Excess Iodine Consumption Induces Oxidative Stress and Pancreatic Damage Independently of Chemical Form in Male Wistar Rats: Participation of PPAR-γ and C/EBP-β
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Murine Model of Iodine Excess Consumption
2.2. Determination of Iodine and Thyroid Profile in Serum
2.3. Determination of Glucose, Insulin, Alpha-Amylase and Triacylglycerols
2.4. Determination of Antioxidant Status
2.5. Determination of Oxidative Stress
2.6. Immunoblotting
2.7. Determination of mRNA by RT-PCR
2.8. Statistical Analysis
3. Results
3.1. Total Iodine Levels and Thyroid Profile in Rats Exposed to 300 μg/L of Lugol and KIO3
3.2. Effect of Iodine Excess Consumption in Drinking Water on the Metabolism of Glucose and Pancreatic Function
3.3. Effect of Iodine Excces Consumption on Lipid Profile
3.4. Iodine Excces Consumption Alters the Antioxidant and Oxidant Status
3.5. Excessive Iodine Consumption Affects the Expression of GLUT4, PPAR-γ, and C/EBP-β in Pancreatic Tissue
3.6. Excessive Iodine Consumption Affects the Expression of PPAR-γ and C/EBP-β in Pancreatic Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilias, I.; Milionis, C.; Zabuliene, L.; Rizzo, M. Does Iodine Influence the Metabolism of Glucose? Medicina 2023, 59, 189. [Google Scholar] [CrossRef]
- Jin, M.; Zhang, Z.; Li, Y.; Teng, D.; Shi, X.; Ba, J.; Chen, B.; Du, J.; He, L.; Lai, X.; et al. U-Shaped Associations between Urinary Iodine Concentration and the Prevalence of Metabolic Disorders: A Cross-Sectional Study. Thyroid 2020, 30, 13. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Jia, Q.; Zhang, X.; Jin, X.; Shen, H. Effects of Excessive Iodine Intake on Blood Glucose, Blood Pressure, and Blood Lipids in Adults. Biol. Trace Elem. Res. 2019, 192, 136–144. [Google Scholar] [CrossRef]
- Mancini, F.R.; Rajaobelina, K.; Dow, C.; Habbal, T.; Affret, A.; Balkau, B.; Bonnet, F.; Boutron-Ruault, M.-C.; Fagherazzi, G. High iodine dietary intake is associated with type 2 diabetes among women of the E3N-EPIC cohort study. Clin. Nutr. 2019, 38, 1651–1656. [Google Scholar] [CrossRef]
- Mendez-Tepepa, M.; Zepeda-Perez, D.; Espindola-Lozano, M.; Rodriguez-Castelan, J.; Arroyo-Helguera, O.; Pacheco, P.; Nicolás-Toledo, L.; Cuevas-Romero, E. Hypothyroidism modifies differentially the content of lipids and glycogen, lipid receptors, and intraepithelial lymphocytes among oviductal regions of rabbits. Reprod. Biol. 2020, 20, 247–253. [Google Scholar] [CrossRef]
- Song, E.; Park, M.J.; Kim, J.A.; Roh, E.; Yu, J.H.; Kim, N.H.; Yoo, H.J.; A Seo, J.; Kim, S.G.; Kim, N.H.; et al. Impact of urinary iodine concentration on blood glucose levels and blood pressure: A nationwide population-based study. Eur. J. Nutr. 2022, 61, 3227–3234. [Google Scholar] [CrossRef]
- Wang, D.; Wan, S.; Liu, P.; Meng, F.; Zhang, X.; Ren, B.; Qu, M.; Wu, H.; Shen, H.; Liu, L. Relationship between excess iodine, thyroid function, blood pressure, and blood glucose level in adults, pregnant women, and lactating women: A cross-sectional study. Ecotoxicol. Environ. Saf. 2021, 208, 111706. [Google Scholar] [CrossRef]
- Zhuo, Y.; Ling, L.; Sun, Z.; Huang, W.; Hong, Z.; Zhang, Y.; Peng, X.; Liu, X.; Yuan, W.; Xu, W.-Y.; et al. Vitamin D and iodine status was associated with the risk and complication of type 2 diabetes mellitus in China. Open Life Sci. 2021, 16, 150–159. [Google Scholar] [CrossRef]
