Dietary Protein Optimization for Growth and Immune Enhancement in Juvenile Hybrid Sturgeon (Acipenser baerii × A. schrenckii): Balancing Growth Performance, Serum Biochemistry, and Expression of Immune-Related Genes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Management
2.2. Experimental Diets
2.3. Sample Collection
2.4. Nutrient Content
2.5. Amino Acid Determination
2.6. Serum Biochemical Analysis
2.7. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.8. Calculations and Statistical Analysis
3. Results
3.1. Growth
3.2. Body Composition
3.3. Amino Acids Profile
3.4. Plasma Metabolite Contents
3.5. Hematological Immune Parameters
3.6. Gene Expression Profiling
4. Discussion
4.1. Growth Performance
4.2. Body Amino Acids
4.3. Plasma Metabolites
4.4. Immune Response
4.5. Gene Expression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, Q.; Teame, T.; Wu, X.; Ding, Q.; Ran, C.; Yang, Y.; Xing, Y.; Zhang, Z.; Zhou, Z. Influence of diet shift from bloodworm to formulated feed on growth performance, gut microbiota structure and function in early juvenile stages of hybrid sturgeon (Acipenser baerii × Acipenser schrenckii). Aquaculture 2021, 533, 736165. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Yan, Z.; Zhao, Z.; Zhang, C.; Gong, Q.; Du, X.; Wu, J.; Feng, Y.; Du, J. Improvement of skeletal muscle growth by GH/IGF growth-axis contributes to growth performance in commercial fleshy sturgeon. Aquaculture 2021, 543, 736929. [Google Scholar] [CrossRef]
- Teles, A.O.; Couto, A.; Enes, P.; Peres, H. Dietary protein requirements of fish—A meta-analysis. Rev. Aquac. 2020, 12, 1445–1477. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Wu, G. Nutrition and functions of amino acids in fish. Adv. Exp. Med. Biol. 2021, 1285, 133–168. [Google Scholar] [CrossRef]
- Kaushik, S.; Seiliez, I. Protein and amino acids nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Mohammadzadeh, S.; Kalhor, N.; Salehi, F.; Eslami, M.; Zaretabar, A.; Moghadam, M.S.; Hoseinifar, S.H.; Van Doan, H. Effects of caffeic acid on the growth performance, growth genes, digestive enzyme activity, and serum immune parameters of beluga (Huso huso). Exp. Zool. Part A Ecol. Integr. Physiol. 2022, 337, 715–723. [Google Scholar] [CrossRef]
- Safari, R.; Hoseinifar, S.H.; Imanpour, M.R.; Mazandarani, M.; Sanchouli, H.; Paolucci, M. Effects of dietary polyphenols on mucosal and humoral immune responses, antioxidant defense and growth gene expression in beluga sturgeon (Huso huso). Aquaculture 2020, 528, 735494. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Eslami, M.; Kalhor, N.; Zaretabar, A.; Mohammadzadeh, S.; Shahriari Moghadam, M.; Yousefi, M.; Ahmadifar, M.; Hoseinifar, S.H.; Pusadee, T.; et al. Effect of a diet enriched with sodium propionate on growth performance, antioxidant property, innate-adaptive immune response, and growth-related genes expression in critically endangered beluga sturgeon (Huso huso). Fish Shellfish Immunol. 2022, 125, 101–108. [Google Scholar] [CrossRef]
- Moore, B.J.; Hung, S.S.O.; Medrano, J.F. Protein requirement of hatchery-produced juvenile white sturgeon (Acipenser transmontanus). Aquaculture 1988, 71, 235–245. [Google Scholar] [CrossRef]
- Mohseni, M.; Sajjadi, M.; Pourkazemi, M. Growth performance and body composition of sub-yearling Persian sturgeon,(Acipenser persicus, Borodin, 1897), fed different dietary protein and lipid levels. J. Appl. Ichthyol. 2007, 23, 204–208. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, X.; Liu, J.; Han, D.; Yang, Y.; Lan, Z.; Xie, S. Effects of dietary protein level on growth performance, nitrogen and energy budget of juvenile hybrid sturgeon, Acipenser baerii × A. gueldenstaedtii. Aquaculture 2012, 338, 89–95. [Google Scholar] [CrossRef]
- Huang, Y.S.; Wen, X.B.; Li, S.K.; Xuan, X.Z.; Zhu, D.S. Effects of protein levels on growth, feed utilization, body composition, amino acid composition and physiology indices of juvenile chu’s croaker, Nibea coibor. Aquac. Nutr. 2017, 23, 594–602. [Google Scholar] [CrossRef]
- Fan, Z.; Wu, D.; Zhang, Y.; Li, J.; Xu, Q.; Wang, L. Carbonate alkalinity and dietary protein levels affected growth performance, intestinal immune responses and intestinal microflora in Songpu mirror carp (Cyprinus carpio Songpu). Aquaculture 2021, 545, 737135. [Google Scholar] [CrossRef]
- Fuentes, E.; Valdés, J.; Molina, A.; Björnsson, B. Regulation of skeletal muscle growth in fish by the GH-IGF system. Gen. Comp. Endocrinol. 2013, 192, 136–148. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International; AOAC: Washington, DC, USA, 2016.
