Advances in Drug Treatments for Companion Animal Obesity
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Incretins: A Revolution in the Treatment of Human Type 2 Diabetes and Obesity
3. Semaglutide and Tirzepatide Effectively Reduce Body Weight
3.1. Semaglutide
3.2. Tirzepatide
4. Drug Combinations in Current Testing
4.1. Retatrutide, a GLP-1, GIP and Glucagon Agonist
4.2. Servodutide (BI 456906), a GLP-1 and Glucagon Agonist
4.3. CagriSema (Semaglutide/Cagrilintide), a GLP-1/Amylin Agonist
4.4. AMG 133 (Maridebart Cafraglutide), a GIP Antagonist and GLP-1 Agonist
4.5. Oral Formulations of Current Weight Loss Drugs
5. Can GLP-1/GIP Receptor Agonists Be Used for Weight Loss in Companion Animals?
5.1. Exenatide, a GLP-1 Agonist, Promotes Glycemic Control and Induces Weight Loss in Cats
5.2. Is Treatment with These Drugs a Practical Way to Treat Obesity in Companion Animals?
6. Conclusions
Funding
Conflicts of Interest
References
- Kipperman, B.S.; German, A.J. The Responsibility of Veterinarians to Address Companion Animal Obesity. Animals 2018, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Wakshlag, J.; Loftus, J. Canine and Feline Obesity: A Review of Pathophysiology, Epidemiology, and Clinical Management. Vet. Med. Res. Rep. 2014, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Ernie Ward State of U.S. Pet Obesity. Association for Pet Obesity Prevention 2022. Available online: https://www.petobesityprevention.org/2022#:~:text=The%202022%20Pet%20Obesity%20Prevalence,a%20slight%20increase%20from%2060%25 (accessed on 8 May 2024).
- German, A.J.; Woods, G.R.T.; Holden, S.L.; Brennan, L.; Burke, C. Dangerous Trends in Pet Obesity. Vet. Rec. 2018, 182, 25. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Alonso, J.A.; Bautista-Castaño, I.; Peña, C.; Suárez, L.; Juste, M.C.; Tvarijonaviciute, A. Prevalence of Canine Obesity, Obesity-Related Metabolic Dysfunction, and Relationship with Owner Obesity in an Obesogenic Region of Spain. Front. Vet. Sci. 2017, 4, 59. [Google Scholar] [CrossRef] [PubMed]
- Courcier, E.A.; O’Higgins, R.; Mellor, D.J.; Yam, P.S. Prevalence and Risk Factors for Feline Obesity in a First Opinion Practice in Glasgow, Scotland. J. Feline Med. Surg. 2010, 12, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Salt, C.; Morris, P.J.; Wilson, D.; Lund, E.M.; German, A.J. Association between Life Span and Body Condition in Neutered Client-Owned Dogs. J. Vet. Intern. Med. 2019, 33, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.L.; Yang, M.; Wang, M.; Elliott, D.A.; Buff, P.R.; Lund, E.M. Effect of Age at Gonadectomy on the Probability of Dogs Becoming Overweight. J. Am. Vet. Med. Assoc. 2013, 243, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Rowe, E.C.; Browne, W.J.; Casey, R.A.; Gruffydd-Jones, T.J.; Murray, J.K. Early-Life Risk Factors Identified for Owner-Reported Feline Overweight and Obesity at around Two Years of Age. Prev. Vet. Med. 2017, 143, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Cave, N.J.; Allan, F.J.; Schokkenbroek, S.L.; Metekohy, C.A.M.; Pfeiffer, D.U. A Cross-Sectional Study to Compare Changes in the Prevalence and Risk Factors for Feline Obesity between 1993 and 2007 in New Zealand. Prev. Vet. Med. 2012, 107, 121–133. [Google Scholar] [CrossRef]
