragazzi, M.; Ghini, F.; Piana, S.; Ciarrocchi, A.; et al. Adding pieces to the puzzle of differentiated-to-anaplastic thyroid cancer evolution: The oncogene E2F7. Cell Death Dis. 2023, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Li, L.; Qian, Y.; Ge, X.; Hu, X.; Zhang, Y.; Ge, M.; Huang, P. The differences of regulatory networks between papillary and anaplastic thyroid carcinoma: An integrative transcriptomics study. Cancer Biol. Ther. 2020, 21, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, V.; Stuschke, M.; Weber, F.; Dralle, H.; Moss, L.; Führer, D. Anaplastic thyroid carcinoma: Review of treatment protocols. Endocr.-Relat. Cancer 2018, 25, R153–R161. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Copland, J.A. Anaplastic Thyroid Carcinoma: Pathogenesis and Emerging Therapies. Clin. Oncol. 2010, 22, 486–497. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Trevisan, M.; Fugazzola, L. Recent advances in the management of anaplastic thyroid cancer. Thyroid. Res. 2020, 13, 17. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Zeng, P.; Wang, J.; Geng, B.; Yang, J.; Cui, Q. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Brief. Bioinform. 2015, 16, 806–812. [Google Scholar] [CrossRef]
- Perron, U.; Provero, P.; Molineris, I. In silico prediction of lncRNA function using tissue specific and evolutionary conserved expression. BMC Bioinform. 2017, 18, 144. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, M.D.; Hatzigeorgiou, A.G. Analyzing MiRNA-LncRNA Interactions. Methods Mol. Biol. 2016, 1402, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, T.; Khalaj-Kondori, M.; Feizi MA, H.; Asadi, P. lncRNA-miRNA-mRNA interaction network for colorectal cancer; An in silico analysis. Comput. Biol. Chem. 2020, 89, 107370. [Google Scholar] [CrossRef]
- Rodrigues de Bastos, D.; Nagai, M.A. In silico analyses identify lncRNAs: WDFY3-AS2, BDNF-AS and APAF1-AS1 as potential prognostic factors for patients with triple-negative breast tumors. PLoS ONE 2020, 15, e0232284. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, Y.-Z.; Guan, N.-N.; Qu, J.; Huang, Z.-A.; Zhu, Z.-X.; Li, J.-Q. Computational models for lncRNA function prediction and functional similarity calculation. Brief. Funct. Genom. 2019, 18, 58–82. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, P.; Tian, R.; Wang, S.; Guo, Q.; Luo, M.; Guiyou, L.; Jiang, H.; Jiang, Q. LncRNA2Target v2.0: A comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res. 2019, 47, D140–D144. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wang, J.; Wu, X.; Ma, R.; Zhang, T.; Jin, S.; Han, Z.; Tan, R.; Peng, J.; Liu, G.; et al. LncRNA2Target: A database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res. 2015, 43, D193–D196. [Google Scholar] [CrossRef]
- Karagkouni, D.; Parasekevopoulou, M.D.; Tastsoglou, S.; Skoufos, G.; Karavangeli, A.; Pierros, V.; Zacharopoulou, E.; Hatzigeorgiou, A.G. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res. 2020, 48, D101–D110. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Wright, P.R.; Backofen, R. IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 2017, 45, W435–W439. [Google Scholar] [CrossRef]
- Wright, P.R.; Georg, J.; Mann, M.; Sorescu, D.A.; Richter, A.S.; Lott, S.; Kleinkauf, R.; Hess, W.R.; Backofen, R. CopraRNA and IntaRNA: Predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 2014, 42, W119–W123. [Google Scholar] [CrossRef]
- Busch, A.; Ritcher, A.S.; Backofen, R. IntaRNA: Efficient prediction of bacterial sRNA target site accessibility and seed regions. Bioinformatics 2008, 24, 2849–2859. [Google Scholar] [CrossRef] [PubMed]