- Wang, Y.; Wang, C.A.; Liu, S.; Zhang, S.; Lu, S.; Liu, H.; Zhang, Y. Effects of dietary arginine on growth performance, digestion, absorption ability, antioxidant capability, gene expression of intestinal protein synthesis, and inflammation-related genes of triploid juvenile Oncorhynchus mykiss fed a low-fishmeal diet. Aquac. Nutr. 2022, 2022, 3793727. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−delta delta c(t)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bulut, M.; Yiğit, M.; Ergün, S.; Kesbiç, O.S.; Acar, Ü.; Gültepe, N.; Karga, M.; Yılmaz, S.; Güroy, D. Evaluation of dietary protein and lipid requirements of two-banded sea bream (Diplodus vulgaris) cultured in a recirculating aquaculture system. Aquac. Int. 2014, 22, 965–973. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, J.X.; Hua, Y.; Xiang, X.W.; Zhou, Y.F.; Ye, L.; Shao, Q.J. Effects of dietary selenium polysaccharide on growth performance, oxidative stress and tissue selenium accumulation of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture 2019, 503, 389–395. [Google Scholar] [CrossRef]
- Mir, I.N.; Srivastava, P.P.; Bhat, I.A.; Jaffar, Y.D.; Sushila, N.; Sardar, P.; Kumar, S.; Muralidhar, A.P.; Jain, K.K. Optimal dietary lipid and protein level for growth and survival of catfish Clarias magur larvae. Aquaculture 2020, 520, 734678. [Google Scholar] [CrossRef]
- Lv, B.; Liu, B.; Zhou, Q.; Song, C.; Sun, C.; Zhang, H.; Liu, B.; Jiang, Z.; Jiang, S.; Liu, M. Effects of different temperatures and protein levels on growth performance, physiological response and expression of immune-related genes of juvenile oriental river prawn (Macrobrachium nipponense). Aquaculture 2021, 536, 736435. [Google Scholar] [CrossRef]
- Ma, B.; Wang, L.; Lou, B.; Tan, P.; Xu, D.; Chen, R. Dietary protein and lipid levels affect the growth performance, intestinal digestive enzyme activities and related genes expression of juvenile small yellow croaker (Larimichthys polyactis). Aquac. Rep. 2020, 17, 100403. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Ren, M.; Ge, X.; Ji, K.; Huang, D.; Pan, L.; Xia, D. A study to explore the effects of low dietary protein levels on the growth performance and nutritional metabolism of grass carp (Ctenopharyngodon idella) fry. Aquaculture 2022, 546, 737324. [Google Scholar] [CrossRef]
- Jin, Y.; Tian, L.; Xie, S.; Guo, D.; Yang, H.; Liang, G.; Liu, Y. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 2015, 437, 75–83. [Google Scholar] [CrossRef]
- McGoogan, B.B.; Gatlin, D.M. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus: II. Effects of energy level and nutrient density at various feeding rates. Aquaculture 2000, 182, 271–285. [Google Scholar] [CrossRef]
- Fletcher, D.J. The physiological control of appetite in fish. Comp. Biochem. Physiol. A 1984, 78, 617–628. [Google Scholar] [CrossRef]
- Salhi, M.; Bessonart, M.; Chediak, G.; Bellagamba, M.; Carnevia, D. Growth, feed utilization and body composition of black catfish, Rhamdia quelen, fry-fed diets containing different protein and energy levels. Aquaculture 2004, 231, 435–444. [Google Scholar] [CrossRef]
- Prabu, D.L.; Ebeneezar, S.; Chandrasekar, S.; Tejpal, C.S.; Kavitha, M.; Sayooj, P.; Vijayagopal, P. Influence of graded level of dietary protein with the equated level of limiting amino acids on growth, feed utilization, body indices and nutritive profile of snub nose pompano, Trachinotus blochii (Lacepede, 1801) reared in low saline water. Anim. Feed Sci. Technol. 2020, 269, 114685. [Google Scholar] [CrossRef]
