New Discovery of Calamitaceae from the Cisuralian in Northwest China: Morphological Evolution of Strobilus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Comparisons
4.1.1. Comparison of Calamites cistii with Fossil Taxa
4.1.2. Comparison of Macrostachya sp. with Fossil Taxa
4.1.3. Comparison of Punctatisporites punctatus with Fossil Taxa
4.2. The Strobilus Evolution of Calamitaceae
5. Conclusions
- (1)
- This paper reports two calamitean species from the Shanxi Formation of the Cisuralian in Yongchang, Gansu: Calamites cistii, Macrostachya sp., with in situ spores of the Punctatisporites punctatus. A detailed systematic description and comparative discussion of their macro- and microstructures characteristics are provided.
- (2)
- Based on detailed fossil records, there is a higher possibility that the Calamostachys represents the ancestral type of calamitean strobili. The initial attachment position of the sporangiophore should be located in the middle of the internode, from which other types of strobili morphology could have evolved, coupled with the reliable geological records of the Calamitaceae strobili.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiss, C.E. Steinkohlen-Calamarien. In Abhandlugen zur Geologischen Specialkarte von Preuben und den Thüringischen Staaten; Sitzungsber Kon Bohm Ges Wiss Press: Berlin, Germany, 1929; pp. 1876–1878. [Google Scholar]
- Kidston, R. The fossil plants of the Carboniferous rocks of Canonbie, Dumfriesshire, and of parts of Cumberland and Northumberland. Trans. R. Soc. Edinb. Earth Sci. 1903, 40, 741–833. [Google Scholar] [CrossRef]
- Nĕmejc, F. Taxonomical studies of the fructifications of the Calamitaceae collected in the coal districts of central Bohemia. Geol. Palaeontol. 1951, 1, 3–62. [Google Scholar]
- Li, X.X.; Zhou, Z.Y.; Cai, C.Y.; Sun, G.; Ouyang, S.; Deng, L.H. Fossil Floras of China through the Geological Ages; Guangdong Science and Technology Press: Guangzhou, China, 1995; pp. 1–223. (In Chinese) [Google Scholar]
- Abbott, M.L. Lycopod fructifications from the Upper Freeport (No. 7) coal in Southeastern Ohio. Palaeontogr. Am. 1968, 6, 93–118. [Google Scholar]
- Mamay, S.H. Paleozoic origin of the cycads, U.S. Geol. Surv. Prof. Pap. 1976, 934, 1–48. [Google Scholar]
- Pfefferkorn, H.W.; Archer, A.W.; Zodrow, E.L. Modern tropical analogs for Carboniferous standing forests: Comparison of extinct Mesocalamites with extant Montrichardia. Hist. Biol. 2001, 15, 235–250. [Google Scholar]
- DiMichele, W.A.; Pfefferkorn, H.W.; Gastaldo, R.A. Response of Late Carboniferous and Early Permian Plant Communities to Climate Change. Annu. Rev. Earth Planet. Sci. 2001, 29, 461–487. [Google Scholar] [CrossRef]
- Rößler, R. Der Versteinerte Wald von Chemnitz; Museum für Naturkunde Press: Chemnitz, Germany, 2001. [Google Scholar]
- Doweld, A.B. Proposal to conserve the name Asterocalamites against Archaeocalamites and Stigmatocanna (fossil Equisetophyta: Asterocalamitopsida). Taxon 2014, 63, 442–444. [Google Scholar] [CrossRef]
- Álvarez-Vázquez, C.; Wagner, R.H. A revision of Annularia and Asterophyllites species from the lower Westphalian (Middle Pennsylvanian) of the Maritime Provinces of Canada. Atl. Geol. 2017, 53, 17–62. [Google Scholar] [CrossRef]
- Heavens, N.G.; Mahowald, N.M.; Soreghan, G.S. A model-based evaluation of tropical climate in Pangaea during the late Palaeozoic Icehouse. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 425, 109–127. [Google Scholar] [CrossRef]
- Taylor, E.L.; Taylor, T.N.; Krings, M. Paleobotany: The Biology and Evolution of Fossil Plants; Academic Press: Cambridge, MA, USA, 2009; pp. 292–692. [Google Scholar]