- Raden, M.; Ali, S.M.; Alkhnbashi, O.S.; Busch, A.; Costa, F.; Davis, J.A.; Eggenhofer, F.; Gelhausen, R.; Georg, J.; Heyne, S.; et al. Freiburg RNA tools: A central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018, 46, W25–W29. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Gao, C.; Zheng, Y.-M.; Yi, L.; Lu, J.-C.; Huang, X.-Y.; Cai, J.-B.; Zhang, P.-F.; Cui, Y.-H.; Ke, A.-W. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol. Cancer 2022, 21, 57. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, T.; Yamamoto, T. Acceleration of cancer science with genome editing and related technologies. Cancer Sci. 2018, 109, 3679–3685. [Google Scholar] [CrossRef] [PubMed]
- Volante, M.; Lam, A.K.; Papotti, M.; Tallini, G. Molecular Pathology of Poorly Differentiated and Anaplastic Thyroid Cancer: What Do Pathologists Need to Know? Endocr. Pathol. 2021, 32, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.; Nucera, C. Personalized Therapy in Patients With Anaplastic Thyroid Cancer: Targeting Genetic and Epigenetics Alterations. J. Clin. Endocrinol. Metab. 2015, 100, 35–42. [Google Scholar] [CrossRef]
- Sugitani, I.; Miyauchi, A.; Sugino, K.; Okamoto, T.; Yoshida, A.; Suzuki, S. Prognostic Factors and Treatment Outcomes for Anaplastic Thyroid Carcinoma: ATC Research Consortium of Japan Cohort Study of 677 Patients. World J. Surg. 2012, 36, 1247–1254. [Google Scholar] [CrossRef]
- Pozdeyev, N.; Rose, M.M.; Bowles, D.W.; Schweppe, R.E. Molecular therapeutics for anaplastic thyroid cancer. Semin. Cancer Biol. 2020, 61, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Raveh, E.; Matouk, I.J.; Gilon, M.; Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression, and metastasis—A proposed unifying theory. Mol. Cancer 2015, 14, 184. [Google Scholar] [CrossRef]
- Liang, W.C.; Fu, W.M.; Wong, C.W.; Wang, Y.; Wang, W.M.; Hu, G.X.; Zhang, L.; Xiao, L.J.; Wan, D.C.C.; Zhang, J.F.; et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 2015, 6, 22513–22525. [Google Scholar] [CrossRef]
- Xing, M. Genetic Alterations in the Phosphatidylinositol-3 Kinase/ Akt Pathway in Thyroid Cancer. Thyroid 2020, 20, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, R.; Wang, J.; Cui, Z.; Wang, Y.; Zhao, Y. Upregulation of lncRNA H19 promotes nasopharyngeal carcinoma proliferation and metastasis in let-7 dependent manner. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Dey, B.K.; Pfeifer, K.; Dutta, A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Gene Dev. 2014, 28, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Gabory, A.; Jammes, H.; Dandolo, L. The H19 locus: Role of an imprinted non-coding RNA in growth and development. Bioessays 2020, 32, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-X.; Zhu, Q.-N.; Zhang, H.-B.; Hu, Y.; Wang, G.; Zhu, Y.-S. MALAT1: A potential biomarker in cancer. Cancer Manag. Res. 2018, 10, 6757–6768. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Feng, P.; Zhu, X.; He, S.; Duan, J.; Zhao, D. Long non-coding RNA MALAT1 promotes neurite outgrowth through activation of ERK/MAPK signaling pathway in N2a cells. J. Cell. Mol. Med. 2016, 20, 2102–2110. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yan, G.; Zhang, J.; Yu, L. Knockdown of Long Noncoding RNA (lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Inhibits Proliferation, Migration, and Invasion and Promotes Apoptosis by Targeting miR-124 in Retinoblastoma. Oncol. Res. 2018, 26, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.