The Neurotrophin System in the Postnatal Brain—An Introduction
Abstract
:Simple Summary
Abstract
1. Neurotrophic Factors
2. Neurotrophins and Their Receptors
2.1. The Neurotrophin Family
2.2. Receptors for Members of the Neurotrophin Family
3. Polymorphisms in Genes Coding for Neurotrophins
4. Adult Hippocampal Neurogenesis, Voluntary Exercise and Major Depression
5. The Neurotrophin System and Neuronal Plasticity
6. The Neurotrophin System and Obesity
7. The Neurotrophin System and Aging
8. BDNF, Physical Activity and Aging
9. Conclusions
Funding
Conflicts of Interest
References
- von Bohlen und Halbach, O. Neurotrophic Factors and Dendritic Spines. Adv. Neurobiol. 2023, 34, 223–254. [Google Scholar]
- Levi-Montalcini, R.; Hamburger, V. Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo. J. Exp. Zool. 1951, 116, 321–361. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Levi-Montalcini, R.; Hamburger, V. A Nerve Growth-Stimulating Factor Isolated from Sarcom as 37 and 180. Proc. Natl. Acad. Sci. USA 1954, 40, 1014–1018. [Google Scholar] [CrossRef]
- Barde, Y.A.; Edgar, D.; Thoenen, H. Purification of a New Neurotrophic Factor from Mammalian Brain. EMBO J. 1982, 1, 549–553. [Google Scholar] [CrossRef]
- Leibrock, J.; Lottspeich, F.; Hohn, A.; Hofer, M.; Hengerer, B.; Masiakowski, P.; Thoenen, H.; Barde, Y.-A. Molecular Cloning and Expression of Brain-Derived Neurotrophic Factor. Nature 1989, 341, 149–152. [Google Scholar] [CrossRef]
- Maisonpierre, P.C.; Belluscio, L.; Squinto, S.; Ip, N.Y.; Furth, M.E.; Lindsay, R.M.; Yancopoulos, G.D. Neurotrophin-3: A Neurotrophic Factor Related to NGF and BDNF. Science 1990, 247 Pt 1, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the Human Bdnf Locus: Bidirectional Transcription, Complex Splicing, Multiple Promoters. Genomics 2007, 90, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Hallbook, F.; Ibanez, C.F.; Persson, H. Evolutionary Studies of the Nerve Growth Factor Family Reveal a Novel Member Abundantly Expressed in Xenopus Ovary. Neuron 1991, 6, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Berkemeier, L.R.; Winslow, J.W.; Kaplan, D.R.; Nikolics, K.; Goeddel, D.V.; Rosenthal, A. Neurotrophin-5: A Novel Neurotrophic Factor That Activates Trk and Trkb. Neuron 1991, 7, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Gartner, A.; Shostak, Y.; Hackel, N.; Ethell, I.M.; Thoenen, H. Ultrastructural Identification of Storage Compartments and Localization of Activity-Dependent Secretion of Neurotrophin 6 in Hippocampal Neurons. Mol. Cell. Neurosci. 2000, 15, 215–234. [Google Scholar] [CrossRef]
- Gotz, R.; Koster, R.; Winkler, C.; Raulf, F.; Lottspeich, F.; Schartl, M.; Thoenen, H. Neurotrophin-6 Is a New Member of the Nerve Growth Factor Family. Nature 1994, 372, 266–269. [Google Scholar] [CrossRef]
- Li, X.; Franz, J.; Lottspeich, F.; Gotz, R. Recombinant Fish Neurotrophin-6 Is a Heparin-Binding Glycoprotein: Implications for a Role in Axonal Guidance. Biochem. J. 1997, 324 Pt 2, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Barbacid, M. The Trk Family of Neurotrophin Receptors. J. Neurobiol. 1994, 25, 1386–1403. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [PubMed]
- Barker, P.A. P75ntr: A Study in Contrasts. Cell Death Differ. 1998, 5, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, B.; Popescu, A.M.; Tache, D.E.; Neamtu, O.M.; Emami, G.; Tataranu, L.G.; Buteica, A.S.; Dricu, A.; Purcaru, S.O. Tropomyosin-Receptor-Kinases Signaling in the Nervous System. Maedica 2013, 8, 43–48. [Google Scholar]
- Minichiello, L. Trkb Signalling Pathways in Ltp and Learning. Nat. Rev. Neurosci. 2009, 10, 850–860. [Google Scholar] [CrossRef]
- Silhol, M.; Arancibia, S.; Perrin, D.; Maurice, T.; Alliot, J.; Tapia-Arancibia, L. Effect of Aging on Brain-Derived Neurotrophic Factor, Probdnf, Their Receptors in the Hippocampus of Lou/C Rats. Rejuvenation Res. 2008, 11, 1031–1040. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Bencardino, K.; Pizzutilo, E.G.; Tosi, F.; Siena, S. Tropomyosin Receptor Kinase (Trk) Biology and the Role of Ntrk Gene Fusions in Cancer. Ann. Oncol. 2019, 30 (Suppl. S8), viii5–viii15. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Trk Receptors: Roles in Neuronal Signal Transduction. Annu. Rev. Biochem. 2003, 72, 609–642. [Google Scholar] [CrossRef]
- Vaegter, C.B.; Jansen, P.; Fjorback, A.W.; Glerup, S.; Skeldal, S.; Kjolby, M.; Richner, M.; Erdmann, B.; Nyengaard, J.R.; Tessarollo, L.; et al. Associates with Trk Receptors to Enhance Anterograde Transport and Neurotrophin Signaling. Nat. Neurosci. 2011, 14, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.K.; Hempstead, B.L. Neurotrophins and Their Receptors: Signaling Trios in Complex Biological Systems. Cell. Mol. Life Sci. 2004, 61, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Underwood, C.K.; Coulson, E.J. The P75 Neurotrophin Receptor. Int. J. Biochem. Cell Biol. 2008, 40, 1664–1668. [Google Scholar] [CrossRef] [PubMed]
- Maclean, C.J.; Baker, H.F.; Fine, A.; Ridley, R.M. The Distribution of P75 Neurotrophin Receptor-Immunoreactive Cells in the Forebrain of the Common Marmoset (Callithrix jacchus). Brain Res. Bull. 1997, 43, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.R.; Miller, F.D. Neurotrophin Signal Transduction in the Nervous System. Curr. Opin. Neurobiol. 2000, 10, 381–391. [Google Scholar] [CrossRef]