- Lynden, J.; Hollands, T.; Ogden, J. Animal Obesity: What Insights Can a One Health Approach Offer When It Comes to Veterinarians ‘Making Every Contact Count’? Vet. Rec. 2022, 191, e1904. [Google Scholar] [CrossRef]
- Blanchard, T.; Hoummady, S.; Banuls, D.; Roche, M.; Bynens, A.; Meunier, M.; Dos Santos, N.; Tissaoui, E.; Rouch-Buck, P.; Fantinati, M.; et al. The Perception of the Body Condition of Cats and Dogs by French Pet Owners and the Factors Influencing Underestimation. Animals 2023, 13, 3646. [Google Scholar] [CrossRef]
- Marchi, P.H.; Vendramini, T.H.A.; Perini, M.P.; Zafalon, R.V.A.; Amaral, A.R.; Ochamotto, V.A.; Da Silveira, J.C.; Dagli, M.L.Z.; Brunetto, M.A. Obesity, Inflammation, and Cancer in Dogs: Review and Perspectives. Front. Vet. Sci. 2022, 9, 1004122. [Google Scholar] [CrossRef]
- Kealy, R.D.; Lawler, D.F.; Ballam, J.M.; Mantz, S.L.; Biery, D.N.; Greeley, E.H.; Lust, G.; Segre, M.; Smith, G.K.; Stowe, H.D. Effects of Diet Restriction on Life Span and Age-Related Changes in Dogs. J. Am. Vet. Med. Assoc. 2002, 220, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D. Development and Validation of a Body Condition Score System for Cats: A Clinical Tool. Feline Pract. 1997, 25, 13–17. [Google Scholar]
- German, A.J.; Holden, S.L.; Bissot, T.; Morris, P.J.; Biourge, V. A High Protein High Fibre Diet Improves Weight Loss in Obese Dogs. Vet. J. 2010, 183, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Bland, I.M.; Guthrie-Jones, A.; Taylor, R.D.; Hill, J. Dog Obesity: Veterinary Practices’ and Owners’ Opinions on Cause and Management. Prev. Vet. Med. 2010, 94, 310–315. [Google Scholar] [CrossRef]
- Bland, I.M.; Guthrie-Jones, A.; Taylor, R.D.; Hill, J. Dog Obesity: Owner Attitudes and Behaviour. Prev. Vet. Med. 2009, 92, 333–340. [Google Scholar] [CrossRef]
- Porsani, M.Y.H.; Teixeira, F.A.; Amaral, A.R.; Pedrinelli, V.; Vasques, V.; de Oliveira, A.G.; Vendramini, T.H.A.; Brunetto, M.A. Factors Associated with Failure of Dog’s Weight Loss Programmes. Vet. Med. Sci. 2020, 6, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.M.; Coe, J.B.; Rock, M.J.; Adams, C.L. Feline Obesity in Veterinary Medicine: Insights from a Thematic Analysis of Communication in Practice. Front. Vet. Sci. 2017, 4, 117. [Google Scholar] [CrossRef]
- Niessen, S.J.M.; Hazuchova, K.; Powney, S.L.; Guitian, J.; Niessen, A.P.M.; Pion, P.D.; Shaw, J.A.; Church, D.B. The Big Pet Diabetes Survey: Perceived Frequency and Triggers for Euthanasia. Vet. Sci. 2017, 4, 27. [Google Scholar] [CrossRef]
- Mott, J.; Dolan, J.K.; Gilor, C.; Gilor, S. Establishment of a Feline Glycated Hemoglobin Reference Interval for a Novel Dried-Blood-Spot Assay and the Effects of Anemia on Assay Results. Vet. Clin. Pathol. 2023, 52, 531–539. [Google Scholar] [CrossRef]