-C.; Qian, Y.; Ma, Y.-Y.; Jiang, Y.; Qian, W.-F. Long Non-coding RNA RP11-395G23.3 Acts as a Competing Endogenous RNA of miR-124-3p to Regulate ROR1 in Anaplastic Thyroid Cancer. Frontiers 2021, 12, 673242. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Zou, H.; Beibei, L. Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA1. Cancer Biol. Ther. 2019, 20, 1355–1365. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Li, S.; Xhang, Y.; Liu, Y.; Dong, J.; Zhao, W.; Yu, B.; Wang HLiu, J. Genomic amplification of long noncoding RNA HOTAIRM1 drives anaplastic thyroid cancer progression via repressing miR-144 biogenesis. RNA Biol. 2020, 18, 547–562. [Google Scholar] [CrossRef]
- Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and Cancer Metabolism. Clin. Cancer Res. 2012, 18, 5546–5553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, Z.; Li, D. Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR-135a-mediated c-myc activation. Mol. Med. Rep. 2018, 18, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Zheng, J.; Yao, C.; Lu, X. LncRNA UCA1 attenuated the killed effect of cytotoxic CD8+ T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway. Cancer Immunol. Immunother. 2021, 70, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Chintakuntlawar, A.V.; Rumilla, K.M.; Smith, C.Y.; Jenkins, S.M.; Foote, R.L.; Kasperbauer, J.L.; Morris, J.C.; Ryder, M.; Alsidawi, S.; Hilger, C.; et al. Expression of PD-1 and PD-L1 in Anaplastic Thyroid Cancer Patients Treated With Multimodal Therapy: Results From a Retrospective Study. J. Clin. Endocrinol. Metab. 2017, 102, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.-S.; Lei, B.-W.; Tan, L.-C.; Yu, P.-C.; Shi, X.; Wang, Y.; Ji, Q.-H.; Wei, W.-J.; Lu, A.-W.; Wang, Y.-L. Mitotically associated long non-coding RNA is a tumor promoter in anaplastic thyroid cancer. Ann. Transl. Med. 2020, 8, 1226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, H.; Wen, P.; Wang, Y.; Cui, Y.; Wu, J. circRNA circMED27 acts as a prognostic factor and mediator to promote levatinib resistance of hepatocellular carcinoma. Mol. Ther. Nucleic Acids 2022, 27, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Su, Z.; Zhang, Z.; Gao, Z. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR-9-5p and regulating SPAG9 expression. Int. J. Oncol. 2019, 55, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.; Turchinovich, A.; Wang, Y.; Golobova, O.; Buschmann, D.; Zieger, M.; Umbricht, C.; Witwer, K. miR-210 Expression Is Strongly Hypoxia-Induced in Anaplastic Thyroid Cancer Cell Lines and Is Associated with Extracellular Vesicles and Argonaute-2. Int. J. Mol. Sci. 2021, 24, 4507. [Google Scholar] [CrossRef]
- Tan, X.; Wang, P.; Lou, J.; Zhao, J. Knockdown of lncRNA NEAT1 suppresses hypoxia-induced migration, invasion and glycolysis in anaplastic thyroid carcinoma cells through regulation of miR-206 and miR-599. Cancer Cell Int. 2020, 20, 132. [Google Scholar] [CrossRef]
- Pellecchia, S.; Sepe, R.; Decaussin-Petrucci, M.; Ivan, C.; Shimizu, M.; Coppola, C.; Testa, D.; Calin, G.; Fusco, A.; Pallante, P. The Long Non-Coding RNA Prader Willi/Angelman Region RNA5 (PAR5) Is Downregulated in Anaplastic Thyroid Carcinomas Where It Acts as a Tumor Suppressor by Reducing EZH2 Activity. Cancers 2020, 12, 235. [Google Scholar] [CrossRef]