- Frade, J.M.; Rodriguez-Tebar, A.; Barde, Y.A. Induction of Cell Death by Endogenous Nerve Growth Factor through Its P75 Receptor. Nature 1996, 383, 166–168. [Google Scholar] [CrossRef]
- Mardy, S.; Miura, Y.; Endo, F.; Matsuda, I.; Indo, Y. Congenital Insensitivity to Pain with Anhidrosis (Cipa): Effect of Trka (Ntrk1) Missense Mutations on Autophosphorylation of the Receptor Tyrosine Kinase for Nerve Growth Factor. Hum. Mol. Genet. 2001, 10, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Indo, Y. Molecular Basis of Congenital Insensitivity to Pain with Anhidrosis (Cipa): Mutations and Polymorphisms in Trka (Ntrk1) Gene Encoding the Receptor Tyrosine Kinase for Nerve Growth Factor. Hum. Mutat. 2001, 18, 462–471. [Google Scholar] [CrossRef]
- Deflesselle, E.; Colle, R.; Rigal, L.; David, D.J.; Vievard, A.; Martin, S.; Becquemont, L.; Verstuyft, C.; Corruble, E. The Trkb Rs2289656 Genetic Polymorphism Is Associated with Acute Suicide Attempts in Depressed Patients: A Transversal Case Control Study. PLoS ONE 2018, 13, e0205648. [Google Scholar] [CrossRef]
- Feng, Y.; Vetro, A.; Kiss, E.; Kapornai, K.; Daroczi, G.; Mayer, L.; Tamas, Z.; Baji, I.; Gadoros, J.; King, N.; et al. Association of the Neurotrophic Tyrosine Kinase Receptor 3 (Ntrk3) Gene and Childhood-Onset Mood Disorders. Am. J. Psychiatry 2008, 165, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Athanasiu, L.; Mattingsdal, M.; Melle, I.; Inderhaug, E.; Lien, T.; Agartz, I.; Lorentzen, S.; Morken, G.; Andreassen, O.A.; Djurovic, S. Intron 12 in Ntrk3 Is Associated with Bipolar Disorder. Psychiatry Res. 2011, 185, 358–362. [Google Scholar] [CrossRef]
- Otnaess, M.K.; Djurovic, S.; Rimol, L.M.; Kulle, B.; Kahler, A.K.; Jonsson, E.G.; Agartz, I.; Sundet, K.; Hall, H.; Timm, S.; et al. Evidence for a Possible Association of Neurotrophin Receptor (Ntrk-3) Gene Polymorphisms with Hippocampal Function and Schizophrenia. Neurobiol. Dis. 2009, 34, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Yamamoto, N.; Hori, H.; Hattori, K.; Sasayama, D.; Teraishi, T.; Hashikura, M.; Tatsumi, M.; Okamoto, N.; Higuchi, T.; et al. Support for Association between the Ser205leu Polymorphism of P75(Ntr) and Major Depressive Disorder. J. Hum. Genet. 2011, 56, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Gau, Y.T.; Liou, Y.J.; Yu, Y.W.; Chen, T.J.; Lin, M.W.; Tsai, S.J.; Hong, C.J. Evidence for Association between Genetic Variants of P75 Neurotrophin Receptor (P75ntr) Gene and Antidepressant Treatment Response in Chinese Major Depressive Disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Kunugi, H.; Hashimoto, R.; Yoshida, M.; Tatsumi, M.; Kamijima, K. A Missense Polymorphism (S205l) of the Low-Affinity Neurotrophin Receptor P75ntr Gene Is Associated with Depressive Disorder and Attempted Suicide. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2004, 129, 44–46. [Google Scholar] [CrossRef]
- Keshri, N.; Nandeesha, H.; Rajappa, M.; Menon, V. Neurotrophin-3 Gene Polymorphism in Schizophrenia and Its Relation with Diseases Severity and Cognitive Dysfunction. J. Neurosci. Rural. Pract. 2023, 14, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Nanko, S.; Hattori, M.; Kuwata, S.; Sasaki, T.; Fukuda, R.; Dai, X.Y.; Yamaguchi, K.; Shibata, Y.; Kazamatsuri, H. Neurotrophin-3 Gene Polymorphism Associated with Schizophrenia. Acta Psychiatr. Scand. 1994, 89, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Nimgaonkar, V.L.; Zhang, X.R.; Brar, J.S.; DeLeo, M.; Ganguli, R. Lack of Association of Schizophrenia with the Neurotrophin-3 Gene Locus. Acta Psychiatr. Scand. 1995, 92, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yang, L.; Li, Z.; Wang, W.; Xing, M.; Fang, Y.; Cheng, Y.; Lin, G.N.; Cui, D. The Interaction of Asah1 and Ngf Gene Involving in Neurotrophin Signaling Pathway Contributes to Schizophrenia Susceptibility and Psychopathology. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 104, 110015. [Google Scholar] [CrossRef] [PubMed]
- Baj, G.; Carlino, D.; Gardossi, L.; Tongiorgi, E. Toward a Unified Biological Hypothesis for the Bdnf Val66met-Associated Memory Deficits in Humans: A Model of Impaired Dendritic mRNA Trafficking. Front. Neurosci. 2013, 7, 188. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The Bdnf Val66met Polymorphism Affects Activity-Dependent Secretion of Bdnf and Human Memory and Hippocampal Function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Hariri, A.R.; Goldberg, T.E.; Mattay, V.S.; Kolachana, B.S.; Callicott, J.H.; Egan, M.F.; Weinberger, D.R. Brain-Derived Neurotrophic Factor Val66met Polymorphism Affects Human Memory-Related Hippocampal Activity and Predicts Memory Performance. J. Neurosci. 2003, 23, 6690–6694. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.M.; Reese, E.D.; Horn, M.M.; Sizemore, A.N.; Unni, A.K.; Meerbrey, M.E.; Kalich, A.G., Jr.; Rodrigue, K.M. Bdnf Val66met Polymorphism Affects Aging of Multiple Types of Memory. Brain Res. 2014, 1612, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Banducci, S.E.; Weinstein, A.M.; Macdonald, A.W., 3rd; Ferrell, R.E.; Halder, I.; Flory, J.D.; Manuck, S.B. The Brain-Derived Neurotrophic Factor Val66met Polymorphism Moderates an Effect of Physical Activity on Working Memory Performance. Psychol. Sci. 2013, 24, 1770–1779. [Google Scholar] [CrossRef]
- Brooks, S.J.; Nilsson, E.K.; Jacobsson, J.A.; Stein, D.J.; Fredriksson, R.; Lind, L.; Schioth, H.B. Bdnf Polymorphisms Are Linked to Poorer Working Memory Performance, Reduced Cerebellar and Hippocampal Volumes and Differences in Prefrontal Cortex in a Swedish Elderly Population. PLoS ONE 2014, 9, e82707. [Google Scholar] [CrossRef]