- Wren, J.A.; Ramudo, A.A.; Campbell, S.L.; King, V.L.; Eagleson, J.S.; Gossellin, J.; Sunderland, S.J. Efficacy and Safety of Dirlotapide in the Management of Obese Dogs Evaluated in Two Placebo-Controlled, Masked Clinical Studies in North America. J. Vet. Pharmacol. Ther. 2007, 30, 81–89. [Google Scholar] [CrossRef] [PubMed]
- German, A.J.; Titcomb, J.M.; Holden, S.L.; Queau, Y.; Morris, P.J.; Biourge, V. Cohort Study of the Success of Controlled Weight Loss Programs for Obese Dogs. J. Vet. Intern. Med. 2015, 29, 1547–1555. [Google Scholar] [CrossRef]
- Gossellin, J.; Peachey, S.; Sherington, J.; Rowan, T.G.; Sunderland, S.J. Evaluation of Dirlotapide for Sustained Weight Loss in Overweight Labrador Retrievers. J. Vet. Pharmacol. Ther. 2007, 30, 55–65. [Google Scholar] [CrossRef]
- Gossellin, J.; Mckelvie, J.; Sherington, J.; Wren, J.A.; Eagleson, J.S.; Rowan, T.G.; Sunderland, S.J. An Evaluation of Dirlotapide to Reduce Body Weight of Client-Owned Dogs in Two Placebo-Controlled Clinical Studies in Europe. J. Vet. Pharmacol. Ther. 2007, 30 (Suppl. S1), 73–80. [Google Scholar] [CrossRef]
- Lupianez-Merly, C.; Dilmaghani, S.; Vosoughi, K.; Camilleri, M. Review Article: Pharmacologic Management of Obesity—Updates on Approved Medications, Indications and Risks. Aliment. Pharmacol. Ther. 2024, 59, 475–491. [Google Scholar] [CrossRef]
- Mcintyre, N.; Holdsworth, C.D.; Turner, D.S. New Interpretation of Oral Glucose Tolerance. Lancet 1964, 284, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, J.F. The Origin and Understanding of the Incretin Concept. Front. Endocrinol. 2018, 9, 387. [Google Scholar] [CrossRef]
- Dupre, J.; Ross, S.A.; Watson, D.; Brown, J.C. Stimulation of Insulin Secretion by Gastric Inhibitory Polypeptide in Man. J. Clin. Endocrinol. Metab. 1973, 37, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Dryburgh, J.R. A Gastric Inhibitory Polypeptide. II. The Complete Amino Acid Sequence. Can. J. Biochem. 1971, 49, 867–872. [Google Scholar] [CrossRef]
- Ebert, R.; Unger, H.; Creutzfeldt, W. Preservation of Incretin Activity after Removal of Gastric Inhibitory Polypeptide (GIP) from Rat Gut Extracts by Immunoadsorption. Diabetologia 1983, 24, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Mojsov, S.; Heinrich, G.; Wilson, I.B.; Ravazzola, M.; Orci, L.; Habener, J.F. Preproglucagon Gene Expression in Pancreas and Intestine Diversifies at the Level of Post-Translational Processing. J. Biol. Chem. 1986, 261, 11880–11889. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 Mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Novo Nordisk. Annual Report 2023. Novo Nordisk: North Sydney, NSW, Australia, 2023. [Google Scholar]
- Højberg, P.V.; Zander, M.; Vilsbøll, T.; Knop, F.K.; Krarup, T.; Vølund, A.; Holst, J.J.; Madsbad, S. Near Normalisation of Blood Glucose Improves the Potentiating Effect of GLP-1 on Glucose-Induced Insulin Secretion in Patients with Type 2 Diabetes. Diabetologia 2008, 51, 632–640. [Google Scholar] [CrossRef]