- Nguyen, H.Y.N.; Trinh, T.L.; Baruah, K.; Lundh, T.; Kiessling, A. Growth and feed utilization of Nile tilapia (Oreochromis niloticus) fed different protein levels in a clear-water or biofloc-RAS system. Aquaculture 2021, 536, 736404. [Google Scholar] [CrossRef]
- Miao, S.; Han, B.; Li, J.; Hu, J.; Wan, W.; Sun, L.; An, Z. Effects of dietary protein level on the growth performance, feed utilization and immunity of red swamp crayfish Procambarus clarkia. Aquac. Rep. 2020, 18, 100540. [Google Scholar] [CrossRef]
- Liu, W.; Wen, H.; Luo, Z. Effect of dietary protein levels and feeding rates on the growth and health status of juvenile genetically improved farmed tilapia (Oreochromis niloticus). Aquac. Int. 2018, 26, 153–167. [Google Scholar] [CrossRef]
- Coutinho, F.; Peres, H.; Castro, C.; Pérez, J.A.; Magalhães, R.; Pousão, F.P.; Oliva, T.A. Dietary protein requirement of zebra sea bream (Diplodus cervinus, Lowe 1838) juveniles. Aquac. Nutr. 2016, 22, 465–471. [Google Scholar] [CrossRef]
- Lee, D.H.; Lim, S.; Lee, S. Dietary protein requirement of fingerling sterlet sturgeon (Acipenser ruthenus). J. Appl. Ichthyol. 2021, 37, 687–696. [Google Scholar] [CrossRef]
- Hosomi, R.; Fukunaga, K.; Arai, H.; Nishiyama, T.; Yoshida, M. Effects of dietary fish protein on serum and liver lipid concentrations in rats and the expression of hepatic genes involved in lipid metabolism. J. Agric. Food Chem. 2009, 57, 9256–9262. [Google Scholar] [CrossRef]
- Seiliez, I.; Panserat, S.; Lansard, M.; Polakof, S.; Plagnes-Juan, E.; Surget, A.; Dias, K.; Larquier, M.; Kaushik, S.; Skiba-Cassy, S. Dietary carbohydrate-to-protein ratio affects tor signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2011, 300, R733–R743. [Google Scholar] [CrossRef]
- Tietze, I.N.; Pedersen, E.B. Effect of fish protein supplementation on aminoacid profile and nutritional status in haemodialysis patients. Nephrol. Dial. Transplant. 1991, 6, 948–954. [Google Scholar] [CrossRef]
- Hou, Z.; Fuiman, L.A. Nutritional programming in fishes: Insights from mammalian studies. Rev. Fish Biol. Fish. 2020, 30, 67–92. [Google Scholar] [CrossRef]
- Rolland, M.; Feekings, J.P.; Dalsgaard, J.; Holm, J.; Skov, P.V. Modelling the effects of dietary methionine level and form on postprandial plasma essential amino acid profiles in rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2015, 22, 1185–1201. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmed, I.; Dar, N.A. Effects of dietary leucine levels on growth performance, hematobiochemical parameters, liver profile, intestinal enzyme activities, and target of rapamycin signalling pathway-related gene expression in rainbow trout, Oncorhynchus mykiss fingerlings. Aquacu. Nutr. 2021, 27, 1837–1852. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Gladstone, S.; Ng, W.K.; Zhang, J.; Shao, Q. Effects of isoenergetic diets with varying protein and lipid levels on the growth, feed utilization, metabolic enzymes activities, antioxidative status and serum biochemical parameters of black sea bream (Acanthopagrus schlegelii). Aquaculture 2019, 513, 734397. [Google Scholar] [CrossRef]