- Cao, B.; Bauer, I.E.; Sharma, A.N.; Mwangi, B.; Frazier, T.; Lavagnino, L.; Zunta-Soares, G.B.; Walss-Bass, C.; Glahn, D.C.; Kapczinski, F.; et al. Reduced Hippocampus Volume and Memory Performance in Bipolar Disorder Patients Carrying the Bdnf Val66met Met Allele. J. Affect. Disord. 2016, 198, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, L.A.; De Nardi, T.; Levandowski, M.L.; Tractenberg, S.G.; Kommers-Molina, J.; Wieck, A.; Irigaray, T.Q.; Silva, I.G.D.F.; Grassi-Oliveira, R. The Brain-Derived Neurotrophic Factor (Bdnf) Gene Val66met Polymorphism Affects Memory Performance in Older Adults. Braz. J. Psychiatry 2017, 39, 90–94. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, K.; Hoberman, J.; Tian, F.; Marko, A.J.; Waheed, J.F.; Harris, C.R.; Marini, A.M.; Enoch, M.A.; Lipsky, R.H. Bdnf Variation and Mood Disorders: A Novel Functional Promoter Polymorphism and Val66met Are Associated with Anxiety but Have Opposing Effects. Neuropsychopharmacology 2005, 30, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.; Hill, R.; van den Buuse, M. The Bdnf Gene Val66met Polymorphism as a Modifier of Psychiatric Disorder Susceptibility: Progress and Controversy. Mol. Psychiatry 2015, 20, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Goldfield, G.S.; Walsh, J.; Sigal, R.J.; Kenny, G.P.; Hadjiyannakis, S.; De Lisio, M.; Ngu, M.; Prud, D.; Alberga, A.S.; Doucette, S.; et al. Associations of the Bdnf Val66met Polymorphism with Body Composition, Cardiometabolic Risk Factors, Energy Intake in Youth with Obesity: Findings from the Hearty Study. Front. Neurosci. 2021, 15, 715330. [Google Scholar] [CrossRef]
- Guerrero-Contreras, I.; Hernandez-Tobias, E.A.; Velazquez-Cruz, R.; Ramirez-Lopez, E.; Campos-Gongora, E.; Jimenez-Salas, Z. The Bdnf Rs7934165 Polymorphism Is a Biomarker of Central Obesity and Cardiometabolic Risk in Mexican Women. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5463–5473. [Google Scholar] [PubMed]
- Perez-Gutierrez, A.M.; Rovira, P.; Gutierrez, B.; Cervilla, J.A.; Zarza-Rebollo, J.A.; Molina, E.; Rivera, M. Influence of Bdnf Val66met Genetic Polymorphism in Major Depressive Disorder and Body Mass Index: Evidence from a Meta-Analysis of 6481 Individuals. J. Affect. Disord. 2024, 344, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Chen, J.; Zhou, Y.; Zhang, J.; Yang, B.; Xia, L.; Wang, C. Volumetric Mri Analysis of the Amygdala and Hippocampus in Subjects with Major Depression. J. Huazhong Univ. Sci. Technol. Med. Sci. 2004, 24, 500–502. [Google Scholar]
- von Bohlen und Halbach, O. Involvement of Bdnf in Age-Dependent Alterations in the Hippocampus. Front. Aging Neurosci. 2010, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Urbina-Varela, R.; Soto-Espinoza, M.I.; Vargas, R.; Quinones, L.; Del Campo, A. Influence of Bdnf Genetic Polymorphisms in the Pathophysiology of Aging-Related Diseases. Aging Dis. 2020, 11, 1513–1526. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Guo, Y.; Dong, G.; Zou, W.; Chen, Z. Association between Bdnf G196a (Val66met) Polymorphism and Cognitive Impairment in Patients with Parkinson’s Disease: A Meta-Analysis. Braz. J. Med. Biol. Res. 2019, 52, e8443. [Google Scholar] [CrossRef] [PubMed]
- Franzmeier, N.; Ren, J.; Damm, A.; Monte-Rubio, G.; Boada, M.; Ruiz, A.; Ramirez, A.; Jessen, F.; Duzel, E.; Gomez, O.R.; et al. The Bdnf(Val66met) Snp Modulates the Association between Beta-Amyloid and Hippocampal Disconnection in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Ciampa, C.J.; Morin, T.M.; Murphy, A.; Joie, R.; Landau, S.M.; Berry, A.S. Dat1 and Bdnf Polymorphisms Interact to Predict Abeta and Tau Pathology. Neurobiol. Aging 2024, 133, 115–124. [Google Scholar] [CrossRef]
- Galter, D.; Unsicker, K. Brain-Derived Neurotrophic Factor and Trkb Are Essential for Camp-Mediated Induction of the Serotonergic Neuronal Phenotype. J. Neurosci. Res. 2000, 61, 295–301. [Google Scholar] [CrossRef]
- Galter, D.; Unsicker, K. Sequential Activation of the 5-Ht1(a) Serotonin Receptor and Trkb Induces the Serotonergic Neuronal Phenotype. Mol. Cell. Neurosci. 2000, 15, 446–455. [Google Scholar] [CrossRef]
- Mamounas, L.A.; Altar, C.A.; Blue, M.E.; Kaplan, D.R.; Tessarollo, L.; Lyons, W.E. Bdnf Promotes the Regenerative Sprouting, but Not Survival, of Injured Serotonergic Axons in the Adult Rat Brain. J. Neurosci. 2000, 20, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Hyman, C.; Hofer, M.; Barde, Y.A.; Juhasz, M.; Yancopoulos, G.D.; Squinto, S.P.; Lindsay, R.M. Bdnf Is a Neurotrophic Factor for Dopaminergic Neurons of the Substantia Nigra. Nature 1991, 350, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Hagg, T. Neurotrophins Prevent Death and Differentially Affect Tyrosine Hydroxylase of Adult Rat Nigrostriatal Neurons in Vivo. Exp. Neurol. 1998, 149, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.A.; Mobley, W.C.; Cho, J.; Wiegand, S.J.; Lindsay, R.M.; Mufson, E.J.; Kordower, J.H. Loss of Developing Cholinergic Basal Forebrain Neurons Following Excitotoxic Lesions of the Hippocampus: Rescue by Neurotrophins. Exp. Neurol. 1994, 130, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.W.; Codita, A.; Bogdanovic, N.; Hjerling-Leffler, J.; Ernfors, P.; Winblad, B.; Dickins, D.W.; Mohammed, A.H. Influence of Environmental Manipulation on Exploratory Behaviour in Male Bdnf Knockout Mice. Behav. Brain Res. 2009, 197, 339–346. [Google Scholar] [CrossRef] [PubMed]