- Kjems, L.L.; Holst, J.J.; Vølund, A.; Madsbad, S. The Influence of GLP-1 on Glucose-Stimulated Insulin Secretion: Effects on β-Cell Sensitivity in Type 2 and Nondiabetic Subjects. Diabetes 2003, 52, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Astrup, A.; Holst, J.J. Glucagon-like Peptide 1 Promotes Satiety and Suppresses Energy Intake in Humans. J. Clin. Investig. 1998, 101, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Nogueiras, R.; Nauck, M.A.; Tschöp, M.H. Gut Hormone Co-Agonists for the Treatment of Obesity: From Bench to Bedside. Nat. Metab. 2023, 5, 933–944. [Google Scholar] [CrossRef]
- Pyke, C.; Heller, R.S.; Kirk, R.K.; Ørskov, C.; Reedtz-Runge, S.; Kaastrup, P.; Hvelplund, A.; Bardram, L.; Calatayud, D.; Knudsen, L.B. GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed with Extensively Validated Monoclonal Antibody. Endocrinology 2014, 155, 1280–1290. [Google Scholar] [CrossRef]
- Frías, J.P.; Auerbach, P.; Bajaj, H.S.; Fukushima, Y.; Lingvay, I.; Macura, S.; Søndergaard, A.L.; Tankova, T.I.; Tentolouris, N.; Buse, J.B. Efficacy and Safety of Once-Weekly Semaglutide 2·0 Mg versus 1·0 Mg in Patients with Type 2 Diabetes (SUSTAIN FORTE): A Double-Blind, Randomised, Phase 3B Trial. Lancet Diabetes Endocrinol. 2021, 9, 563–574. [Google Scholar] [CrossRef]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. Semaglutide 2·4 Mg Once a Week in Adults with Overweight or Obesity, and Type 2 Diabetes (STEP 2): A Randomised, Double-Blind, Double-Dummy, Placebo-Controlled, Phase 3 Trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef]
- Garvey, W.T.; Batterham, R.L.; Bhatta, M.; Buscemi, S.; Christensen, L.N.; Frias, J.P.; Jódar, E.; Kandler, K.; Rigas, G.; Wadden, T.A.; et al. Two-Year Effects of Semaglutide in Adults with Overweight or Obesity: The STEP 5 Trial. Nat. Med. 2022, 28, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L. Triple–Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.; Deenadayalan, S.; Erichsen, L.; Knop, F.K.; Lingvay, I.; Macura, S.; Mathieu, C.; Pedersen, S.D.; Davies, M. Efficacy and Safety of Co-Administered Once-Weekly Cagrilintide 2·4 Mg with Once-Weekly Semaglutide 2·4 Mg in Type 2 Diabetes: A Multicentre, Randomised, Double-Blind, Active-Controlled, Phase 2 Trial. Lancet 2023, 402, 720–730. [Google Scholar] [CrossRef] [PubMed]
- le Roux, C.W.; Steen, O.; Lucas, K.J.; Startseva, E.; Unseld, A.; Hennige, A.M. Glucagon and GLP-1 Receptor Dual Agonist Survodutide for Obesity: A Randomised, Double-Blind, Placebo-Controlled, Dose-Finding Phase 2 Trial. Lancet Diabetes Endocrinol. 2024, 12, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Véniant, M.M.; Lu, S.C.; Atangan, L.; Komorowski, R.; Stanislaus, S.; Cheng, Y.; Wu, B.; Falsey, J.R.; Hager, T.; Thomas, V.A.; et al. A GIPR Antagonist Conjugated to GLP-1 Analogues Promotes Weight Loss with Improved Metabolic Parameters in Preclinical and Phase 1 Settings. Nat. Metab. 2024, 6, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Alexander, J.T.; Staab, E.M.; Wan, W.; Franco, M.; Knitter, A.; Skandari, M.R.; Bolen, S.; Maruthur, N.M.; Huang, E.S.; Philipson, L.H.; et al. The Longer-Term Benefits and Harms of Glucagon-Like Peptide-1 Receptor Agonists: A Systematic Review and Meta-Analysis. J. Gen. Intern. Med. 2022, 37, 415–438. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; McLean, B.A.; Baggio, L.L.; Koehler, J.A.; Hammoud, R.; Rittig, N.; Yabut, J.M.; Seeley, R.J.; Brown, T.J.; Drucker, D.J. Central Glucagon-like Peptide 1 Receptor Activation Inhibits Toll-like Receptor Agonist-Induced Inflammation. Cell Metab. 2024, 36, 130–143.e5. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Yusta, B.; Koehler, J.A.; Matthews, D.; Seeley, R.J.; Drucker, D.J.; Baggio, L.L.; Mclean, B.A. Divergent Roles for the Gut Intraepithelial Lymphocyte GLP-1R in Control of Metabolism, Microbiota, and T Cell-Induced Inflammation. Cell Metab. 2022, 34, 1514–1531.e7. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and Safety of LY3298176, a Novel Dual GIP and GLP-1 Receptor Agonist, in Patients with Type 2 Diabetes: A Randomised, Placebo-Controlled and Active Comparator-Controlled Phase 2 Trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Fernández Landó, L.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and Safety of a Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide in Patients with Type 2 Diabetes (SURPASS-1): A Double-Blind, Randomised, Phase 3 Trial. Lancet 2021, 398, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Pownall, H.J.; Schwartz, A.V.; Bray, G.A.; Berkowitz, R.I.; Lewis, C.E.; Boyko, E.J.; Jakicic, J.M.; Chen, H.; Heshka, S.; Gregg, E.W.; et al. Changes in Regional Body Composition over 8 Years in a Randomized Lifestyle Trial: The Look AHEAD Study. Obesity 2016, 24, 1899–1905. [Google Scholar] [CrossRef] [PubMed]
- Hankosky, E.R.; Wang, H.; Neff, L.M.; Kan, H.; Wang, F.; Ahmad, N.N.; Griffin, R.; Stefanski, A.; Garvey, W.T. Tirzepatide Reduces the Predicted Risk of Atherosclerotic Cardiovascular Disease and Improves Cardiometabolic Risk Factors in Adults with Obesity or Overweight: SURMOUNT-1 Post Hoc Analysis. Diabetes Obes. Metab. 2024, 26, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Aronne, L.J.; Sattar, N.; Horn, D.B.; Bays, H.E.; Wharton, S.; Lin, W.-Y.; Ahmad, N.N.; Zhang, S.; Liao, R.; Bunck, M.C.; et al. Continued Treatment with Tirzepatide for Maintenance of Weight Reduction in Adults with Obesity. JAMA 2023, 331, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Bain, S.C.; Gowda, A.; Jódar, E.; Liang, B.; Lingvay, I.; Nishida, T.; Trevisan, R.; Mosenzon, O. Weekly Icodec versus Daily Glargine U100 in Type 2 Diabetes without Previous Insulin. N. Engl. J. Med. 2023, 389, 297–308. [Google Scholar] [CrossRef]
- Blüher, M.; Rosenstock, J.; Hoefler, J.; Manuel, R.; Hennige, A.M. Dose–Response Effects on HbA1c and Bodyweight Reduction of Survodutide, a Dual Glucagon/GLP-1 Receptor Agonist, Compared with Placebo and Open-Label Semaglutide in People with Type 2 Diabetes: A Randomised Clinical Trial. Diabetologia 2024, 67, 470–482. [Google Scholar] [CrossRef]
- Boyle, C.N.; Lutz, T.A.; Le Foll, C. Amylin—Its Role in the Homeostatic and Hedonic Control of Eating and Recent Developments of Amylin Analogs to Treat Obesity. Mol. Metab. 2018, 8, 203–210. [Google Scholar] [CrossRef]