- Kim, S.S.; Lee, K.J. Dietary protein requirement of juvenile tiger puffer (Takifugu rubripes). Aquaculture 2009, 287, 219–222. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Ren, M.; Ji, K.; Yang, Q.; Ge, X.; Xi, B.; Pan, L. Effects of dietary fenugreek seed extract on growth performance, plasma biochemical parameters, lipid metabolism, Nrf2 antioxidant capacity and immune response of juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2019, 94, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Peng, D.; Chen, X.; Wu, F.; Jiang, M.; Tian, J.; Liu, W.; Yu, L.; Wen, H.; Wei, K. Effects of dietary protein levels on growth, muscle composition, digestive enzymes activities, hemolymph biochemical indices and ovary development of pre-adult red swamp crayfish (Procambarus clarkii). Aquac. Rep. 2020, 18, 100542. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, F.; Wang, L.; Shao, Q.; Xu, Z.; Xu, J. Dietary protein requirement of juvenile black sea bream, Sparus macrocephalus. J. World Aquac. Soc. 2010, 41, 151–164. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, J.; Feng, J.; He, J.; Lou, Y.; Zhou, Q. Effects of dietary soy protein concentrate meal on growth, immunity, enzyme activity and protein metabolism in relation to gene expression in large yellow croaker Larimichthys crocea. Aquaculture 2017, 477, 15–22. [Google Scholar] [CrossRef]
- Sun, S.; Wu, Y.; Yu, H.; Su, Y.; Ren, M.; Zhu, J.; Ge, X. Serum biochemistry, liver histology, and transcriptome profiling of bighead carp, Aristichthys nobilis, following different dietary protein levels. Fish Shellfish Immunol. 2019, 86, 832–839. [Google Scholar] [CrossRef]
- Azzout-Marniche, D.; Gaudichon, C.; Tomé, D. Dietary protein and blood glucose control. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Radziuk, J.; Pye, S. Hepatic glucose uptake, gluconeogenesis, and the regulation of glycogen synthesis. Diabetes Metab. Res. Rev. 2001, 17, 250–272. [Google Scholar] [CrossRef] [PubMed]
- Abdel, T.M.; Ahmad, M.H.; Khattab, Y.A.E.; Shalaby, A.M.E. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 2010, 298, 267–274. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Yousefi, S.; Van Doan, H.; Ashouri, G.; Gioacchini, G.; Maradonna, F.; Carnevali, O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac. 2020, 29, 198–217. [Google Scholar] [CrossRef]
- Yan, X.; Yang, J.; Dong, X.; Tan, B.; Zhang, S.; Chi, S.; Yang, Q.; Liu, H.; Yang, Y. The optimal dietary protein level of large-size grouper Epinephelus coioides. Aquac. Nutr. 2020, 26, 705–714. [Google Scholar] [CrossRef]
- Mansour, A.T.; Esteban, M.Á. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 64, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Habte-Tsion, H. A review on fish immuno-nutritional response to indispensable amino acids in relation to TOR, NF-κB and Nrf2 signalling pathways: Trends and prospects. Comp. Biochem. Physiol. B 2019, 241, 110389. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; Pearce, E.L. Amino assets: How amino acids support immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.C.; Lambris, J.D. The complement system in teleosts. Fish Shellfish Immunol. 2002, 12, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R. Nutrition and the immune system: An introduction. Am. J. Clin. Nutr. 1997, 66, 460S–463S. [Google Scholar] [CrossRef] [PubMed]
- Canosa, L.F.; Chang, J.P.; Peter, R.E. Neuroendocrine control of growth hormone in fish. Gen. Comp. Endocrinol. 2007, 151, 1–26. [Google Scholar] [CrossRef]
