Biomechanical Analysis of Human Gait When Changing Velocity and Carried Loads: Simulation Study with OpenSim
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. OpenSim Model
2.2. Simulations
2.3. Outcome Measures
2.4. Statistics
3. Results
4. Discussion
4.1. The Biomechanical Simulations
4.2. Application of Simulated Approaches
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirelman, A.; Shema, S.; Maidan, I.; Hausdorff, J.M. Gait. Handb. Clin. Neurol. 2018, 159, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kong, K.; Tomizuka, M. Real-time Estimation of Lower Extremity Joint Torques in Normal Gait. IFAC Proc. Vol. 2009, 42, 443–448. [Google Scholar] [CrossRef]
- Meadows, B.; Bowers, R.; Owen, E. Biomechanics of the Hip, Knee and Ankle. In AAOS Atlas of Orthoses and Assistive Devices; Hsu, J., Michael, J., Fisk, J., Eds.; Mosby: Philadelphia, PA, USA, 2008; pp. 299–309. ISBN 978-0-323-03931-4. [Google Scholar]
- Cimolin, V.; Galli, M. Summary measures for clinical gait analysis: A literature review. Gait Posture 2014, 39, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Goffredo, M.; Guanziroli, E.; Pournajaf, S.; Gaffuri, M.; Gasperini, G.; Filoni, S.; Baratta, S.; Damiani, C.; Franceschini, M.; Molteni, F.; et al. Overground wearable powered exoskeleton for gait training in subacute stroke subjects: Clinical and gait assessments. Eur. J. Phys. Rehabil. Med. 2020, 55, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Schelhaas, R.; Hajibozorgi, M.; Hortobágyi, T.; Hijmans, J.M.; Greve, C. Conservative interventions to improve foot progression angle and clinical measures in orthopedic and neurological patients—A systematic review and meta-analysis. J. Biomech. 2021, 130, 110831. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.; McBain, T.; Portas, M.; Spears, I. Measurement in Sports Biomechanics. Meas. Control. 2012, 45, 182–186. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Drummond, C.; Craker, J.; Rowbottom, J.R.; Voos, J.E. Wearable Devices for Sports: New Integrated Technologies Allow Coaches, Physicians, and Trainers to Better Understand the Physical Demands of Athletes in Real time. IEEE Pulse 2017, 8, 38–43. [Google Scholar] [CrossRef]
- McDevitt, S.; Hernandez, H.; Hicks, J.; Lowell, R.; Bentahaikt, H.; Burch, R.; Ball, J.; Chander, H.; Freeman, C.; Taylor, C.; et al. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering 2022, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, C.; Nicora, M.L.; Storm, F.; Reni, G.; Malosio, M.; Scano, A. Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review. Bioengineering 2023, 10, 445. [Google Scholar] [CrossRef]
- Lorenzini, M.; Lagomarsino, M.; Fortini, L.; Gholami, S.; Ajoudani, A. Ergonomic human-robot collaboration in industry: A review. Front. Robot. AI 2023, 9, 813907. [Google Scholar] [CrossRef]