- Chaw, S.Y.; Majeed, A.A.; Dalley, A.J.; Chan, A.; Stei, S.; Farah, C.S. Epithelial to mesenchymal transition (EMT) markers—E-cadherin, beta-catenin, APC and Vimentin—I noral sequamous cell carcinogenesis and transformation. Oral Oncol. 2012, 48, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Icduygu, F.M.; Akgun, E.; Sengul, D.; Ozgoz, A.; Alp, E. Expression of SOX2OT, DANCR, and TINCR long non-coding RNAs in papillary thyroid cancer and its effects on clinicopathological features. Mol. Med. Rep. 2022, 25, 120. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, Q.; Yuan, X.; Xue, C.; Shen, S.; He, Y. DANCR: An emerging therapeutic target for cancer. Am. J. Transl. Res. 2020, 12, 4031–4032. [Google Scholar] [PubMed]
- Ghafouri-Fard, S.; Dashti, S.; Taheri, M.; Omrani, M.D. An lncRNA with dual functions in the carcinogenesis process. Non-Coding RNA Res. 2020, 5, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang Bo Wang, W.; Su, D.; Xia, F.; Li, X. Identifying the Transcriptional Regulatory Network Associated with Extrathyroidal Extension in Papillary Thyroid Carcinoma by Comprehensive Bioinformatics Analysis. Font. Genet. 2020, 11, 453. [Google Scholar] [CrossRef] [PubMed]
- Luzon-Toro, B.; Fernandez, R.M.; MArtos-Martinez, J.M.; Rubio-Manzanares-Dorado, M.; Antinolo, G.; Borrego, S. LncRNA LUCAT1 as a novel prognostic biomarker for patient papillary thyroid cancer. Sci. Rep. 2019, 9, 14374. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, Y.; Fan, Y.; Liu, Z.; Wang, Z.; Jia, M.; Geng, Z.; Lu, X. LncRNA HOTTIP promotes papillary thyroid carcinoma cell proliferation, invasion and migration by regulating miR-637. Int. J. Biochem. Cell Biol. 2018, 98, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yin, H.; Hu, J.; Wei, X. Long noncoding RNA LINC00313 modulates papillary thyroid cancer tumorigenesis via sponging miR-4429. Neoplasma 2018, 65, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Sun, W.; Dong, W.; Wang, Z.; Zhang, T.; He, L.; Zhang, H. Downregulation of long noncoding RNA H19 contributes to the proliferation and migration of papillary thyroid carcinoma. Gene 2018, 10, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Q.; Jin, X.; Guo, H.; Li, H. Long non-coding RNA H19 knockdown inhibits the cell viability and promotes apoptosis of thyroid cancer cells through regulating the PI3K/AKT pathway. Exp. Ther. Med. 2019, 18, 1863–1869. [Google Scholar] [CrossRef]
- Sahin, Y. LncRNA H19 is a potential biomarker and correlated with immune infiltration in thyroid carcinoma. Clin. Exp. Med. 2022, 23, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Qu, N.; Shi, R.-L.; Guo, K.; Ma, B.; Cao, Y.-M.; Xiang, J.; Lu, Z.-W.; Zhu, Y.-X.; Li, D.-S.; et al. BRAF-activated lncRNA functions as a tumor suppressor in papillary thyroid cancer. Oncotarget 2017, 8, 238–247. [Google Scholar] [CrossRef]
- Esposito, R.; Esposito, D.; Pallante, P.; Fusco, A.; Ciccodicola, A.; Costa, V. Oncogenic Properties of the Antisense lncRNA COMET in BRAF- and RET-Driven Papillary Thyroid Carcinomas. Cancer Res. 2019, 79, 2124–2135. [Google Scholar] [CrossRef]
- Byeon, H.K.; Na, H.J.; Yang, Y.J.; Kwon, H.J.; Chang, J.W.; Ban, M.J.; Kim, W.S.; Shin, D.Y.; Lee, E.J.; Koh, Y.W.; et al. c-Met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF inhibition. Mol. Carcinog. 2016, 55, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Eigentler, T.K. Vemurafenib. Small Mol. Oncol. 2018, 211, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, C.; Wang, X.; Cui, C.; Cui, H.; Zhu, B.; Chen, A.; Zhang, L.; Xin, J.; Fu, Q.; et al. Long non-cdoing RNA MFSD4A-AS1 promotes lym[phangiogenesis and pymphatic metastasis of papillary thyroid cancer. Endocr.-Relat. Cacner 2023, 30, e220221. [Google Scholar] [CrossRef]