- Liu, H.; Dong, X.; Tan, B.; Du, T.; Zhang, S.; Yang, Y.; Liu, H. Effects of dietary protein and lipid levels on growth, body composition, enzymes activity, expression of IGF-1 and TOR of juvenile northern whiting, Sillago sihama. Aquaculture 2021, 533, 736166. [Google Scholar] [CrossRef]
- Qiang, J.; Yang, H.; Wang, H.; Kpundeh, M.D.; Xu, P. Effects of dietary protein levels on growth performance and hepatic IGF-1 mRNA levels in juvenile yellow catfish (Pelteobagrus fulvidraco). Aquac. Nutr. 2012, 18, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, T.G.; Rawles, S.D.; Davis, K.B. Dietary tryptophan requirement of hybrid striped bass (Morone chrysops × M. saxatilis). Aquac. Nutr. 2005, 11, 367–374. [Google Scholar] [CrossRef]
- Gomes, M.D.R.; Pires, I.O.; Castro, I.A.D.; Tirapegui, J. Effect of protein restriction on plasma and tissue levels of insulin-like growth factor-1 (IGF-1) in adult rats. Nutr. Res. 2003, 23, 1239–1250. [Google Scholar] [CrossRef]
- Wood, A.W.; Duan, C.; Bern, H.A. Insulin-like growth factor signalling in fish. Int. Rev. Cytol. 2005, 243, 215–285. [Google Scholar] [PubMed]
- Avila Morales, G.D.L.A. Nutrition and immunity: Molecular Approaches. Ph.D. Thesis, University of Barcelona, Barcelona, Spain, 2022. [Google Scholar]
- Yadata, G.W.; Ji, K.; Liang, H.; Ren, M.; Ge, X.; Yang, Q. Effects of dietary protein levels with various stocking densities on growth performance, whole-body composition, plasma parameters, nitrogen emission and gene expression related to TOR signalling of juvenile blunt snout bream (Megalobrama ambylcephala). Aquaculture 2020, 519, 734730. [Google Scholar] [CrossRef]
- Longo, V.D.; Anderson, R.M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
Items | Dietary Protein Levels | |||||
---|---|---|---|---|---|---|
30% (G1) | 33% (G2) | 36% (G3) | 39% (G4) | 42% (G5) | 45% (G6) | |
Casein | 11.60 | 14.99 | 18.37 | 21.75 | 25.13 | 28.51 |
Dextrin | 32.40 | 29.01 | 25.63 | 22.25 | 18.87 | 15.49 |
Fish meal | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Wheat middlings | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Wheat gluten | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Fish oil | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Soybean oil | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Phospholipids | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Premix | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Nutrient levels | ||||||
Moisture (%) | 8.53 | 8.43 | 8.31 | 8.41 | 8.32 | 8.74 |
Crude protein (%) | 30.12 | 33.41 | 36.24 | 39.43 | 42.15 | 45.08 |
Crude lipid (%) | 10.18 | 10.22 | 10.24 | 10.26 | 10.29 | 10.33 |
Nitrogen-free extract (%) | 45.29 | 41.92 | 38.54 | 35.16 | 31.77 | 28.39 |
Gross energy (kJ/kg) | 18.80 | 18.95 | 19.09 | 19.23 | 19.38 | 19.52 |
Essential amino acids | ||||||
Lysine | 1.98 | 2.23 | 2.48 | 2.73 | 2.98 | 3.22 |
Methionine | 0.67 | 0.77 | 0.86 | 0.95 | 1.04 | 1.13 |
Leucine | 2.21 | 2.50 | 2.80 | 3.10 | 3.40 | 3.69 |
Isoleucine | 1.19 | 1.35 | 1.50 | 1.66 | 1.82 | 1.98 |
Phenylalanine | 1.21 | 1.37 | 1.53 | 1.69 | 1.85 | 2.02 |
Tyrosine | 2.23 | 2.56 | 2.88 | 3.20 | 3.53 | 3.85 |
Tryptophan | 0.32 | 0.36 | 0.40 | 0.43 | 0.47 | 0.51 |
Histidine | 0.76 | 0.86 | 0.95 | 1.05 | 1.14 | 1.24 |
Valine | 1.46 | 1.67 | 1.87 | 2.08 | 2.29 | 2.49 |