- Krupenevich, R.; Rider, P.; Domire, Z.; DeVita, P. Males and Females Respond Similarly to Walking With a Standardized, Heavy Load. Mil. Med. 2015, 180, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Birrell, S.A.; Hooper, R.H.; Haslam, R.A. The effect of military load carriage on ground reaction forces. Gait Posture 2007, 26, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.; Figueiredo, J.; Fonseca, P.; Vilas-Boas, J.P.; Santos, C.P. Lower limb kinematic, kinetic, and EMG data from young healthy humans during walking at controlled speeds. Sci. Data 2021, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.L. Sagittal Plane Characterization of Normal Human Ankle Function across a Range of Walking Gait Speeds. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2002. [Google Scholar]
- Neptune, R.R.; Sasaki, K.; Kautz, S.A. The effect of walking speed on muscle function and mechanical energetics. Gait Posture 2008, 28, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Middleton, K.; Vickery-Howe, D.; Dascombe, B.; Clarke, A.; Wheat, J.; McClelland, J.; Drain, J. Mechanical Differences between Men and Women during Overground Load Carriage at Self-Selected Walking Speeds. Int. J. Environ. Res. Public Health 2022, 19, 3927. [Google Scholar] [CrossRef] [PubMed]
- Lenton, G.K.; Doyle, T.L.; Lloyd, D.G.; Higgs, J.; Billing, D.; Saxby, D.J. Lower-limb joint work and power are modulated during load carriage based on load configuration and walking speed. J. Biomech. 2018, 83, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Barnamehei, H.; Karimidastjerdi, M.; Torabigoudarzi, M.; Kharazi, M.; Barnamehei, M.; Golfeshan, N.; Naghavi, N.; Jafarloo, S.A.; Ghorbani, M. Simulation of flat-foot gait with and without running shoes by evaluation of hip kinematics and balance control variations via OpenSim. Gait Posture 2020, 81, 32–33. [Google Scholar] [CrossRef]
- Trinler, U.; Schwameder, H.; Baker, R.; Alexander, N. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J. Biomech. 2019, 86, 55–63. [Google Scholar] [CrossRef]
- Karimi, M.T.; Hemmati, F.; Mardani, M.A.; Sharifmoradi, K.; Hosseini, S.I.; Fadayevatan, R.; Esrafilian, A. Determination of the correlation between muscle forces obtained from OpenSim and muscle activities obtained from electromyography in the elderly. Phys. Eng. Sci. Med. 2021, 44, 243–251. [Google Scholar] [CrossRef]
- Alexander, N.; Schwameder, H.; Baker, R.; Trinler, U. Effect of different walking speeds on joint and muscle force estimation using AnyBody and OpenSim. Gait Posture 2021, 90, 197–203. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.; Loan, J.; Hoy, M.; Zajac, F.; Topp, E.; Rosen, J. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F.C.; Pandy, M.G. Dynamic Optimization of Human Walking. J. Biomech. Eng. 2001, 123, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, G.T.; Zajac, F.E. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 1989, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals. PeerJ 2018, 6, e4640. [Google Scholar] [CrossRef] [PubMed]
- Seay, J.F.; Fellin, R.E.; Sauer, S.G.; Frykman, P.N.; Bensel, C.K. Lower Extremity Biomechanical Changes Associated With Symmetrical Torso Loading During Simulated Marching. Mil. Med. 2014, 179, 85–91. [Google Scholar] [CrossRef]