- von Bohlen und Halbach, O.; Krause, S.; Medina, D.; Sciarretta, C.; Minichiello, L.; Unsicker, K. Regional- and Age-Dependent Reduction in Trkb Receptor Expression in the Hippocampus Is Associated with Altered Spine Morphologies. Biol. Psychiatry 2006, 59, 793–800. [Google Scholar] [CrossRef] [PubMed]
- von Bohlen und Halbach, O. Dendritic Spine Abnormalities in Mental Retardation. Cell Tissue Res. 2010, 342, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Giza, J.I.; Kim, J.; Meyer, H.C.; Anastasia, A.; Dincheva, I.; Zheng, C.I.; Lopez, K.; Bains, H.; Yang, J.; Bracken, C.; et al. The Bdnf Val66met Prodomain Disassembles Dendritic Spines Altering Fear Extinction Circuitry and Behavior. Neuron 2018, 99, 163–178.e6. [Google Scholar] [CrossRef]
- Rovny, R.; Marko, M.; Michalko, D.; Mitka, M.; Cimrova, B.; Vancova, Z.; Jarcuskova, D.; Dragasek, J.; Minarik, G.; Riecansky, I. Bdnf Val66met Polymorphism Is Associated with Consolidation of Episodic Memory During Sleep. Biol. Psychol. 2023, 179, 108568. [Google Scholar] [CrossRef]
- Elhadidy, M.E.; Kilany, A.; Gebril, O.H.; Nashaat, N.H.; Zeidan, H.M.; Elsaied, A.; Hashish, A.F.; Abdelraouf, E.R. Bdnf Val66met Polymorphism: Suggested Genetic Involvement in Some Children with Learning Disorder. J. Mol. Neurosci. 2023, 73, 39–46. [Google Scholar] [CrossRef]
- Lee, E.; Son, H. Adult Hippocampal Neurogenesis and Related Neurotrophic Factors. BMB Rep. 2009, 42, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Duan, W.; Mattson, M.P. Evidence That Brain-Derived Neurotrophic Factor Is Required for Basal Neurogenesis and Mediates, in Part, the Enhancement of Neurogenesis by Dietary Restriction in the Hippocampus of Adult Mice. J. Neurochem. 2002, 82, 1367–1375. [Google Scholar] [CrossRef]
- Scharfman, H.; Goodman, J.; Macleod, A.; Phani, S.; Antonelli, C.; Croll, S. Increased Neurogenesis and the Ectopic Granule Cells after Intrahippocampal Bdnf Infusion in Adult Rats. Exp. Neurol. 2005, 192, 348–356. [Google Scholar] [CrossRef]
- Frielingsdorf, H.; Simpson, D.R.; Thal, L.J.; Pizzo, D.P. Nerve Growth Factor Promotes Survival of New Neurons in the Adult Hippocampus. Neurobiol. Dis. 2007, 26, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.D.; Duman, R.S. The Role of Neurotrophic Factors in Adult Hippocampal Neurogenesis, Antidepressant Treatments and Animal Models of Depressive-Like Behavior. Behav. Pharmacol. 2007, 18, 391–418. [Google Scholar] [CrossRef]
- Altschuler, R.A. Morphometry of the Effect of Increased Experience and Training on Synaptic Density in Area Ca3 of the Rat Hippocampus. J. Histochem. Cytochem. 1979, 27, 1548–1550. [Google Scholar] [CrossRef]
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. More Hippocampal Neurons in Adult Mice Living in an Enriched Environment. Nature 1997, 386, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Olabiyi, B.F.; Fleitas, C.; Zammou, B.; Ferrer, I.; Rampon, C.; Egea, J.; Espinet, C. Prongf Involvement in the Adult Neurogenesis Dysfunction in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 10744. [Google Scholar] [CrossRef] [PubMed]
- Darwish, B.; Chamaa, F.; Awada, B.; Lawand, N.; Saade, N.E.; Fayad, A.G.A.; Abou-Kheir, W. Urinary Tract Infections Impair Adult Hippocampal Neurogenesis. Biology 2022, 11, 891. [Google Scholar] [CrossRef]
- Ji, S.; Wu, H.; Ding, X.; Chen, Q.; Jin, X.; Yu, J.; Yang, M. Increased Hippocampal Trka Expression Ameliorates Cranial Radiation-Induced Neurogenesis Impairment and Cognitive Deficit Via Pi3k/Akt Signaling. Oncol. Rep. 2020, 44, 2527–2536. [Google Scholar] [CrossRef]
- Shimazu, K.; Zhao, M.; Sakata, K.; Akbarian, S.; Bates, B.; Jaenisch, R.; Lu, B. Nt-3 Facilitates Hippocampal Plasticity and Learning and Memory by Regulating Neurogenesis. Learn. Mem. 2006, 13, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Neeper, S.A.; Gomez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical Activity Increases mRNA for Brain-Derived Neurotrophic Factor and Nerve Growth Factor in Rat Brain. Brain Res. 1996, 726, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Oliff, H.S.; Berchtold, N.C.; Isackson, P.; Cotman, C.W. Exercise-Induced Regulation of Brain-Derived Neurotrophic Factor (Bdnf) Transcripts in the Rat Hippocampus. Brain Res. Mol. Brain Res. 1998, 61, 147–153. [Google Scholar] [CrossRef]
- Johnson, R.A.; Rhodes, J.S.; Jeffrey, S.L.; Garland, T., Jr.; Mitchell, G.S. Hippocampal Brain-Derived Neurotrophic Factor but Not Neurotrophin-3 Increases More in Mice Selected for Increased Voluntary Wheel Running. Neuroscience 2003, 121, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; et al. Endurance Training Enhances Bdnf Release from the Human Brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef] [PubMed]
- Vivar, C.; Potter, M.C.; van Praag, H. All About Running: Synaptic Plasticity, Growth Factors and Adult Hippocampal Neurogenesis. Curr. Top. Behav. Neurosci. 2013, 15, 189–210. [Google Scholar]
- Marlatt, M.W.; Potter, M.C.; Lucassen, P.J.; van Praag, H. Running Throughout Middle-Age Improves Memory Function, Hippocampal Neurogenesis, Bdnf Levels in Female C57bl/6j Mice. Dev. Neurobiol. 2012, 72, 943–952. [Google Scholar] [CrossRef]