Threonine | 1.11 | 1.24 | 1.38 | 1.51 | 1.65 | 1.78 |
Items | Product Number | Method |
---|---|---|
SOD | A001-3 | Based on the scavenging effect of SOD on superoxide radicals, one may gauge the activity of SOD indirectly through the measurement of the absorbance of the purple product (at 450 nm). |
MDA | A003-1 | MDA present in degradation products of lipid peroxides can react with thiobarbituric acid (TBA), and the amount of MDA can be determined by measuring the absorbance of the resulting red product (532 nm). |
ACP | A059-2-2 | Alkaline phosphatase activity can be determined by measuring the phenol produced when alkaline phosphatase hydrolyzes phenyl phosphate disodium substrate under alkaline conditions. The phenol reacts with 4-aminoantipyrine in the presence of potassium ferricyanide to form a red quinone complex that is measured at 520 nm. |
LZM | A050-1-1 | At a specific concentration of opaque bacterial solution, the lysozyme hydrolyses the peptidoglycan on the bacterial cell wall, resulting in bacterial cleavage and reduced concentration. This leads to an increase in transmittance, which is measured at 530 nm to determine the lysozyme content. |
IgM | H109-1-1 | The IgM level can be determined by measuring the turbidity produced when IgM in the sample forms an immune complex with anti-IgM antibodies in the reagents. After incubation with the reagents at 37 °C, the absorbance is measured at 340 nm, and the concentration is calculated from a nonlinear calibration curve. |
Genes | Forward Primer Sequences (5′–3′) | Reverse Primer Sequences (5′–3′) | Length (bp) | Accession Number |
---|---|---|---|---|
MyD88 | CACATGCGTCACTGTCAAGG | AGCATCACCAGCGAACTCAT | 85 | KU238084.1 |
GH | AACTCCCCGTCAGCATTCTG | AAGCAGCTCCACGTCTGATC | 90 | JX003684.1 |
IGF-1 | TTCCGTCTTCCATCAGTGGC | AGTGTCCACAAGCTCAGCTC | 154 | FJ428828.1 |
TLR1 | CCAGCAATGCATTTTCTGACCGTGT | AGTGAGTTGGCGCTGACATCCA | 157 | XM_034911210.1 |
TLR2 | CTTTGCCTTCACAAACGCGA | CACTGCGAACAAAGTGCTCC | 118 | XM_034014252.2 |
IL-8 | CATCCATCCCAGGCAGATC | TTGACCCAGCGGGCAGTT | 112 | MK140599.1 |
IL-6 | TATACCAGCGGGAAGGACGA | GCTGCTGTGCGAGAGGATAT | 141 | XM_033993799.2 |
NF-κB | GCACAGCCTGGTTGGAAAG | AGACGCCGAAGTTGTAGCC | 179 | XM_034013617.2 |
IL-1β | GTGTGTGATGCTGGAGGTGA | GGCTCAGAGTCACTTGCTGT | 197 | MF818014.1 |
TNF-α | AGGAGCGGTCTCTACTTCGT | TGTGCGACAGATATACGGGC | 82 | XM_034909934.1 |
IL-10 | CTACGGCAGTGTCGAAGTGT | TTGGGGTTGTGGAGTGCTTT | 189 | AY887900.1 |
TOR | GCCCAGCTTTCGCATATTGG | CGCTCGATCTCACCAGAGAC | 95 | OV754630.1 |
S6K1 | TTTCGGACGAGGCCAAATCT | CACCTCTACACCTGCACACT | 143 | XM_059025314.1 |
4EBP1 | GGAGTAACCATGTTTAACGCAGT | GACGCTCAGCAGCAACTTAC | 247 | XM_034052958.3 |
β-actin | GTTGTTGACAACGGTTCCGG | TCCTTCTGTCCCATGCCAAC | 128 | XM_034052523.2 |
Items | PCR Reaction Solution Preparation | PCR Amplification Procedure | |||
---|---|---|---|---|---|
Reagent | Consumption | Concentration | Procedure | Instrument | |
RT-PCR | TB Green Premix Ex Taq II (Tli RNaseH Plus) | 10 µL | 2× | Step 1: Reps: 1 95 °C 30 s Step 2: Reps: 40 95 °C 5 s 60 °C 34 s | 7500 Real-Time PCR System; Applied Biosystems, Waltham, MA, USA |
ROX Reference Dye II | 0.4 µL | 50× | |||
PCR Forward Primer | 0.8 µL | 10 µM | |||
PCR Reverse Primer | 0.8 µL | 10 µM | |||
cDNA | 2 µL | 50 ng/µL | |||
DEPC H2O | 6 µL |
Items | Dietary Protein Levels | |||||
---|---|---|---|---|---|---|