- Sarkar, D.; Chakraborty, A.; Saha, A.; Chandra, A.K. Iodine in excess in the alterations of carbohydrate and lipid metabolic pattern as well as histomorphometric changes in associated organs. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 631–643. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, C.; Xia, B.; Zhou, X.; Luo, S.; Gan, R.; Duan, P.; Tan, Y. Iodine excess induces hepatic, renal and pancreatic injury in female mice as determined by attenuated total reflection Fourier-transform infrared spectrometry. J. Appl. Toxicol. 2022, 42, 600–616. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, M.; Wang, X.; Wang, M.; Zhang, B.; Jiang, W.; Bian, J.; Liu, X. Effects of long-term excessive iodine intake on blood lipids in Chinese adults: A cross-sectional study. Eur. J. Clin. Nutr. 2021, 75, 708–714. [Google Scholar] [CrossRef]
- Samadi, R.; Ghanbari, M.; Shafiei, B.; Gheibi, S.; Azizi, F.; Ghasemi, A. High dose of radioactive iodine per se has no effect on glucose metabolism in thyroidectomized rats. Endocrine 2017, 56, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Helguera, O.; Anguiano, B.; Delgado, G.; Aceves, C. Uptake and antiproliferative effect of molecular iodine in the MCF-7 breast cancer cell line. Endocr.-Relat. Cancer 2006, 13, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, H.; Imai, T.; Tanaka, Y.; Tobinaga, J.; Wada, M.; Morita, T.; Yamada, F.; Tsukamura, K.; Oiwa, M.; Kikumori, T.; et al. Suppressive effect of iodine on DMBA-induced breast tumor growth in the rat. J. Surg. Oncol. 1996, 61, 209–213. [Google Scholar] [CrossRef]
- Marta Ignasiak Kciuk, M.J.D.; Marciniak, B. P-254—Mechanistic view of iodide in oxidative stress. Free. Radic. Biol. Med. 2018, 120. [Google Scholar]
- Reséndiz-Jiménez, A.; Arbez-Evangelista, C.; Arroyo-Xochihua, O.; Palma-Jacinto, J.A.; Santiago-Roque, I.; De León-Ramírez, Y.M.; Xcaret Alexa, H.D.; Omar, A.H. Iodine Promotes Glucose Uptake through Akt Phosphorylation and Glut-4 in Adipocytes, but Higher Doses Induce Cytotoxic Effects in Pancreatic Beta Cells. Biology 2024, 1, 26. [Google Scholar]
- Zhang, N.; Tong, Y.J.; Shan, Z.Y.; Teng, W.P. Effect of chronic mild and moderate iodine excess on thyroid anti-oxidative ability of iodine deficiency and non-iodine deficiency Wistar rats. Zhonghua Yi Xue Za Zhi 2006, 86, 1274–1278. [Google Scholar] [PubMed]
- Aceves, C.; Mendieta, I.; Anguiano, B.; Delgado-González, E. Molecular Iodine Has Extrathyroidal Effects as an Antioxidant, Differentiator, and Immunomodulator. Int. J. Mol. Sci. 2021, 22, 1228. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Rufino, S.; Zepeda, R.; Flores-Muñoz, M.; Roque-Santiago, I.; Arroyo-Helguera, O. Lugol Increases Lipolysis through Upregulation of PPAR-Gamma and Downregulation of C/EBP-Alpha in Mature 3T3-L1 Adipocytes. J. Nutr. Metab. 2020, 2020, 2302795. [Google Scholar]
- Yoshida, M.; Mukama, A.; Hosomi, R.; Fukunaga, K.; Nishiyama, T. Serum and tissue iodine concentrations in rats fed diets supplemented with kombu powder or potassium iodide. J. Nutr. Sci. Vitaminol. 2014, 60, 447–449. [Google Scholar] [CrossRef]