- Frodl, T.; Schule, C.; Schmitt, G.; Born, C.; Baghai, T.; Zill, P.; Bottlender, R.; Rupprecht, R.; Bondy, B.; Reiser, M.; et al. Association of the Brain-Derived Neurotrophic Factor Val66met Polymorphism with Reduced Hippocampal Volumes in Major Depression. Arch. Gen. Psychiatry 2007, 64, 410–416. [Google Scholar] [CrossRef]
- Gonul, A.S.; Kitis, O.; Eker, M.C.; Eker, O.D.; Ozan, E.; Coburn, K. Association of the Brain-Derived Neurotrophic Factor Val66met Polymorphism with Hippocampus Volumes in Drug-Free Depressed Patients. World J. Biol. Psychiatry 2011, 12, 110–118. [Google Scholar] [CrossRef]
- Nibuya, M.; Morinobu, S.; Duman, R.S. Regulation of Bdnf and Trkb mRNA in Rat Brain by Chronic Electroconvulsive Seizure and Antidepressant Drug Treatments. J. Neurosci. 1995, 15, 7539–7547. [Google Scholar] [CrossRef]
- Duman, R.S.; Heninger, G.R.; Nestler, E.J. A Molecular and Cellular Theory of Depression. Arch. Gen. Psychiatry 1997, 54, 597–606. [Google Scholar] [CrossRef]
- Altar, C.A. Neurotrophins and Depression. Trends Pharmacol. Sci. 1999, 20, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Duman, C.H.; Schlesinger, L.; Russell, D.S.; Duman, R.S. Voluntary Exercise Produces Antidepressant and Anxiolytic Behavioral Effects in Mice. Brain Res. 2008, 1199, 148–158. [Google Scholar] [CrossRef]
- Liang, X.; Tang, J.; Chao, F.L.; Zhang, Y.; Chen, L.M.; Wang, F.F.; Tan, C.X.; Luo, Y.M.; Xiao, Q.; Zhang, L.; et al. Exercise Improves Depressive Symptoms by Increasing the Number of Excitatory Synapses in the Hippocampus of Cus-Induced Depression Model Rats. Behav. Brain Res. 2019, 374, 112115. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Tang, J.; Qi, Y.Q.; Luo, Y.M.; Yang, C.M.; Dou, X.Y.; Jiang, L.; Xiao, Q.; Zhang, L.; Chao, F.L.; et al. Exercise More Efficiently Regulates the Maturation of Newborn Neurons and Synaptic Plasticity Than Fluoxetine in a Cus-Induced Depression Mouse Model. Exp. Neurol. 2022, 354, 114103. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Miller, D.L.; Roecklein, K.A. The Aging Hippocampus: Interactions between Exercise, Depression, Bdnf. Neuroscientist 2012, 18, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.C.; Barraclough, B. Suicide as an Outcome for Mental Disorders. A Meta-Analysis. Br. J. Psychiatry 1997, 170, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Karege, F.; Vaudan, G.; Schwald, M.; Perroud, N.; La Harpe, R. Neurotrophin Levels in Postmortem Brains of Suicide Victims and the Effects of Antemortem Diagnosis and Psychotropic Drugs. Brain Res. Mol. Brain Res. 2005, 136, 29–37. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghosh, A.K.; Ghosh, B.; Bhattacharyya, S.; Mondal, A.C. Decreased mRNA and Protein Expression of Bdnf, Ngf, Their Receptors in the Hippocampus from Suicide: An Analysis in Human Postmortem Brain. Clin. Med. Insights Pathol. 2013, 6, CPath-S12530. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, H.P.; Won, S.D.; Park, E.Y.; Lee, H.Y.; Lee, B.H.; Lee, S.W.; Yoon, D.; Han, C.; Kim, D.J.; et al. Low Plasma Bdnf Is Associated with Suicidal Behavior in Major Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 78–85. [Google Scholar] [CrossRef]
- Barde, Y.A. Neurotrophins: A Family of Proteins Supporting the Survival of Neurons. Prog. Clin. Biol. Res. 1994, 390, 45–56. [Google Scholar]
- Ernfors, P.; Kucera, J.; Lee, K.F.; Loring, J.; Jaenisch, R. Studies on the Physiological Role of Brain-Derived Neurotrophic Factor and Neurotrophin-3 in Knockout Mice. Int. J. Dev. Biol. 1995, 39, 799–807. [Google Scholar] [PubMed]
- Erickson, J.T.; Conover, J.C.; Borday, V.; Champagnat, J.; Barbacid, M.; Yancopoulos, G.; Katz, D.M. Mice Lacking Brain-Derived Neurotrophic Factor Exhibit Visceral Sensory Neuron Losses Distinct from Mice Lacking Nt4 and Display a Severe Developmental Deficit in Control of Breathing. J. Neurosci. 1996, 16, 5361–5371. [Google Scholar] [CrossRef]
- Conover, J.C.; Yancopoulos, G.D. Neurotrophin Regulation of the Developing Nervous System: Analyses of Knockout Mice. Rev. Neurosci. 1997, 8, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Klein, R. Role of Neurotrophins in Mouse Neuronal Development. FASEB J. 1994, 8, 738–744. [Google Scholar] [CrossRef]
- Klein, R.; Smeyne, R.J.; Wurst, W.; Long, L.K.; Auerbach, B.A.; Joyner, A.L.; Barbacid, M. Targeted Disruption of the Trkb Neurotrophin Receptor Gene Results in Nervous System Lesions and Neonatal Death. Cell 1993, 75, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.F.; Li, E.; Huber, L.J.; Landis, S.C.; Sharpe, A.H.; Chao, M.V.; Jaenisch, R. Targeted Mutation of the Gene Encoding the Low Affinity Ngf Receptor P75 Leads to Deficits in the Peripheral Sensory Nervous System. Cell 1992, 69, 737–749. [Google Scholar] [CrossRef] [PubMed]
- von Bohlen und Halbach, O.; Minichiello, L. Neurotrophin Receptor Heterozygosity Causes Deficits in Catecholaminergic Innervation of Amygdala and Hippocampus in Aged Mice. J. Neural Transm. 2006, 113, 1829–1836. [Google Scholar] [CrossRef]
- Yeo, T.T.; Chua-Couzens, J.; Butcher, L.L.; Bredesen, D.E.; Cooper, J.D.; Valletta, J.S.; Mobley, W.C.; Longo, F.M. Absence of P75ntr Causes Increased Basal Forebrain Cholinergic Neuron Size, Choline Acetyltransferase Activity, Target Innervation. J. Neurosci. 1997, 17, 7594–7605. [Google Scholar] [CrossRef] [PubMed]
- Naumann, T.; Casademunt, E.; Hollerbach, E.; Hofmann, J.; Dechant, G.; Frotscher, M.; Barde, Y.A. Complete Deletion of the Neurotrophin Receptor P75ntr Leads to Long-Lasting Increases in the Number of Basal Forebrain Cholinergic Neurons. J. Neurosci. 2002, 22, 2409–2418. [Google Scholar] [CrossRef]