30% (G1) | 33% (G2) | 36% (G3) | 39% (G4) | 42% (G5) | 45% (G6) | |
IBW (g) | 29.70 ± 0.36 | 29.17 ± 0.50 | 30.47 ± 1.50 | 30.60 ± 0.9 | 29.63 ± 0.9 | 30.23 ± 1.4 |
FBW (g) | 136.13 ± 12.12 a | 178.97 ± 25.81 b | 191.16 ± 13.61 b | 169.84 ± 11.47 ab | 177.16 ± 22.93 b | 158.09 ± 19.01 ab |
SR (%) | 81.33 ± 7.02 | 86.01 ± 5.30 | 86.67 ± 5.03 | 88.00 ± 5.30 | 92.00 ± 8.71 | 89.33 ± 4.61 |
WGR (%) | 358.07 ± 35.81 a | 514.55 ± 97.92 b | 529.32 ± 66.19 b | 512.74 ± 25.91 b | 499.79 ± 95.86 b | 422.89 ± 57.66 a |
SGR (%/d) | 7.60 ± 0.40 a | 8.70 ± 0.32 b | 9.18 ± 0.55 b | 8.56 ± 0.23 ab | 8.91 ± 0.80 b | 8.25 ± 0.57 ab |
FCR | 2.06 ± 0.10 a | 1.67 ± 0.35 b | 1.48 ± 0.14 b | 1.49 ± 0.13 b | 1.51 ± 0.68 b | 1.51 ± 0.74 b |
PER (%) | 1.88 ± 0.91 a | 2.75 ± 0.62 ab | 3.37 ± 0.29 b | 2.75 ± 0.08 ab | 3.24 ± 0.82 b | 3.20 ± 0.51 b |
HSI (%) | 2.67 ± 1.03 bc | 2.71 ± 0.52 bc | 2.11 ± 0.58 ab | 3.75 ± 1.05 c | 1.81 ± 0.51 ab | 0.80 ± 0.55 a |
Items | Dietary Protein Levels | |||||
---|---|---|---|---|---|---|
30% (G1) | 33% (G2) | 36% (G3) | 39% (G4) | 42% (G5) | 45% (G6) | |
Moisture | 72.04 ± 1.67 | 72.14 ± 1.50 | 72.73 ± 1.57 | 72.71 ± 1.44 | 72.82 ± 1.03 | 71.46 ± 1.55 |
Crude protein | 13.30 ± 0.89 a | 13.49 ± 0.66 ab | 13.45 ± 0.78 ab | 13.46 ± 0.89 ab | 13.85 ± 0.77 b | 13.71 ± 0.94 b |
Crude lipid | 11.12 ± 1.41 a | 11.41 ± 1.68 a | 11.86 ± 3.34 ab | 13.31 ± 1.41 b | 13.31 ± 1.47 b | 12.61 ± 1.21 ab |
Ash | 2.30 ± 0.87 a | 2.49 ± 0.65 bc | 2.44 ± 0.77 bc | 2.46 ± 0.88 bc | 2.38 ± 0.76 b | 2.27 ± 0.93 a |
Items | Dietary Protein Levels | |||||
---|---|---|---|---|---|---|
30% (G1) | 33% (G2) | 36% (G3) | 39% (G4) | 42% (G5) | 45% (G6) | |
Essential amino acids | ||||||
Methionine | 3.48 ± 0.02 | 3.52 ± 0.12 | 3.53 ± 0.11 | 3.51 ± 0.17 | 3.58 ± 0.04 | 3.51 ± 0.06 |
Threonine | 2.84 ± 0.18 | 2.82 ± 0.41 | 3.09 ± 0.27 | 3.04 ± 0.28 | 3.34 ± 0.05 | 3.39 ± 0.07 |
Valine | 3.28 ± 0.02 a | 3.49 ± 0.12 a | 3.53 ± 0.11 b | 3.51 ± 0.17 b | 3.78 ± 0.04 c | 3.81 ± 0.06 c |
Leucine | 5.79 ± 0.07 a | 6.10 ± 0.19 b | 6.15 ± 0.13 b | 6.19 ± 0.21 b | 6.46 ± 0.15 c | 6.51 ± 0.07 c |
Phenylalanine | 2.82 ± 0.03 a | 3.00 ± 0.16 a | 3.08 ± 0.15 a | 3.03 ± 0.24 a | 3.36 ± 0.09 b | 3.39 ± 0.01 b |
Isoleucine | 3.11 ± 0.01 a | 3.29 ± 0.11 b | 3.33 ± 0.09 b | 3.34 ± 0.13 b | 3.52 ± 0.04 c | 3.56 ± 0.04 c |
Lysine | 5.89 ± 0.07 a | 6.37 ± 0.33 b | 6.49 ± 0.28 b | 6.46 ± 0.45 b | 7.03 ± 0.06 c | 7.04 ± 0.08 c |
Histidine | 1.65 ± 0.01 | 1.71 ± 0.24 | 1.61 ± 0.14 | 1.62 ± 0.18 | 1.85 ± 0.03 | 1.84 ± 0.01 |
Arginine | 4.32 ± 0.06 | 4.46 ± 0.23 | 4.34 ± 0.27 | 4.56 ± 0.09 | 4.39 ± 0.05 | 4.48 ± 0.12 |
Non-essential amino acids | ||||||
Proline | 2.01 ± 0.06 a | 2.15 ± 0.10 b | 2.20 ± 0.11 b | 2.25 ± 0.09 b | 2.38 ± 0.01 c | 2.39 ± 0.06 c |
Aspartic acid | 3.93 ± 0.15 | 4.25 ± 0.56 | 3.77 ± 0.19 | 4.04 ± 0.17 | 3.77 ± 0.03 | 3.77 ± 0.04 |
Serine | 3.22 ± 0.12 | 2.73 ± 0.37 | 3.12 ± 0.21 | 3.25 ± 0.09 | 3.16 ± 0.10 | 3.26 ± 0.05 |
Glutamic acid | 11.26 ± 0.21 a | 12.01 ± 0.67 b | 12.57 ± 0.45 bc | 12.39 ± 0.44 bc | 13.00 ± 0.24 c | 13.09 ± 0.08 c |
Glycine | 4.58 ± 0.02 | 4.42 ± 1.15 | 3.81 ± 1.23 | 4.58 ± 1.13 | 3.33 ± 0.05 | 3.43 ± 0.10 |
Alanine | 4.24 ± 0.05 | 4.24 ± 0.13 | 4.2 ± 0.17 | 4.34 ± 0.08 | 4.38 ± 0.05 | 4.38 ± 0.05 |
Cystine | 0.97 ± 0.01 | 0.99 ± 0.07 | 0.97 ± 0.05 | 0.96 ± 0.02 | 1.04 ± 0.01 | 1.03 ± 0.02 |