- Jongmans, W.J. Anleitung zur Bestimmung der Karbonpflanzen West-Europas. I. Thallophytae, Equisetals, Sphenophyllales, Staatl; Bohrverwaltung in den Niederlanden: Craz & Gerlach, 1911. [Google Scholar]
- Hauke, R.L. A taxonomical monograph of the genus Equisetum subgenus Hippochaete. Nova Hedwig. Beih 1963, 8, 1–123. [Google Scholar]
- Zeiller, R. Bassin Houiller de Valenciennes, Description de la Flore Fossile, Texte (Études des Gîtes Mineraux de la France); Maison Quantin Press: Paris, France, 1888; p. 46. [Google Scholar]
- Matthew, G.F. Flora of Little River Group. Trans. R. Soc. Can. 1906, 12, 99–145. [Google Scholar]
- Willman, H.B.; Payne, J.N. Geology and mineral resources of the Marseilles, Ottawa, and Streator Quadrangles-Plates. Urbana Ill. Geol. Surv. 1942, 66, 100. [Google Scholar]
- Kosanke, R.M. Mazostachys, a New Calamite Fructification; Urbana Press: Champaign, IL, USA, 1955; pp. 7–37. [Google Scholar]
- Hickling, G. The Anatomy of Calamostachys binneyana. J. Frankl. Inst. 1910, 54, 1–16. [Google Scholar]
- Arnold, C.A. Petrified Cones of the Genus Calamostachys from the Carboniferous of Illinois; University of Michigan: Ann Arbor, MI, USA, 1958; pp. 149–165. [Google Scholar]
- Liang, J.D.; Yang, Z.C.; Liu, H.C.; Lei, J.C.; Wang, Z.; Dong, D.X. A Permian stratigraphic section in Longshou Mountain and its significance in Gansu province. Geol. Rev. 1980, 26, 7–15, (In Chinese with English abstract). [Google Scholar]
- Wang, X.L.; Yang, Y.H.; Sun, B.N.; Hua, Y.F.; Miao, Y.F. Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China. Rev. Palaeobot. Palynol. 2022, 308, 104789. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, Q. Tectonics of the Longshoushan ancient rift and Hexi Corridor. Bull. Chin. Acad. Geol. Sci. 1993, 27–28, 1–14. (In Chinese) [Google Scholar]
- Wang, Z.X.; Sun, B.N.; Wang, X.L.; Chen, Y.Q.; Sun, F.K.; Xiong, C.H. A new cordaitean pollen cone and pollen grains in situ from the Early Permian of Hexi Corridor and its geotectonic signifcance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 463, 261–274. [Google Scholar] [CrossRef]
- Sun, F.K.; Xiong, C.H.; Wang, Z.X.; Wang, J.D.; Sun, M.X.; Wang, X.L.; Sun, B.N. A new species of Cyathocarpus with in situ spores from the lower Permian of Gansu, northwestern China. Hist. Biol. 2017, 31, 824–835. [Google Scholar] [CrossRef]
- Wang, X.L.; Ji, Y.Z.; Hua, Y.F.; Xiong, C.H.; Sun, B.N. New materials of Mariopteris from the Cisuralian of northwestern China and their implications for paleogeographic diversification. Hist. Biol. 2020, 33, 981–995. [Google Scholar] [CrossRef]
- Wang, Z.X.; Sun, B.N.; Sun, F.K.; Xiong, C.H.; Chen, Y.Q.; Wang, X.L. Microstructure and significance of cordaitean reproductive organs from the lower Permian of Gansu, Northwest China. J. Asian Earth Sci. 2018, 158, 49–64. [Google Scholar] [CrossRef]
- Ouyang, S.; Lu, L.C.; Zhu, H.C.; Liu, F. The Late Paleozoic Spores and Pollen of China; University of Science and Technology of China Press: Hefei, China, 2017; pp. 1–810. [Google Scholar]
- Writing Group of Nanjing Institute of Geology and Palaeontology; Institute of Botany; Academia Sinica. Palaeozoic Plants from China; Science Press: Beijing, China, 1974; pp. 1–226. [Google Scholar]
- Delevoryas, T.; Hope, R.C. More evidence for conifer diversity in the Upper Triassic of North Carolina. Am. J. Bot. 1981, 68, 1003–1007. [Google Scholar] [CrossRef]
- Bek, J.; Šimůnek, Z. Revision of the cone genus Discinites from the Carboniferous continental basins of Bohemia. Palaeontology 2005, 48, 1377–1397. [Google Scholar] [CrossRef]