- Poser, R.; Dokter, M.; von Bohlen und Halbach, V.; Berger, S.M.; Busch, R.; Baldus, M.; Unsicker, K.; von Bohlen und Halbach, O. Impact of a Deletion of the Full-Length and Short Isoform of P75ntr on Cholinergic Innervation and the Population of Postmitotic Doublecortin Positive Cells in the Dentate Gyrus. Front. Neuroanat. 2015, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Busch, R.; Baldus, M.; Vogt, M.; Berger, S.; Bartsch, D.; Gass, P.; von Bohlen und Halbach, O. Effects of P75ntr-Deficiency on Cholinergic Innervation of the Amygdala and Anxiety-Like Behavior. J. Neurochem. 2017, 141, 461–471. [Google Scholar] [CrossRef] [PubMed]
- von Bohlen und Halbach, V.; von Bohlen und Halbach, O. Deletion of P75ntr Enhances the Cholinergic Innervation Pattern of the Visual Cortex. Vis. Neurosci. 2016, 33, E012. [Google Scholar] [CrossRef] [PubMed]
- Comaposada-Baro, R.; Benito-Martinez, A.; Escribano-Saiz, J.J.; Franco, M.L.; Ceccarelli, L.; Calatayud-Baselga, I.; Mira, H.; Vilar, M. Cholinergic Neurodegeneration and Cholesterol Metabolism Dysregulation by Constitutive P75(Ntr) Signaling in the P75(Exoniii)-Ko Mice. Front. Mol. Neurosci. 2023, 16, 1237458. [Google Scholar] [CrossRef] [PubMed]
- Eu, W.Z.; Chen, Y.J.; Chen, W.T.; Wu, K.Y.; Tsai, C.Y.; Cheng, S.J.; Carter, R.N.; Huang, G.J. The Effect of Nerve Growth Factor on Supporting Spatial Memory Depends Upon Hippocampal Cholinergic Innervation. Transl. Psychiatry 2021, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Yanpallewar, S.; Tomassoni-Ardori, F.; Palko, M.E.; Hong, Z.; Kiris, E.; Becker, J.; Fulgenzi, G.; Tessarollo, L. Trka-Cholinergic Signaling Modulates Fear Encoding and Extinction Learning in Ptsd-Like Behavior. Transl. Psychiatry 2022, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Zagrebelsky, M.; Holz, A.; Dechant, G.; Barde, Y.A.; Bonhoeffer, T.; Korte, M. The P75 Neurotrophin Receptor Negatively Modulates Dendrite Complexity and Spine Density in Hippocampal Neurons. J. Neurosci. 2005, 25, 9989–9999. [Google Scholar] [CrossRef]
- Catts, V.S.; Al-Menhali, N.; Burne, T.H.; Colditz, M.J.; Coulson, E.J. The P75 Neurotrophin Receptor Regulates Hippocampal Neurogenesis and Related Behaviours. Eur. J. Neurosci. 2008, 28, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luikart, B.W.; Birnbaum, S.; Chen, J.; Kwon, C.H.; Kernie, S.G.; Bassel-Duby, R.; Parada, L.F. Trkb Regulates Hippocampal Neurogenesis and Governs Sensitivity to Antidepressive Treatment. Neuron 2008, 59, 399–412. [Google Scholar] [CrossRef]
- Dieni, S.; Matsumoto, T.; Dekkers, M.; Rauskolb, S.; Ionescu, M.S.; Deogracias, R.; Gundelfinger, E.D.; Kojima, M.; Nestel, S.; Frotscher, M.; et al. Bdnf and Its Pro-Peptide Are Stored in Presynaptic Dense Core Vesicles in Brain Neurons. J. Cell Biol. 2012, 196, 775–788. [Google Scholar] [CrossRef]
- Bliss, T.V.; Lomo, T. Long-Lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anaesthetized Rabbit Following Stimulation of the Perforant Path. J. Physiol. 1973, 232, 331–356. [Google Scholar] [CrossRef] [PubMed]
- Malenka, R.C.; Nicoll, R.A. Long-Term Potentiation—A Decade of Progress? Science 1999, 285, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Korte, M.; Carroll, P.; Wolf, E.; Brem, G.; Thoenen, H.; Bonhoeffer, T. Hippocampal Long-Term Potentiation Is Impaired in Mice Lacking Brain-Derived Neurotrophic Factor. Proc. Natl. Acad. Sci. USA 1995, 92, 8856–8860. [Google Scholar] [CrossRef] [PubMed]
- Minichiello, L.; Korte, M.; Wolfer, D.; Kuhn, R.; Unsicker, K.; Cestari, V.; Rossi-Arnaud, C.; Lipp, H.P.; Bonhoeffer, T.; Klein, R. Essential Role for Trkb Receptors in Hippocampus-Mediated Learning. Neuron 1999, 24, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.L.; Abel, T.; Deuel, T.A.S.; MArtin, K.C.; Rose, J.C.; Kandel, E.R. Recombinant Bdnf Rescues Deficits in Basal Synaptic Transmission and Hippocampal Ltp in Bdnf Knockout Mice. Neuron 1996, 16, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Korte, M.; Griesbeck, O.; Gravel, C.; Carroll, P.; Staiger, V.; Thoenen, H.; Bonhoeffer, T. Virus-Mediated Gene Transfer into Hippocampal Ca1 Region Restores Long-Term Potentiation in Brain-Derived Neurotrophic Factor Mutant Mice. Proc. Natl. Acad. Sci. USA 1996, 93, 12547–12552. [Google Scholar] [CrossRef]
- Kang, H.J.; Schuman, E.M. Neurotrophin-Induced Modulation of Synaptic Transmission in the Adult Hippocampus. J. Physiol.-Paris 1995, 89, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.W.; Futter, M.; Rosenblum, K.; Webber, M.J.; Hunt, S.P.; Bliss, T.V.; Bramham, C.R. Brain-Derived Neurotrophic Factor Induces Long-Term Potentiation in Intact Adult Hippocampus: Requirement for Erk Activation Coupled to Creb and Upregulation of Arc Synthesis. J. Neurosci. 2002, 22, 1532–1540. [Google Scholar] [CrossRef]
- Leal, G.; Afonso, P.M.; Salazar, I.L.; Duarte, C.B. Regulation of Hippocampal Synaptic Plasticity by Bdnf. Brain Res. 2015, 1621, 82–101. [Google Scholar] [CrossRef]
- Hartmann, M.; Heumann, R.; Lessmann, V. Synaptic Secretion of Bdnf after High-Frequency Stimulation of Glutamatergic Synapses. EMBO J. 2001, 20, 5887–5897. [Google Scholar] [CrossRef]
- Jia, Y.; Gall, C.M.; Lynch, G. Presynaptic Bdnf Promotes Postsynaptic Long-Term Potentiation in the Dorsal Striatum. J. Neurosci. 2010, 30, 14440–14445. [Google Scholar] [CrossRef] [PubMed]