- Zhou, T.; Zhong, M.; Zhang, S.; Wang, Z.; Xie, R.; Xiong, C.; Lc, Y.; Chen, W.; Yu, J. LncRNA CASC2 expression is downregulated in papillary thyroid cancer and promotes cell invasion by affecting EMT pathway. Cancer Biomark. 2018, 23, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-M.; Lo, C.-Y.; Lam, A.-K.; Lang, B.; Leung, P.L.; Luk, J.M. The potential clinical relevance of serum vascular endothelial growth factor (VEGF) and VEGF-C in recurrent papillary thyroid cancer. Surgery 2008, 144, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Medici, M.; Porcu, E.; Pistis, G.; Temur, A.; Brown, S.; Jensen, R.A.; Rawal, R.; Roef, G.L.; Plantinga, T.S.; Vermeulen, S.H.; et al. Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease. PLoS Genet. 2014, 10, e1004123. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Xu, J.; Wang, M.; Xu, G.; Zhang, N.; Wang, G.; Zhao, Y. LncRNA HCP5 promotes follicular thyroid carcinoma progression via miRNAs sponge. Cell Death Dis. 2018, 9, 372. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, X.; Liang, L.; Pan, X.; Lv, H.; Zhao, Y. Sialyltransferase ST3GAL6 mediates the effect of microRNA-26a on cell growth, migration, and invasion in hepatocellular carcinoma through the protein kinase B/mammalian target of rapamycin pathway. Cancer Sci. 2017, 108, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Y.; Ma, W.; Dong, W.; Zhou, H.; Song, X.; Zhang, J.; Jia, L. Modification of Sialylation Mediates the Invasive Properties and Chemosensitivity of Human Hepatocellular Carcinoma. Mol. Cell. Proteom. 2014, 13, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Shanmugalingam, T.; Bosco, C.; Ridley, A.J.; Hemelrijck, M.V. Is there a role for IGF-1 in the development of secondary primary cancers? Cancer Med. 2016, 5, 3353–3367. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Yuan, Y.; Wang, M.; Yang, J.; Wang, H.; Sun, Y.; Xu, J.; Zhao, Y. LncRNA H19 Suppresses Metstasis of Follicular Thyroid Carcinoma via the IGF1/JAK/STAT Pathway. SSRN 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Liu, J.; Deng, Z.; Zeng, L.; Zhou, W. Long Noncoding RNA GAS5 Targeting miR-221-3p/Cyclin-Dependent Kinase Inhibitor 2B Axis Regulates Follicular Thyroid Carcinoma Cell Cycle and Proliferation. Pathobiology 2021, 88, 298–300. [Google Scholar] [CrossRef]
- Silva, A.; Bullock, M.; Calin, G. The Clinical Relevance of Long Non-Coding RNAs in Cancer. Cancers 2015, 7, 2169–2182. [Google Scholar] [CrossRef]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- Shi, T.; Gao, G.; Cao, Y. Long Noncoding RNAs as Novel Biomarkers Have a Promising Future in Cancer Diagnostics. Dis. Markers 2016, 2016, 9085195. [Google Scholar] [CrossRef]
- Vaghari-Tabari, M.; Hassanpour, P.; Sadeghsoltani, F.; Malakoti, F.; Alemi, F.; Qujeq, D.; Asemi, Z.; Yousefi, B. CRISPR/Cas9 gene editing: A new approach for overcoming drug resistance in cancer. Cell. Mol. Biol. Lett. 2022, 27, 49. [Google Scholar] [CrossRef]
- Sartori, D.A.; Chan, D.W. Biomarkers in prostate cancer: What’s new? Curr. Opin. Oncol. 2014, 26, 259–264. [Google Scholar] [CrossRef]
- Shao, Y.; Ye, M.; Jiang, X.; Sun, W.; Ding, X.; Liu, Z.; Ye, G.; Zhang, X.; Xiao, B.; Guo, J. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer 2014, 120, 3320–3328. [Google Scholar] [CrossRef] [PubMed]
- Kara, G.; Calin, G.A.; Ozpolat, B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv. Drug Deliv. Rev. 2022, 182, 114113. [Google Scholar] [CrossRef] [PubMed]
Thyroid Cancer Subtype | lncRNA Name | Expression Pattern | Role in Thyroid Cancer |
---|---|---|---|