- Brown, J.T. Evidence for epidogenetic growth in Paracalamites from South West Africa. S. Afr. J. Sci. 1977, 73, 235. [Google Scholar]
- Kidston, R. On the fossil flora of the Staffordshire coal fields. Trans. R. Soc. Edinb. Earth Sci. 1914, 50, 73–190. [Google Scholar] [CrossRef]
- Bek, J. Palynological grouping of Paleozoic marattialean miospores. Rev. Palaeobot. Palynol. 2021, 284, 104341. [Google Scholar] [CrossRef]
- Bek, J.; Wang, J. A comparative study on in situ spores of some Paleozoic noeggerathialeans and their implications for dispersed spore assemblages. Rev. Palaeobot. Palynol. 2021, 294, 104379. [Google Scholar] [CrossRef]
- Barthel, M. Die Rotliegendflora des Thüringer Waldes Teil 6: Wurzeln und fertile Organe. Veröffentlichungen Naturhistorischen Mus. Schleus. 2008, 23, 41–67. [Google Scholar]
- Feng, S.N.; Meng, F.S.; Chen, G.X. Plants. In Paleontology Atlas of South-Central China (III); Hubei Institute of Geological Sciences, Henan Provincial Bureau of Geology, Hubei Provincial Bureau of Geology, et al., Eds.; Geological Publishing House: Beijing, China, 1977; pp. 208–410. (In Chinese) [Google Scholar]
- Hu, Y.F. New Discovery of Palaeostachya from Lower Shihezi Formation of Taiyuan in Shanxi. Acta Bot. Sin. 1981, 23, 243–246, (In Chinese with English abstract). [Google Scholar]
- Yang, G.X.; Chen, Z.H.; Zhang, S.L. The flora characteristic of Taiyuan formation and Shanxi Formation of the eastern Zhungeerqi, Inner Mongolia. Earth Sci. J. Wuhan Coll. Geol. 1983, 4, 69–171, (In Chinese with English abstract). [Google Scholar]
Species | Strobilus | Sporophyll | Axis (cm) | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
Shape | Bracts Connection | Shape | Apex | Angle/ Attachment | No. of Bracts per Whorl | Whorls | |||
Macrostachya sp. | Cylindrical | Whorled, imbricate | Ovoid | Pointed | >45° | 30–32 | 10 | 0.7 | Present study |
M. conica | Long- tubular | Whorled, imbricate | Taper | Pointing triangular | / | 30–40 | / | 0.5 | [33] |
M. huttoniaeformis | Cylindrical | Whorled | Long triangle | Pointed | / | 50–60 | / | / | [14] |
M. thompsonii | Long- tubular | Whorled, imbricate | Fanshaped | Cuspidate | <45° | 32–36 | 50–53 | / | [34] |
M. infundibuliformis | Long- tubular | Whorled | Elongate | Pointed | / | 30–40 | / | 0.20 | [34] |
Genus | Punctatisporites | Cyclogranisporites | Verrucosisporites |
---|---|---|---|
Morphology | circular to subcircular | circular | circular to oval |
Trilete | Bifurcate and almost reaching the margin | Non-bifurcate and reach the margin | Uneven lengths |
Diameter (μm) | 10–140 | 10–70 | 20–140 |
Parent plants | Ferns and noeggerathialeans | Ferns | Ferns and noeggerathialeans |
Reference | [29,35,36] | [29,35] | [29,36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Miao, Y.; Ji, Y.; Sun, B. New Discovery of Calamitaceae from the Cisuralian in Northwest China: Morphological Evolution of Strobilus. Biology 2024, 13, 347. https://doi.org/10.3390/biology13050347
Wang X, Miao Y, Ji Y, Sun B. New Discovery of Calamitaceae from the Cisuralian in Northwest China: Morphological Evolution of Strobilus. Biology. 2024; 13(5):347. https://doi.org/10.3390/biology13050347
Chicago/Turabian StyleWang, Xuelian, Yunfa Miao, Yanzhao Ji, and Bainian Sun. 2024. "New Discovery of Calamitaceae from the Cisuralian in Northwest China: Morphological Evolution of Strobilus" Biology 13, no. 5: 347. https://doi.org/10.3390/biology13050347
APA StyleWang, X., Miao, Y., Ji, Y., & Sun, B. (2024). New Discovery of Calamitaceae from the Cisuralian in Northwest China: Morphological Evolution of Strobilus. Biology, 13(5), 347. https://doi.org/10.3390/biology13050347