- Quesada, P.M.; Mengelkoch, L.J.; Hale, R.C.; Simon, S.R. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics 2000, 43, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Rice, H.; Fallowfield, J.; Allsopp, A.; Dixon, S. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity. Ergonomics 2016, 60, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Harman, E.; Hoon, K.; Frykman, P.; Pandorf, C. The Effects of Backpack Weight on the Biomechanics of Load Carriage; Defense Technical Information Center: Fort Belvoir, VA, USA, 2000. [Google Scholar]
- Silder, A.; Delp, S.L.; Besier, T. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage. J. Biomech. 2013, 46, 2522–2528. [Google Scholar] [CrossRef]
- Brown, T.; O’donovan, M.; Hasselquist, L.; Corner, B.; Schiffman, J. Body borne loads impact walk-to-run and running biomechanics. Gait Posture 2014, 40, 237–242. [Google Scholar] [CrossRef]
- Huang, T.-W.P.; Kuo, A.D. Mechanics and energetics of load carriage during human walking. J. Exp. Biol. 2013, 217, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.S.; Low, D.C. Military load carriage effects on the gait of military personnel: A systematic review. Appl. Ergon. 2021, 93, 103376. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Andrews, A.W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Farris, D.J.; Sawicki, G.S. The mechanics and energetics of human walking and running: A joint level perspective. J. R. Soc. Interface 2011, 9, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Carlisle, R.E.; Kuo, A.D. Canada Optimization of energy and time predicts dynamic speeds for human walking. eLife 2023, 12, e81939. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, C.; Malosio, M.; Reni, G.; Scano, A. Optimal Biomechanical Performance in Upper-Limb Gestures Depends on Velocity and Carried Load. Biology 2022, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Caldwell, G.E.; Umberger, B.R. A direct collocation framework for optimal control simulation of pedaling using OpenSim. PLoS ONE 2022, 17, e0264346. [Google Scholar] [CrossRef] [PubMed]
- Akhavanfar, M.; Uchida, T.K.; Clouthier, A.L.; Graham, R.B. Sharing the load: Modeling loads in OpenSim to simulate two-handed lifting. Multibody Syst. Dyn. 2022, 54, 213–234. [Google Scholar] [CrossRef]
- Bagheri, F.; Barnamehei, H.; Kharazi, M.; Panahi, A.; Golfeshan, N.; Razaghi, M.; Rostami, M.; Barnamehei, M.; Naghavi, N.; Jafarloo, S.A. Comparison of biarticular muscles effects on balance variation between bare-foot and wearing high-heel shoe conditions: Experimental and simulation by OpenSim. Gait Posture 2020, 81, 20–21. [Google Scholar] [CrossRef]
- Scarton, A.; Jonkers, I.; Guiotto, A.; Spolaor, F.; Guarneri, G.; Avogaro, A.; Cobelli, C.; Sawacha, Z. Comparison of lower limb muscle strength between diabetic neuropathic and healthy subjects using OpenSim. Gait Posture 2017, 58, 194–200. [Google Scholar] [CrossRef]
- Chang, J.; Chablat, D.; Bennis, F.; Ma, L. A Full-Chain OpenSim Model and Its Application on Posture Analysis of an Overhead Drilling Task. In Proceedings of the Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion; Duffy, V.G., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 33–44. [Google Scholar]