- Lau, D.C.W.; Erichsen, L.; Francisco, A.M.; Satylganova, A.; le Roux, C.W.; McGowan, B.; Pedersen, S.D.; Pietiläinen, K.H.; Rubino, D.; Batterham, R.L. Once-Weekly Cagrilintide for Weight Management in People with Overweight and Obesity: A Multicentre, Randomised, Double-Blind, Placebo-Controlled and Active-Controlled, Dose-Finding Phase 2 Trial. Lancet 2021, 398, 2160–2172. [Google Scholar] [CrossRef] [PubMed]
- Althage, M.C.; Ford, E.L.; Wang, S.; Tso, P.; Polonsky, K.S.; Wice, B.M. Targeted Ablation of Glucose-Dependent Insulinotropic Polypeptide-Producing Cells in Transgenic Mice Reduces Obesity and Insulin Resistance Induced by a High Fat Diet. J. Biol. Chem. 2008, 283, 18365–18376. [Google Scholar] [CrossRef] [PubMed]
- Nasteska, D.; Harada, N.; Suzuki, K.; Yamane, S.; Hamasaki, A.; Joo, E.; Iwasaki, K.; Shibue, K.; Harada, T.; Inagaki, N. Chronic Reduction of GIP Secretion Alleviates Obesity and Insulin Resistance under High-Fat Diet Conditions. Diabetes 2014, 63, 2332–2343. [Google Scholar] [CrossRef]
- Berndt, S.I.; Gustafsson, S.; Mägi, R.; Ganna, A.; Wheeler, E.; Feitosa, M.F.; Justice, A.E.; Monda, K.L.; Croteau-Chonka, D.C.; Day, F.R.; et al. Genome-Wide Meta-Analysis Identifies 11 New Loci for Anthropometric Traits and Provides Insights into Genetic Architecture. Nat. Genet. 2013, 45, 501–512. [Google Scholar] [CrossRef]
- Killion, E.A.; Chen, M.; Falsey, J.R.; Sivits, G.; Hager, T.; Atangan, L.; Helmering, J.; Lee, J.; Li, H.; Wu, B.; et al. Chronic Glucose-Dependent Insulinotropic Polypeptide Receptor (GIPR) Agonism Desensitizes Adipocyte GIPR Activity Mimicking Functional GIPR Antagonism. Nat. Commun. 2020, 11, 4981. [Google Scholar] [CrossRef]
- Saxena, A.R.; Gorman, D.N.; Esquejo, R.M.; Bergman, A.; Chidsey, K.; Buckeridge, C.; Griffith, D.A.; Kim, A.M. Danuglipron (PF-06882961) in Type 2 Diabetes: A Randomized, Placebo-Controlled, Multiple Ascending-Dose Phase 1 Trial. Nat. Med. 2021, 27, 1079–1087. [Google Scholar] [CrossRef]
- Wharton, S.; Blevins, T.; Connery, L.; Rosenstock, J.; Raha, S.; Liu, R.; Ma, X.; Mather, K.J.; Haupt, A.; Robins, D.; et al. Daily Oral GLP-1 Receptor Agonist Orforglipron for Adults with Obesity. N. Engl. J. Med. 2023, 389, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.W.; Reusch, C.E. Animal Models of Disease: Classification and Etiology of Diabetes in Dogs and Cats. J. Endocrinol. 2014, 222, T1–T9. [Google Scholar] [CrossRef]
- Hall, M.J.; Adin, C.A.; Borin-Crivellenti, S.; Rudinsky, A.J.; Rajala-Schultz, P.; Lakritz, J.; Gilor, C. Pharmacokinetics and Pharmacodynamics of the Glucagon-like Peptide-1 Analog Liraglutide in Healthy Cats. Domest. Anim. Endocrinol. 2015, 51, 114–121. [Google Scholar] [CrossRef]
- Furman, B.L. The Development of Byetta (Exenatide) from the Venom of the Gila Monster as an Anti-Diabetic Agent. Toxicon 2012, 59, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Current Pharmacotherapy Options for Type 2 Diabetes. In Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases; Academic Press: Cambridge, MA, USA, 2019; pp. 89–107. ISBN 978-0-08-102922-0. [Google Scholar]