- Zakharenko, S.S.; Patterson, S.L.; Dragatsis, I.; Zeitlin, S.O.; Siegelbaum, S.A.; Kandel, E.R.; Morozov, A. Presynaptic Bdnf Required for a Presynaptic but Not Postsynaptic Component of Ltp at Hippocampal Ca1-Ca3 Synapses. Neuron 2003, 39, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, Y.; Hanse, E.; Kafitz, K.W.; Konnerth, A. Postsynaptic Induction of Bdnf-Mediated Long-Term Potentiation. Science 2002, 295, 1729–1734. [Google Scholar] [CrossRef]
- Manabe, T. Does Bdnf Have Pre- or Postsynaptic Targets? Science 2002, 295, 1651–1653. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Gottschalk, W.; Chow, A.; Wilson, R.I.; Schnell, E.; Zang, K.; Wang, D.; Nicoll, R.A.; Lu, B.; Reichardt, L.F. The Role of Brain-Derived Neurotrophic Factor Receptors in the Mature Hippocampus: Modulation of Long-Term Potentiation through a Presynaptic Mechanism Involving Trkb. J. Neurosci. 2000, 20, 6888–6897. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, E.; Lessmann, V.; Brigadski, T. Pre- and Postsynaptic Twists in Bdnf Secretion and Action in Synaptic Plasticity. Neuropharmacology 2014, 76 Pt C, 610–627. [Google Scholar] [CrossRef]
- Cunha, C.; Brambilla, R.; Thomas, K.L. A Simple Role for Bdnf in Learning and Memory? Front. Mol. Neurosci. 2010, 3, 1. [Google Scholar] [CrossRef]
- Bekinschtein, P.; Cammarota, M.; Izquierdo, I.; Medina, J.H. Bdnf and Memory Formation and Storage. Neuroscientist 2008, 14, 147–156. [Google Scholar] [CrossRef]
- Gorski, J.A.; Balogh, S.A.; Wehner, J.M.; Jones, K.R. Learning Deficits in Forebrain-Restricted Brain-Derived Neurotrophic Factor Mutant Mice. Neuroscience 2003, 121, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Heldt, S.A.; Stanek, L.; Chhatwal, J.P.; Ressler, K.J. Hippocampus-Specific Deletion of Bdnf in Adult Mice Impairs Spatial Memory and Extinction of Aversive Memories. Mol. Psychiatry 2007, 12, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.W.; Sayah, D.; Chen, Q.S.; Wei, W.Z.; Smith, D.; Liu, X. Deficient Long-Term Memory and Long-Lasting Long-Term Potentiation in Mice with a Targeted Deletion of Neurotrophin-4 Gene. Proc. Natl. Acad. Sci. USA 2000, 97, 8116–8121. [Google Scholar] [CrossRef] [PubMed]
- Conner, J.M.; Franks, K.M.; Titterness, A.K.; Russell, K.; Merrill, D.A.; Christie, B.R.; Sejnowski, T.J.; Tuszynski, M.H. Ngf Is Essential for Hippocampal Plasticity and Learning. J. Neurosci. 2009, 29, 10883–10889. [Google Scholar] [CrossRef] [PubMed]
- Dobryakova, Y.V.; Spivak, Y.S.; Zaichenko, M.I.; Koryagina, A.A.; Markevich, V.A.; Stepanichev, M.Y.; Bolshakov, A.P. Intrahippocampal Adeno-Associated Virus-Mediated Overexpression of Nerve Growth Factor Reverses 192igg-Saporin-Induced Impairments of Hippocampal Plasticity and Behavior. Front. Neurosci. 2021, 15, 745050. [Google Scholar] [CrossRef]
- Bosello, O.; Vanzo, A. Obesity Paradox and Aging. Eat. Weight Disord. 2021, 26, 27–35. [Google Scholar] [CrossRef]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Heo, S.; McLaren, M.; Pence, B.D.; Martin, S.A.; Vieira, V.J.; Woods, J.A.; et al. Brain-Derived Neurotrophic Factor Is Associated with Age-Related Decline in Hippocampal Volume. J. Neurosci. 2010, 30, 5368–5375. [Google Scholar] [CrossRef]
- Skledar, M.; Nikolac, M.; Dodig-Curkovic, K.; Curkovic, M.; Borovecki, F.; Pivac, N. Association between Brain-Derived Neurotrophic Factor Val66met and Obesity in Children and Adolescents. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 36, 136–140. [Google Scholar] [CrossRef]
- Gunstad, J.; Schofield, P.; Paul, R.H.; Spitznagel, M.B.; Cohen, R.A.; Williams, L.M.; Kohn, M.; Gordon, E. Bdnf Val66met Polymorphism Is Associated with Body Mass Index in Healthy Adults. Neuropsychobiology 2006, 53, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Kernie, S.G.; Liebl, D.J.; Parada, L.F. Bdnf Regulates Eating Behavior and Locomotor Activity in Mice. EMBO J. 2000, 19, 1290–1300. [Google Scholar] [CrossRef]
- Rios, M.; Fan, G.; Fekete, C.; Kelly, J.; Bates, B.; Kuehn, R.; Lechan, R.M.; Jaenisch, R. Conditional Deletion of Brain-Derived Neurotrophic Factor in the Postnatal Brain Leads to Obesity and Hyperactivity. Mol. Endocrinol. 2001, 15, 1748–1757. [Google Scholar] [CrossRef]
- Voigt, M.W.; Schepers, J.; Haas, J.; von Bohlen und Halbach, O. Reduced Levels of Brain-Derived Neurotrophic Factor Affect Body Weight, Brain Weight and Behavior. Biology 2024, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.A.; Byerly, M.S. A Mechanism Underlying Mature-Onset Obesity: Evidence from the Hyperphagic Phenotype of Brain-Derived Neurotrophic Factor Mutants. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R994–R1004. [Google Scholar] [CrossRef]
- Schwartz, E.; Mobbs, C.V. Hypothalamic Bdnf and Obesity: Found in Translation. Nat. Med. 2012, 18, 496–497. [Google Scholar] [CrossRef]
- McMurphy, T.; Huang, W.; Liu, X.; Siu, J.J.; Queen, N.J.; Xiao, R.; Cao, L. Hypothalamic Gene Transfer of Bdnf Promotes Healthy Aging in Mice. Aging Cell 2019, 18, e12846. [Google Scholar] [CrossRef]
- Xie, X.; Houtz, J.; Liao, G.Y.; Chen, Y.; Xu, B. Genetic Val66met Bdnf Variant Increases Hyperphagia on Fat-Rich Diets in Mice. Endocrinology 2023, 164, bqad008. [Google Scholar] [CrossRef]