- Panariello, D.; Grazioso, S.; Caporaso, T.; Palomba, A.; Di Gironimo, G.; Lanzotti, A. Evaluation of human joint angles in industrial tasks using OpenSim. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy, 4–6 June 2019. [Google Scholar]
- Steele, K.M.; Tresch, M.C.; Perreault, E.J. The number and choice of muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci. 2013, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, C.; Scano, A. The Number and Structure of Muscle Synergies Depend on the Number of Recorded Muscles: A Pilot Simulation Study with OpenSim. Sensors 2022, 22, 8584. [Google Scholar] [CrossRef] [PubMed]
- Marino, G.; Scano, A.; Beltrame, G.; Brambilla, C.; Marazzi, A.; Aparo, F.; Tosatti, L.M.; Gatti, R.; Portinaro, N. Influence of Backpack Carriage and Walking Speed on Muscle Synergies in Healthy Children. Bioengineering 2024, 11, 173. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, S.; Betschart, M.; Bethoux, F. Gait Analysis for Poststroke Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 265–276. [Google Scholar] [CrossRef]
- Bonanno, M.; De Nunzio, A.M.; Quartarone, A.; Militi, A.; Petralito, F.; Calabrò, R.S. Gait Analysis in Neurorehabilitation: From Research to Clinical Practice. Bioengineering 2023, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Kempen, J.C.; Doorenbosch, C.A.; Knol, D.L.; de Groot, V.; Beckerman, H. Newly Identified Gait Patterns in Patients With Multiple Sclerosis May Be Related to Push-off Quality. Phys. Ther. 2016, 96, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Balaban, B.; Tok, F. Gait Disturbances in Patients With Stroke. PM&R 2014, 6, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Lofterød, B.; Terjesen, T.; Skaaret, I.; Huse, A.-B.; Jahnsen, R. Preoperative gait analysis has a substantial effect on orthopedic decision making in children with cerebral palsy: Comparison between clinical evaluation and gait analysis in 60 patients. Acta Orthop. 2007, 78, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chin. J. Mech. Eng. 2019, 32, 1–11. [Google Scholar] [CrossRef]
- Van Kammen, K.; Boonstra, A.; Reinders-Messelink, H.; Otter, R.D. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking. PLoS ONE 2014, 9, e107323. [Google Scholar] [CrossRef]
- Ozgul, B. Effects of unilateral backpack carriage on biomechanics of gait in adolescents: A kinematic analysis. Acta Orthop. Traumatol. Turc. 2012, 46, 269–274. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.L.; Ziegler, M.L.; Pires-Fernandes, M.; Knarr, B.A.; Higginson, J.S.; Sergi, F. The effect of stride length on lower extremity joint kinetics at various gait speeds. PLoS ONE 2019, 14, e0200862. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Yeo, J.C. Effects of load carriage and fatigue on gait characteristics. J. Biomech. 2011, 44, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, D.; Pal, M.S.; Pramanik, A.; Majumdar, D. Kinetic changes in gait during low magnitude military load carriage. Ergonomics 2013, 56, 1917–1927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liang, L.; Zhu, W.; Wu, X. A novel method for tracking movements of backpack’s centre of mass in dynamic activities. Gait Posture 2023, 106, S229–S230. [Google Scholar] [CrossRef]