- McCreesh, A.H.; Mann, D.E. The Effect of orally Administered Sodium Iodide and Sodium Iodate on Blood Sugar Response to Thiourea in Rats. J. Am. Pharm. Assoc. 1958, 47, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Babic Leko, M.; Gunjaca, I.; Pleic, N.; Zemunik, T. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int. J. Mol. Sci. 2021, 22, 6521. [Google Scholar] [CrossRef] [PubMed]
- Miyai, K.; Tokushige, T.; Kondo, M.; Iodine Research, G. Suppression of thyroid function during ingestion of seaweed “Kombu” (Laminaria japonoca) in normal Japanese adults. Endocr. J. 2008, 55, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Pryvrots’ka, I.B.; Kuchmerovs’ka, T.M. Oxidative stress in blood leukocytes, pro/antioxidant status and fatty acids composition of pancreas lipids at experimental acute pancreatitis in rats. Ukr. Kyi Biokhimichnyi Zhurnal (1999) 2013, 85, 124–136. [Google Scholar]
- Rahman, S.H.; Ibrahim, K.; Larvin, M.; Kingsnorth, A.; McMahon, M.J. Association of antioxidant enzyme gene polymorphisms and glutathione status with severe acute pancreatitis. Gastroenterology 2004, 126, 1312–1322. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, L.; Qian, T.; Zhao, M.; Che, W.; Hou, X.; Xie, H.; Su, Y.; Pan, H.; Li, J.; et al. Protection of Vitamin C on Oxidative Damage Caused by Long-Term Excess Iodine Exposure in Wistar Rats. Nutrients 2022, 14, 5245. [Google Scholar] [CrossRef]
- Rodriguez-Castelan, J.; Delgado-Gonzalez, E.; Varela-Floriano, V.; Anguiano, B.; Aceves, C. Molecular Iodine Supplement Prevents Streptozotocin-Induced Pancreatic Alterations in Mice. Nutrients 2022, 14, 715. [Google Scholar] [CrossRef] [PubMed]
- Kojecky, Z.; Simek, I.; Matlocha, Z. Heterogenity of alpha-amylase in different forms of pancreatitis. Cesk. Gastroenterol. Vyz. 1979, 33, 185–190. [Google Scholar] [PubMed]
- Lorentz, K. Studies on clinical significance of lipase and alpha-amylase estimations in pancreatitis sera. Z. Gastroenterol. 1980, 18, 543–546. [Google Scholar]
- Nevarilova, A.; Sixtova, E.; Fassati, M. Diagnosis and follow-up of parotitic pancreatitis by means of the determination of serum alpha-amylase activity. Acta Univ. Carol Med. Monogr. 1977, 78 Pt 2, 89–95. [Google Scholar]
- Armoni, M.; Harel, C.; Karnieli, E. Transcriptional regulation of the GLUT4 gene: From PPAR-gamma and FOXO1 to FFA and inflammation. Trends Endocrinol. Metab. 2007, 18, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Higa, M.; Zhou, Y.T.; Ravazzola, M.; Baetens, D.; Orca, L.; Unger, R.H. Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc. Natl. Acad Sci. USA 1999, 96, 11513–11518. [Google Scholar] [CrossRef] [PubMed]
- Toruner, F.; Akbay, E.; Cakir, N.; Sancak, B.; Elbeg, S.; Taneri, F.; Akturk, M.; Karakoç, A.; Ayvaz, G.; Arslan, M. Effects of PPARγ and PPARα agonists on serum leptin levels in diet-induced obese rats. Horm. Metab. Res. 2004, 36, 226–230. [Google Scholar]
- de Vries, T.I.; Kappelle, L.J.; van der Graaf, Y.; de Valk, H.W.; de Borst, G.J.; Nathoe, H.M.; Visseren, F.L.J.; Westerink, J. Thyroid-stimulating hormone levels in the normal range and incident type 2 diabetes mellitus. Acta Diabetol. 2019, 56, 431–440. [Google Scholar] [CrossRef]
- Bähr, I.; Bazwinsky-Wutschke, I.; Wolgast, S.; Hofmann, K.; Streck, S.; Mühlbauer, E.; Wedekind, D.; Peschke, E. GLUT4 in the endocrine pancreas--indicating an impact in pancreatic islet cell physiology? Horm. Metab. Res. 2012, 44, 442–450. [Google Scholar] [CrossRef]