- Vanevski, F.; Xu, B. Molecular and Neural Bases Underlying Roles of Bdnf in the Control of Body Weight. Front. Neurosci. 2013, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Bracke, A.; Domanska, G.; Bracke, K.; Harzsch, S.; van den Brandt, J.; Broker, B.; von Bohlen und Halbach, O. Obesity Impairs Mobility and Adult Hippocampal Neurogenesis. J. Exp. Neurosci. 2019, 13, 1179069519883580. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A.; Shimomura, Y.; Ohtake, M.; Walker, P. Salivary Gland Weight and Nerve Growth Factor in the Genetically Obese (Ob/Ob) Mouse. Endocrinology 1982, 110, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Z.; Ding, X.W.; Geetha, T.; Al-Nakkash, L.; Broderick, T.L.; Babu, J.R. Beneficial Effect of Genistein on Diabetes-Induced Brain Damage in the Ob/Ob Mouse Model. Drug Des. Dev. Ther. 2020, 14, 3325–3336. [Google Scholar] [CrossRef]
- Blaszkiewicz, M.; Tao, T.; Mensah-Arhin, K.; Willows, J.W.; Bates, R.; Huang, W.; Cao, L.; Smith, R.L.; Townsend, K.L. Gene Therapy Approaches for Obesity-Induced Adipose Neuropathy: Device-Targeted Aav-Mediated Neurotrophic Factor Delivery to Adipocytes in Subcutaneous Adipose. Mol. Ther. 2024, 32, 1407–1424. [Google Scholar] [CrossRef]
- Dominguez-Sanchez, M.A.; Bustos-Cruz, R.H.; Velasco-Orjuela, G.P.; Quintero, A.P.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; Triana-Reina, H.R.; Garcia-Hermoso, A.; Gonzalez-Ruiz, K.; Pena-Guzman, C.A.; et al. Acute Effects of High Intensity, Resistance, or Combined Protocol on the Increase of Level of Neurotrophic Factors in Physically Inactive Overweight Adults: The Brainfit Study. Front. Physiol. 2018, 9, 741. [Google Scholar] [CrossRef]
- Bae, J.Y. Preventive Effects of Different Aerobic Exercise Intensities on the Decline of Cognitive Function in High-Fat Diet-Induced Obese Growing Mice. Medicina 2020, 56, 331. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B. Bekinschtein. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, E.S.; Barnes, C.A. Impact of Aging on Hippocampal Function: Plasticity, Network Dynamics, Cognition. Prog. Neurobiol. 2003, 69, 143–179. [Google Scholar] [CrossRef] [PubMed]
- Ziegenhorn, A.A.; Schulte-Herbruggen, O.; Danker-Hopfe, H.; Malbranc, M.; Hartung, H.D.; Anders, D.; Lang, U.E.; Steinhagen-Thiessen, E.; Schaub, R.T.; Hellweg, R. Serum Neurotrophins—A Study on the Time Course and Influencing Factors in a Large Old Age Sample. Neurobiol. Aging 2007, 28, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Webster, M.J.; Herman, M.M.; Kleinman, J.E.; Weickert, C.S. Bdnf and Trkb mRNA Expression in the Hippocampus and Temporal Cortex during the Human Lifespan. Gene Expr. Patterns 2006, 6, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, H.; Chen, C.; Li, S.; Zhang, Z.; Xu, H.; Zhu, F.; Liu, J.; Spencer, P.S.; Dai, Z.; et al. Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, Synaptic and Ribosomal Proteins. Oxid. Med. Cell. Longev. 2020, 2020, 5408452. [Google Scholar] [CrossRef]
- O’Callaghan, R.M.; Griffin, E.W.; Kelly, A.M. Long-Term Treadmill Exposure Protects against Age-Related Neurodegenerative Change in the Rat Hippocampus. Hippocampus 2009, 19, 1019–1029. [Google Scholar] [CrossRef]
- Silhol, M.; Bonnichon, V.; Rage, F. Tapia-Arancibia. Age-Related Changes in Brain-Derived Neurotrophic Factor and Tyrosine Kinase Receptor Isoforms in the Hippocampus and Hypothalamus in Male Rats. Neuroscience 2005, 132, 613–624. [Google Scholar] [CrossRef]
- Short, A.K.; Bui, V.; Zbukvic, I.C.; Hannan, A.J.; Pang, T.Y.; Kim, J.H. Sex-Dependent Effects of Chronic Exercise on Cognitive Flexibility but Not Hippocampal Bdnf in Aging Mice. Neuronal Signal. 2022, 6, NS20210053. [Google Scholar] [CrossRef]
- van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running Enhances Neurogenesis, Learning, Long-Term Potentiation in Mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.A. Exercise Builds Brain Health: Key Roles of Growth Factor Cascades and Inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef]
- Zoladz, J.A.; Pilc, A.; Majerczak, J.; Grandys, M.; Zapart-Bukowska, J.; Duda, K. Endurance Training Increases Plasma Brain-Derived Neurotrophic Factor Concentration in Young Healthy Men. J. Physiol. Pharmacol. 2008, 59 (Suppl. S7), 119–132. [Google Scholar]
- Goekint, M.; De Pauw, K.; Roelands, B.; Njemini, R.; Bautmans, I.; Mets, T.; Meeusen, R. Strength Training Does Not Influence Serum Brain-Derived Neurotrophic Factor. Eur. J. Appl. Physiol. 2010, 110, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Intlekofer, K.A.; Cotman, C.W. Exercise Counteracts Declining Hippocampal Function in Aging and Alzheimer’s Disease. Neurobiol. Dis. 2013, 57, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bettio, L.E.; Rajendran, L.; Gil-Mohapel, J. Gil-Mohapel. The Effects of Aging in the Hippocampus and Cognitive Decline. Neurosci. Biobehav. Rev. 2017, 79, 66–86. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Bohlen und Halbach, O.; Klausch, M. The Neurotrophin System in the Postnatal Brain—An Introduction. Biology 2024, 13, 558. https://doi.org/10.3390/biology13080558
von Bohlen und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain—An Introduction. Biology. 2024; 13(8):558. https://doi.org/10.3390/biology13080558
Chicago/Turabian Stylevon Bohlen und Halbach, Oliver, and Monique Klausch. 2024. "The Neurotrophin System in the Postnatal Brain—An Introduction" Biology 13, no. 8: 558. https://doi.org/10.3390/biology13080558
APA Stylevon Bohlen und Halbach, O., & Klausch, M. (2024). The Neurotrophin System in the Postnatal Brain—An Introduction. Biology, 13(8), 558. https://doi.org/10.3390/biology13080558