- Beltrame, G.; Scano, A.; Marino, G.; Peccati, A.; Tosatti, L.M.; Portinaro, N. Recent developments in muscle synergy analysis in young people with neurodevelopmental diseases: A Systematic Review. Front. Bioeng. Biotechnol. 2023, 11, 1145937. [Google Scholar] [CrossRef]
- Okegbile, S.D.; Cai, J.; Niyato, D.; Yi, C. Human Digital Twin for Personalized Healthcare: Vision, Architecture and Future Directions. IEEE Netw. 2022, 37, 262–269. [Google Scholar] [CrossRef]
Peak Torque [Nm/kg] | ||||||||
---|---|---|---|---|---|---|---|---|
1 km/h | 1.5 km/h | 2 km/h | 2.5 km/h | 3 km/h | 3.5 km/h | 4 km/h | ||
ankle | 0 kg | 1.18 (0.21) | 1.24 (0.18) | 1.32 (0.16) | 1.28 (0.24) | 1.30 (0.21) | 1.36 (0.24) | 1.36 (0.19) |
1 kg | 1.20 (0.21) | 1.26 (0.18) | 1.34 (0.16) | 1.30 (0.24) | 1.32 (0.21) | 1.38 (0.24) | 1.38 (0.19) | |
3 kg | 1.25 (0.21) | 1.30 (0.18) | 1.38 (0.16) | 1.35 (0.24) | 1.37 (0.21) | 1.43 (0.24) | 1.43 (0.20) | |
5 kg | 1.29 (0.22) | 1.34 (0.19) | 1.42 (0.16) | 1.39 (0.24) | 1.41 (0.21) | 1.47 (0.24) | 1.47 (0.20) | |
10 kg | 1.39 (0.22) | 1.44 (0.20) | 1.53 (0.16) | 1.49 (0.25) | 1.52 (0.22) | 1.58 (0.25) | 1.58 (0.21) | |
15 kg | 1.49 (0.23) | 1.54 (0.21) | 1.64 (0.17) | 1.60 (0.25) | 1.62 (0.23) | 1.69 (0.26) | 1.70 (0.22) | |
20 kg | 1.59 (0.24) | 1.64 (0.22) | 1.74 (0.17) | 1.70 (0.26) | 1.73 (0.23) | 1.80 (0.27) | 1.82 (0.23) | |
knee | 0 kg | 0.46 (0.22) | 0.42 (0.19) | 0.44 (0.16) | 0.52 (0.28) | 0.46 (0.18) | 0.49 (0.17) | 0.53 (0.15) |
1 kg | 0.46 (0.22) | 0.43 (0.20) | 0.45 (0.16) | 0.53 (0.29) | 0.46 (0.18) | 0.50 (0.17) | 0.54 (0.15) | |
3 kg | 0.47 (0.23) | 0.44 (0.20) | 0.46 (0.16) | 0.54 (0.30) | 0.47 (0.19) | 0.51 (0.17) | 0.55 (0.16) | |
5 kg | 0.48 (0.23) | 0.45 (0.20) | 0.47 (0.17) | 0.55 (0.31) | 0.48 (0.19) | 0.51 (0.18) | 0.56 (0.16) | |
10 kg | 0.51 (0.25) | 0.48 (0.21) | 0.49 (0.18) | 0.58 (0.33) | 0.51 (0.20) | 0.54 (0.19) | 0.59 (0.18) | |
15 kg | 0.54 (0.26) | 0.50 (0.22) | 0.52 (0.19) | 0.60 (0.35) | 0.54 (0.22) | 0.57 (0.20) | 0.62 (0.20) | |
20 kg | 0.57 (0.28) | 0.53 (0.23) | 0.55 (0.20) | 0.63 (0.38) | 0.56 (0.23) | 0.59 (0.22) | 0.65 (0.21) | |
hip | 0 kg | 0.58 (0.13) | 0.53 (0.15) | 0.54 (0.17) | 0.58 (0.14) | 0.65 (0.17) | 0.81 (0.39) | 0.86 (0.21) |
1 kg | 0.59 (0.13) | 0.53 (0.15) | 0.55 (0.17) | 0.59 (0.14) | 0.66 (0.17) | 0.82 (0.39) | 0.87 (0.21) | |
3 kg | 0.60 (0.13) | 0.55 (0.15) | 0.57 (0.17) | 0.61 (0.14) | 0.68 (0.17) | 0.83 (0.38) | 0.88 (0.21) | |
5 kg | 0.62 (0.13) | 0.57 (0.16) | 0.58 (0.18) | 0.62 (0.14) | 0.69 (0.18) | 0.85 (0.38) | 0.90 (0.22) | |
10 kg | 0.66 (0.13) | 0.61 (0.16) | 0.62 (0.18) | 0.67 (0.15) | 0.73 (0.18) | 0.88 (0.36) | 0.94 (0.23) | |
15 kg | 0.71 (0.14) | 0.65 (0.16) | 0.67 (0.19) | 0.71 (0.15) | 0.77 (0.19) | 0.91 (0.34) | 0.99 (0.24) | |