Anaplastic Thyroid Cancer | MALAT1 | ↑ | miR-200p-3a repression and FOXA1 activation impacting proliferation, migration/invasion, autophagy, and apoptosis |
HOTAIRM1 | ↑ | Correlated with decreased patient survival; prevents functional miR-144 and induces EMT | |
UCA1 | ↑ | Drives aberrant c-myc expression and oncogenesis [49]; sponges miR-148a, increases PD-L1 expression, and CTL activity | |
MANCR | ↑ | Drives apoptotic inhibition and proliferative and invasive induction | |
NEAT1 | ↑ | Associated with advanced TNM stage, LN metastasis, and chemoresistance [54]; inhibits miR-9-5p; drives hypoxia-induced carcinogenic behavior | |
PAR5 | ↓ | Unable to inhibit EZH2, leading to its overexpression and increased oncogenic activity | |
H19 | ↑ ≠ | Influences proliferation, colony-forming capacity, invasive potential, migratory propensity, and apoptotic induction | |
Papillary Thyroid Cancer | H19 | ↑↓ ≠ | Conflicting roles: low levels may promote carcinogenesis and modulate TME activity; high levels may serve as an oncogene |
SOX2OT | ↑ | Biomarker in PTC; correlated with cancer onset and progression | |
DANCR | ↑ | Biomarker in PTC; correlated with cancer onset | |
TINCR | = | Reported biomarker in PTC; associated with various clinicopathological features of PTC | |
lnc-OMD-1 | ↑ * | Significantly correlated with ETE and more aggressive PTC | |
LUCAT1 | ↑ | Correlated with advanced TNM stage; impacts G1 cell cycle control (p21/p53 axis), proliferation, invasion, and apoptotic prevention | |
HOTTIP | ↑ | Promotes cellular proliferation and metastasis via miR-637 repression and Akt1 activation; correlates with tumor volume | |
LINC00313 | ↑ | Correlated with worse prognosis; promotes migration and clonogenicity; inhibits apoptosis; downregulates miR-4429 | |
BANCR | ↓ * | Low levels correlated with advanced TNM staging and poorly differentiated PTC | |
COMET | ↑ | Oncogenic driver in PTC (via MET/MAPK activation) leading to cellular proliferation, survival, and metastasis | |
CASC2 | ↓ | Correlated with LN metastasis; associated with growth rate, migratory and invasive capabilities, and EMT | |
MFSD4A-AS1 | ↑ | Correlated with LN metastasis; promotes lymphangiogenic formation, and enhances PTC cell invasiveness | |
Follicular Thyroid Cancer | HCP5 | ↑ | Drives proliferation, migration, angiogenesis, and tumorigenesis in FTC; correlated with more invasive FTC |
H19 | ↓ ≠ | Inversely correlated with tumor size, vascular invasion, and distant metastases; associated with ETE and likelihood of recurrence | |
GAS5 | ↓ | Regulates G0/G1 cell cycle control and cellular proliferation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeSouza, N.R.; Jarboe, T.; Carnazza, M.; Quaranto, D.; Islam, H.K.; Tiwari, R.K.; Geliebter, J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. Biology 2024, 13, 304. https://doi.org/10.3390/biology13050304
DeSouza NR, Jarboe T, Carnazza M, Quaranto D, Islam HK, Tiwari RK, Geliebter J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. Biology. 2024; 13(5):304. https://doi.org/10.3390/biology13050304
Chicago/Turabian StyleDeSouza, Nicole R., Tara Jarboe, Michelle Carnazza, Danielle Quaranto, Humayun K. Islam, Raj K. Tiwari, and Jan Geliebter. 2024. "Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery" Biology 13, no. 5: 304. https://doi.org/10.3390/biology13050304
APA StyleDeSouza, N. R., Jarboe, T., Carnazza, M., Quaranto, D., Islam, H. K., Tiwari, R. K., & Geliebter, J. (2024). Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. Biology, 13(5), 304. https://doi.org/10.3390/biology13050304