- Gilor, C.; Graves, T.K.; Gilor, S.; Ridge, T.K.; Rick, M. The GLP-1 Mimetic Exenatide Potentiates Insulin Secretion in Healthy Cats. Domest. Anim. Endocrinol. 2011, 41, 42–49. [Google Scholar] [CrossRef]
- Rudinsky, A.J.; Adin, C.A.; Borin-Crivellenti, S.; Rajala-Schultz, P.; Hall, M.J.; Gilor, C. Pharmacology of the Glucagon-like Peptide-1 Analog Exenatide Extended-Release in Healthy Cats. Domest. Anim. Endocrinol. 2015, 51, 78–85. [Google Scholar] [CrossRef]
- Model, J.F.A.; Rocha, D.S.; Fagundes, A.d.C.; Vinagre, A.S. Physiological and Pharmacological Actions of Glucagon like Peptide-1 (GLP-1) in Domestic Animals. Vet. Anim. Sci. 2022, 16, 100245. [Google Scholar] [CrossRef]
- Horton, E.S.; Silberman, C.; Davis, K.L.; Berria, R. Weight Loss, Glycemic Control, and Changes in Cardiovascular Biomarkers in Patients with Type 2 Diabetes Receiving Incretin Therapies or Insulin in a Large Cohort Database. Diabetes Care 2010, 33, 1759–1765. [Google Scholar] [CrossRef] [PubMed]
- Seyfert, T.; Brunker, J.; Maxwell, L.; Payton, M.; McFarlane, D. Effects of a Glucagon-like Peptide-1 Mimetic (Exenatide) in Healthy Cats. Intern. J. Appl. Res. Vet. Med. 2012, 10, 147–156. [Google Scholar]
- Padrutt, I.; Lutz, T.A.; Reusch, C.E.; Zini, E. Effects of the Glucagon-like Peptide-1 (GLP-1) Analogues Exenatide, Exenatide Extended-Release, and of the Dipeptidylpeptidase-4 (DPP-4) Inhibitor Sitagliptin on Glucose Metabolism in Healthy Cats. Res. Vet. Sci. 2015, 99, 23–29. [Google Scholar] [CrossRef]
- Dushay, J.; Gao, C.; Gopalakrishnan, G.S.; Crawley, M.; Mitten, E.K.; Wilker, E.; Mullington, J.; Maratos-Flier, E. Short-Term Exenatide Treatment Leads to Significant Weight Loss in a Subset of Obese Women without Diabetes. Diabetes Care 2012, 35, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Klotsman, M.; Adin, C.A.; Anderson, W.H.; Gilor, C. Safety, Tolerability, and Proof-of-Concept Study of OKV-119, a Novel Exenatide Long-Term Drug Delivery System, in Healthy Cats. Front. Vet. Sci. 2021, 8, 661546. [Google Scholar] [CrossRef]
- Krämer, A.L.; Riederer, A.; Fracassi, F.; Boretti, F.S.; Sieber-Ruckstuhl, N.S.; Lutz, T.A.; Contiero, B.; Zini, E.; Reusch, C.E. Glycemic Variability in Newly Diagnosed Diabetic Cats Treated with the Glucagon-like Peptide-1 Analogue Exenatide Extended Release. J. Vet. Intern. Med. 2020, 34, 2287–2295. [Google Scholar] [CrossRef]
- Schneider, E.L.; Reid, R.; Parkes, D.G.; Lutz, T.A.; Ashley, G.W.; Santi, D.V. A Once-Monthly GLP-1 Receptor Agonist for Treatment of Diabetic Cats. Domest. Anim. Endocrinol. 2020, 70, 106373. [Google Scholar] [CrossRef]
- Pechenov, S.; Revell, J.; Will, S.; Naylor, J.; Tyagi, P.; Patel, C.; Liang, L.; Tseng, L.; Huang, Y.; Rosenbaum, A.I.; et al. Development of an Orally Delivered GLP-1 Receptor Agonist through Peptide Engineering and Drug Delivery to Treat Chronic Disease. Sci. Rep. 2021, 11, 22521. [Google Scholar] [CrossRef]
- Buckley, S.T.; Bækdal, T.A.; Vegge, A.; Maarbjerg, S.J.; Pyke, C.; Ahnfelt-Rønne, J.; Madsen, K.G.; Schéele, S.G.; Alanentalo, T.; Kirk, R.K.; et al. Transcellular Stomach Absorption of a Derivatized Glucagon-like Peptide-1 Receptor Agonist. Sci. Transl. Med. 2018, 10, eaar7047. [Google Scholar] [CrossRef] [PubMed]