20 kg | 0.76 (0.14) | 0.69 (0.17) | 0.71 (0.20) | 0.75 (0.16) | 0.81 (0.20) | 0.95 (0.33) | 1.03 (0.25) |
Peak Power [W/kg] | ||||||||
---|---|---|---|---|---|---|---|---|
1 km/h | 1.5 km/h | 2 km/h | 2.5 km/h | 3 km/h | 3.5 km/h | 4 km/h | ||
ankle | 0 kg | 0.83 (0.21) | 0.90 (0.25) | 1.37 (0.35) | 1.42 (0.38) | 1.79 (0.47) | 2.24 (0.48) | 2.62 (0.64) |
1 kg | 0.84 (0.21) | 0.92 (0.26) | 1.40 (0.35) | 1.44 (0.39) | 1.82 (0.48) | 2.28 (0.49) | 2.67 (0.66) | |
3 kg | 0.87 (0.22) | 0.95 (0.27) | 1.45 (0.37) | 1.49 (0.40) | 1.89 (0.50) | 2.37 (0.50) | 2.78 (0.68) | |
5 kg | 0.90 (0.23) | 0.99 (0.28) | 1.50 (0.38) | 1.54 (0.41) | 1.96 (0.52) | 2.46 (0.52) | 2.88 (0.70) | |
10 kg | 0.98 (0.25) | 1.07 (0.31) | 1.63 (0.42) | 1.67 (0.44) | 2.14 (0.57) | 2.67 (0.56) | 3.15 (0.76) | |
15 kg | 1.06 (0.27) | 1.15 (0.33) | 1.75 (0.45) | 1.79 (0.47) | 2.31 (0.62) | 2.89 (0.61) | 3.41 (0.83) | |
20 kg | 1.14 (0.30) | 1.24 (0.36) | 1.88 (0.49) | 1.92 (0.50) | 2.48 (0.67) | 3.11 (0.65) | 3.68 (0.89) | |
knee | 0 kg | 0.30 (0.10) | 0.36 (0.13) | 0.40 (0.10) | 0.62 (0.23) | 1.04 (0.39) | 1.75 (0.48) | 2.23 (0.68) |
1 kg | 0.30 (0.10) | 0.37 (0.13) | 0.40 (0.10) | 0.63 (0.23) | 1.05 (0.39) | 1.76 (0.49) | 2.24 (0.68) | |
3 kg | 0.30 (0.10) | 0.37 (0.13) | 0.41 (0.11) | 0.64 (0.24) | 1.07 (0.40) | 1.78 (0.50) | 2.26 (0.69) | |
5 kg | 0.31 (0.10) | 0.38 (0.14) | 0.42 (0.11) | 0.65 (0.25) | 1.08 (0.41) | 1.80 (0.51) | 2.28 (0.69) | |
10 kg | 0.32 (0.10) | 0.39 (0.14) | 0.44 (0.11) | 0.68 (0.27) | 1.12 (0.42) | 1.84 (0.54) | 2.36 (0.70) | |
15 kg | 0.33 (0.10) | 0.41 (0.15) | 0.47 (0.12) | 0.71 (0.30) | 1.16 (0.44) | 1.89 (0.57) | 2.43 (0.72) | |
20 kg | 0.34 (0.11) | 0.42 (0.16) | 0.49 (0.13) | 0.75 (0.32) | 1.21 (0.46) | 1.94 (0.60) | 2.51 (0.73) | |
hip | 0 kg | 0.24 (0.09) | 0.28 (0.16) | 0.35 (0.11) | 0.45 (0.12) | 0.62 (0.17) | 0.94 (0.28) | 1.16 (0.26) |
1 kg | 0.24 (0.09) | 0.28 (0.16) | 0.35 (0.11) | 0.45 (0.12) | 0.63 (0.17) | 0.95 (0.29) | 1.16 (0.26) | |
3 kg | 0.24 (0.10) | 0.29 (0.16) | 0.36 (0.11) | 0.46 (0.12) | 0.63 (0.17) | 0.95 (0.29) | 1.17 (0.26) | |
5 kg | 0.25 (0.10) | 0.30 (0.16) | 0.37 (0.11) | 0.47 (0.12) | 0.64 (0.17) | 0.96 (0.29) | 1.17 (0.26) | |
10 kg | 0.26 (0.10) | 0.32 (0.17) | 0.39 (0.12) | 0.49 (0.12) | 0.66 (0.17) | 0.98 (0.29) | 1.19 (0.27) | |
15 kg | 0.27 (0.10) | 0.33 (0.17) | 0.41 (0.12) | 0.51 (0.12) | 0.68 (0.17) | 1.00 (0.29) | 1.20 (0.27) | |
20 kg | 0.28 (0.10) | 0.35 (0.17) | 0.43 (0.13) | 0.53 (0.12) | 0.70 (0.17) | 1.02 (0.30) | 1.22 (0.27) |
Work [J/kg] | ||||||||
---|---|---|---|---|---|---|---|---|
1 km/h | 1.5 km/h | 2 km/h | 2.5 km/h | 3 km/h | 3.5 km/h | 4 km/h | ||
ankle | 0 kg | 0.49 (0.13) | 0.47 (0.14) | 0.48 (0.11) | 0.44 (0.12) | 0.42 (0.09) | 0.43 (0.11) | 0.42 (0.10) |
1 kg | 0.50 (0.13) | 0.48 (0.14) | 0.49 (0.12) | 0.45 (0.13) | 0.43 (0.09) | 0.44 (0.11) | 0.43 (0.10) | |
3 kg | 0.52 (0.13) | 0.49 (0.14) | 0.51 (0.12) | 0.46 (0.13) | 0.44 (0.09) | 0.45 (0.11) | 0.45 (0.10) | |
5 kg | 0.53 (0.14) | 0.51 (0.14) | 0.52 (0.12) | 0.47 (0.13) | 0.45 (0.09) | 0.46 (0.12) | 0.46 (0.11) | |