- la Peña Sol, D.; Santiago-Roque, I.; Olivo-Vidal, Z.; Navarro Meza, M.; Xochihua-Rosas, I.; Arroyo-Helguera, O. Changes in trophoblasts gene expression in response to perchlorate exposition. Toxicol. Vitr. 2018, 50, 328–335. [Google Scholar] [CrossRef]
Group | Serum Iodine Levels (µg/mL) | TSH (mUI/L) | Free T3 (nmol/dL) | T4 Free (nmol/dL) |
---|---|---|---|---|
Control (n = 8) | 0.5 ± 0.03 | 0.45 ± 0.01 | 0.17 ± 0.0008 | 0.6 ± 0.018 |
Lugol (300 μg/L) (n = 8) | 12.9 ± 0.04 a | 0.50 ± 0.02 b | 0.18 ± 0.0007 | 0.65 ± 0.014 |
KIO3 (300 μg/L) (n = 8) | 14.3 ± 0.09 a | 0.59 ± 0.02 b | 0.18 ± 0.0008 | 0.62 ± 0.015 |
Parameter | Control (n = 8) | Lugol (300 μg/L) (n = 8) | KIO3 (300 μg/L) (n = 8) |
---|---|---|---|
Serum insulin (mg/dL) | 85 ± 3.2 | 62.8 ± 2.2 a | 47.6 ± 1.1 a |
Serum glucose (mg/dL) | 83.5 ± 3.8 | 169.9 ± 1.3 a | 148.1 ± 1.7 a |
Pancreatic alpha-amylase (UI/L) | 992.6 ± 15.8 | 1215.4 ± 13.5 a | 1115.3 ± 20.9 a |
Parameter | Control (n = 8) | Lugol (300 μg/L) (n = 8) | KIO3 (300 μg/L) (n = 8) |
---|---|---|---|
Triacylglycerols (mg/dL) | 132.6 ± 3.2 | 150.0 ± 1.7 a | 155.0 ± 2.1 a |
Total cholesterol (mg/dL) | 78.8 ± 4.2 | 69.8 ± 1.6 | 70.4 ± 0.5 |
Parameter | Control (n = 8) | Lugol (300 μg/L) (n = 8) | KIO3 (300 μg/L) (n = 8) |
---|---|---|---|
TAS (mm of ascorbic acid equivalents/L) | 193.2 ± 47.8 | 100.4 ± 4.9 a | 108.3 ± 0.8 a |
SOD activity (U/g of hemoglobin) | 1050 ± 232 | 224.1 ± 56.3 a | 195 ± 17 a |
Catalase activity (H2O2/mg de protein) | 2095 ± 49.5 | 1056.2 ± 9.9 a | 1035.9 ± 6.6 a |
Total Glutathione (mm cysteine/mg protein) | 0.04 ± 0.005 | 0.07 ± 0.01 | 0.002 ± 0.0004 a |
Oxidant Stress (µM MDA/mg protein) | 1.4 ± 0.3 | 1.5 ± 0.1 | 29.5 ± 6.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arbez-Evangelista, C.; Arroyo-Xochihua, O.; Ortega-Ibarra, I.H.; Ortega-Ibarra, E.; De León-Ramírez, Y.M.; Cuevas-Romero, E.; Arroyo-Helguera, O. Excess Iodine Consumption Induces Oxidative Stress and Pancreatic Damage Independently of Chemical Form in Male Wistar Rats: Participation of PPAR-γ and C/EBP-β. Biology 2024, 13, 466. https://doi.org/10.3390/biology13070466
Arbez-Evangelista C, Arroyo-Xochihua O, Ortega-Ibarra IH, Ortega-Ibarra E, De León-Ramírez YM, Cuevas-Romero E, Arroyo-Helguera O. Excess Iodine Consumption Induces Oxidative Stress and Pancreatic Damage Independently of Chemical Form in Male Wistar Rats: Participation of PPAR-γ and C/EBP-β. Biology. 2024; 13(7):466. https://doi.org/10.3390/biology13070466
Chicago/Turabian StyleArbez-Evangelista, Cristian, Omar Arroyo-Xochihua, Ilse Haide Ortega-Ibarra, Edú Ortega-Ibarra, Yeimy Mar De León-Ramírez, Estela Cuevas-Romero, and Omar Arroyo-Helguera. 2024. "Excess Iodine Consumption Induces Oxidative Stress and Pancreatic Damage Independently of Chemical Form in Male Wistar Rats: Participation of PPAR-γ and C/EBP-β" Biology 13, no. 7: 466. https://doi.org/10.3390/biology13070466
APA StyleArbez-Evangelista, C., Arroyo-Xochihua, O., Ortega-Ibarra, I. H., Ortega-Ibarra, E., De León-Ramírez, Y. M., Cuevas-Romero, E., & Arroyo-Helguera, O. (2024). Excess Iodine Consumption Induces Oxidative Stress and Pancreatic Damage Independently of Chemical Form in Male Wistar Rats: Participation of PPAR-γ and C/EBP-β. Biology, 13(7), 466. https://doi.org/10.3390/biology13070466