Tyrosine | 2.61 ± 0.01 | 2.66 ± 0.13 | 2.6 ± 0.06 | 2.58 ± 0.01 | 2.71 ± 0.01 | 2.71 ± 0.06 |
Items | Dietary Protein Levels | |||||
---|---|---|---|---|---|---|
30% (G1) | 33% (G2) | 36% (G3) | 39% (G4) | 42% (G5) | 45% (G6) | |
GLU (mmol/L) | 4.61 ± 0.91 a | 5.36 ± 0.63 ab | 6.03 ± 0.76 b | 5.96 ± 0.72 b | 5.08 ± 1.12 ab | 5.28 ± 1.15 ab |
TP (g/L) | 27.32 ± 6.46 | 30.76 ± 4.04 | 30.29 ± 3.05 | 27.08 ± 3.10 | 29.47 ± 5.09 | 29.29 ± 8.19 |
ALB (g/L) | 11.13 ± 1.53 | 12.67 ± 1.49 | 11.72 ± 1.58 | 11.49 ± 1.32 | 11.52 ± 1.28 | 11.77 ± 2.51 |
ALT (U/mL) | 7.11 ± 3.33 ab | 9.11 ± 4.46 b | 7.78 ± 3.23 ab | 7.56 ± 1.81 ab | 5.89 ± 2.03 a | 5.22 ± 2.33 a |
AST (U/mL) | 554.41 ± 268.15 | 694.45 ± 177.91 | 693.31 ± 214.30 | 701.00 ± 181.52 | 504.46 ± 64.83 | 562.22 ± 146.44 |
TG (mmol/L) | 5.90 ± 2.56 a | 6.29 ± 1.38 ab | 8.23 ± 2.36 b | 6.69 ± 1.97 ab | 6.36 ± 2.22 ab | 5.77 ± 2.16 a |
SOD (U/mL) | 44.85 ± 2.15 a | 50.49 ± 1.52 ab | 54.45 ± 4.02 b | 84.63 ± 6.21 e | 81.34 ± 0.83 e | 66.21 ± 2.07 d |
MDA (nmol/mL) | 4.17 ± 0.12 e | 2.32 ± 0.18 b | 2.34 ± 0.06 b | 2.05 ± 0.09 a | 2.70 ± 0.07 c | 2.92 ± 0.15 d |
Items | Dietary Protein Levels | |||||
---|---|---|---|---|---|---|
30% (G1) | 33% (G2) | 36% (G3) | 39% (G4) | 42% (G5) | 45% (G6) | |
LZM (U/mL) | 99.46 ± 10.34 a | 190.48 ± 18.47 b | 247.96 ± 19.07 d | 251.25 ± 18.90 d | 287.53 ± 11.99 e | 218.24 ± 17.06 c |
ACP (U/mL) | 257.97 ± 6.57 a | 273.77 ± 7.19 b | 326.82 ± 4.74 d | 370.82 ± 3.95 e | 365.21 ± 4.23 e | 287.14 ± 4.63 c |
C3 (mg/mL) | 12.38 ± 1.15 a | 14.17 ± 1.41 b | 16.41 ± 0.56 d | 15.68 ± 0.55 cd | 14.83 ± 1.41 bc | 12.66 ± 1.08 a |
C4 (mg/mL) | 1.39 ± 0.15 a | 1.52 ± 0.13 b | 1.66 ± 0.18 c | 1.74 ± 0.20 cd | 1.75 ± 0.16 d | 1.70 ± 0.16 cd |
IgM (mg/mL) | 94.92 ± 3.84 a | 109.18 ± 9.41 b | 118.90 ± 8.55 c | 113.28 ± 4.22 bc | 112.73 ± 6.42 bc | 113.11 ± 7.19 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liu, E.; Zhang, H.; Shi, H.; Qiu, G.; Lu, S.; Han, S.; Jiang, H.; Liu, H. Dietary Protein Optimization for Growth and Immune Enhancement in Juvenile Hybrid Sturgeon (Acipenser baerii × A. schrenckii): Balancing Growth Performance, Serum Biochemistry, and Expression of Immune-Related Genes. Biology 2024, 13, 324. https://doi.org/10.3390/biology13050324
Wang C, Liu E, Zhang H, Shi H, Qiu G, Lu S, Han S, Jiang H, Liu H. Dietary Protein Optimization for Growth and Immune Enhancement in Juvenile Hybrid Sturgeon (Acipenser baerii × A. schrenckii): Balancing Growth Performance, Serum Biochemistry, and Expression of Immune-Related Genes. Biology. 2024; 13(5):324. https://doi.org/10.3390/biology13050324
Chicago/Turabian StyleWang, Chang’an, Entong Liu, Hui Zhang, Honghe Shi, Guangwen Qiu, Shaoxia Lu, Shicheng Han, Haibo Jiang, and Hongbai Liu. 2024. "Dietary Protein Optimization for Growth and Immune Enhancement in Juvenile Hybrid Sturgeon (Acipenser baerii × A. schrenckii): Balancing Growth Performance, Serum Biochemistry, and Expression of Immune-Related Genes" Biology 13, no. 5: 324. https://doi.org/10.3390/biology13050324
APA StyleWang, C., Liu, E., Zhang, H., Shi, H., Qiu, G., Lu, S., Han, S., Jiang, H., & Liu, H. (2024). Dietary Protein Optimization for Growth and Immune Enhancement in Juvenile Hybrid Sturgeon (Acipenser baerii × A. schrenckii): Balancing Growth Performance, Serum Biochemistry, and Expression of Immune-Related Genes. Biology, 13(5), 324. https://doi.org/10.3390/biology13050324