- Ionut, V.; Woolcott, O.O.; Mkrtchyan, H.J.; Stefanovski, D.; Kabir, M.; Iyer, M.S.; Liu, H.; Castro, A.V.B.; Wu, Q.; Broussard, J.L.; et al. Exenatide Treatment Alone Improves β-Cell Function in a Canine Model of Pre-Diabetes. PLoS ONE 2016, 11, e0158703. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Chadwick, K.D.; Tatarkiewicz, K.; LaCerte, C.; Bergholm, A.M.; Brodie, T.; Mangipudy, R.S.; Parkes, D.; Graziano, M.J.; Reilly, T.P. The Glucagon-like Peptide-1-Based Therapeutics Exenatide and Saxagliptin Did Not Cause Detrimental Effects on the Pancreas in Mice, Rats, Dogs and Monkeys. Diabetes Obes. Metab. 2014, 16, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Eldor, R.; Kidron, M.; Greenberg-Shushlav, Y.; Arbit, E. Novel Glucagon-like Peptide-1 Analog Delivered Orally Reduces Postprandial Glucose Excursions in Porcine and Canine Models. J. Diabetes Sci. Technol. 2010, 4, 1516–1523. [Google Scholar] [CrossRef]
- Azuri, J.; Hammerman, A.; Aboalhasan, E.; Sluckis, B.; Arbel, R. Tirzepatide versus Semaglutide for Weight Loss in Patients with Type 2 Diabetes Mellitus: A Value for Money Analysis. Diabetes Obes. Metab. 2023, 25, 961–964. [Google Scholar] [CrossRef]
Drug | Action | Clinical Trial | Maximal Weight Change | Dose and Administration | Ref. |
---|---|---|---|---|---|
Semaglutide | GLP-1 agonist | Phase 3 | −15.2% | 2.4 mg given by once-weekly subcutaneous injection for 2 years | [43] |
Tirzepatide | GLP-1 and GIP agonist | Phase 3 | −20.9% | 5–15 mg given by once-weekly subcutaneous injection; 20-week dose-escalation period followed by 52-week treatment | [44] |
Retatrutide | GLP-1, GIP and glucagon tri-agonist | Phase 2 | −24.2% | 1–12 mg given by once-weekly subcutaneous injection for 48 weeks | [45] |
Servodutide | GLP-1 and glucagon agonist | Phase 2 | −14.9% | 0.6–4.8 mg by once-weekly subcutaneous injection; 20-week dose escalation period, followed by 26-week treatment | [46] |
CagriSema | GLP-1 and amylin agonist | Phase 2 | −15.6% | 2.4 mg each of semaglutide and cagrilinitide by once-weekly subcutaneous injection for 32 weeks | [47] |
AMG 133 | GLP-1 agonist and GIP antagonist | Phase 1 | −14.0% | 140–420 mg on days 1, 29 and 57 body weight change at approximately day 90 shown | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zomer, H.D.; Cooke, P.S. Advances in Drug Treatments for Companion Animal Obesity. Biology 2024, 13, 335. https://doi.org/10.3390/biology13050335
Zomer HD, Cooke PS. Advances in Drug Treatments for Companion Animal Obesity. Biology. 2024; 13(5):335. https://doi.org/10.3390/biology13050335
Chicago/Turabian StyleZomer, Helena D., and Paul S. Cooke. 2024. "Advances in Drug Treatments for Companion Animal Obesity" Biology 13, no. 5: 335. https://doi.org/10.3390/biology13050335
APA StyleZomer, H. D., & Cooke, P. S. (2024). Advances in Drug Treatments for Companion Animal Obesity. Biology, 13(5), 335. https://doi.org/10.3390/biology13050335