10 kg | 0.57 (0.15) | 0.54 (0.15) | 0.56 (0.13) | 0.51 (0.14) | 0.49 (0.10) | 0.50 (0.12) | 0.50 (0.11) | |
15 kg | 0.62 (0.16) | 0.58 (0.16) | 0.60 (0.14) | 0.55 (0.15) | 0.53 (0.10) | 0.54 (0.13) | 0.53 (0.12) | |
20 kg | 0.66 (0.17) | 0.62 (0.17) | 0.64 (0.15) | 0.58 (0.16) | 0.56 (0.11) | 0.57 (0.14) | 0.57 (0.13) | |
knee | 0 kg | 0.26 (0.09) | 0.21 (0.06) | 0.21 (0.05) | 0.26 (0.13) | 0.31 (0.07) | 0.41 (0.07) | 0.51 (0.11) |
1 kg | 0.26 (0.09) | 0.21 (0.06) | 0.21 (0.05) | 0.27 (0.13) | 0.31 (0.07) | 0.41 (0.07) | 0.51 (0.11) | |
3 kg | 0.26 (0.09) | 0.22 (0.06) | 0.22 (0.05) | 0.27 (0.14) | 0.31 (0.07) | 0.41 (0.08) | 0.52 (0.11) | |
5 kg | 0.29 (0.09) | 0.22 (0.06) | 0.22 (0.06) | 0.27 (0.14) | 0.32 (0.07) | 0.42 (0.08) | 0.52 (0.11) | |
10 kg | 0.29 (0.10) | 0.23 (0.07) | 0.23 (0.06) | 0.28 (0.15) | 0.33 (0.08) | 0.43 (0.08) | 0.54 (0.12) | |
15 kg | 0.29 (0.10) | 0.24 (0.07) | 0.24 (0.06) | 0.30 (0.16) | 0.34 (0.08) | 0.45 (0.09) | 0.55 (0.12) | |
20 kg | 0.30 (0.11) | 0.25 (0.07) | 0.24 (0.06) | 0.31 (0.17) | 0.35 (0.09) | 0.46 (0.09) | 0.57 (0.13) | |
hip | 0 kg | 0.26 (0.08) | 0.21 (0.06) | 0.20 (0.06) | 0.23 (0.05) | 0.27 (0.06) | 0.33 (0.09) | 0.39 (0.09) |
1 kg | 0.27 (0.08) | 0.21 (0.06) | 0.20 (0.06) | 0.23 (0.05) | 0.27 (0.06) | 0.33 (0.09) | 0.39 (0.09) | |
3 kg | 0.27 (0.08) | 0.22 (0.06) | 0.21 (0.06) | 0.23 (0.05) | 0.28 (0.06) | 0.33 (0.09) | 0.40 (0.09) | |
5 kg | 0.28 (0.08) | 0.22 (0.06) | 0.21 (0.07) | 0.24 (0.05) | 0.28 (0.06) | 0.34 (0.09) | 0.40 (0.09) | |
10 kg | 0.29 (0.08) | 0.24 (0.06) | 0.23 (0.07) | 0.25 (0.06) | 0.30 (0.07) | 0.35 (0.09) | 0.41 (0.09) | |
15 kg | 0.31 (0.08) | 0.25 (0.06) | 0.24 (0.07) | 0.27 (0.06) | 0.31 (0.07) | 0.36 (0.09) | 0.43 (0.10) | |
20 kg | 0.32 (0.09) | 0.26 (0.07) | 0.26 (0.08) | 0.28 (0.06) | 0.32 (0.07) | 0.38 (0.09) | 0.44 (0.10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brambilla, C.; Beltrame, G.; Marino, G.; Lanzani, V.; Gatti, R.; Portinaro, N.; Molinari Tosatti, L.; Scano, A. Biomechanical Analysis of Human Gait When Changing Velocity and Carried Loads: Simulation Study with OpenSim. Biology 2024, 13, 321. https://doi.org/10.3390/biology13050321
Brambilla C, Beltrame G, Marino G, Lanzani V, Gatti R, Portinaro N, Molinari Tosatti L, Scano A. Biomechanical Analysis of Human Gait When Changing Velocity and Carried Loads: Simulation Study with OpenSim. Biology. 2024; 13(5):321. https://doi.org/10.3390/biology13050321
Chicago/Turabian StyleBrambilla, Cristina, Giulia Beltrame, Giorgia Marino, Valentina Lanzani, Roberto Gatti, Nicola Portinaro, Lorenzo Molinari Tosatti, and Alessandro Scano. 2024. "Biomechanical Analysis of Human Gait When Changing Velocity and Carried Loads: Simulation Study with OpenSim" Biology 13, no. 5: 321. https://doi.org/10.3390/biology13050321
APA StyleBrambilla, C., Beltrame, G., Marino, G., Lanzani, V., Gatti, R., Portinaro, N., Molinari Tosatti, L., & Scano, A. (2024). Biomechanical Analysis of Human Gait When Changing Velocity and Carried Loads: Simulation Study with OpenSim. Biology, 13(5), 321. https://doi.org/10.3390/biology13050321