Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Intraperitoneal Injection of Nickel Chloride
2.3. Sampling
2.4. Weighing and Calculation of Relative Organ Weight
2.5. Blood Test
2.6. Quantification of Renal Oxidative Stress and Interleukin-6 Protein Levels
2.7. HE Staining and Glomeruli Cell Counting
2.8. qRT-PCR
2.9. Western Blot
2.10. Transcriptome Analysis
2.11. Data Analysis
2.11.1. Screening of Differentially Expressed Genes
2.11.2. Protein-Protein Interaction (PPI)
2.11.3. Gene Sets
3. Results
3.1. Glucose Metabolism and Lipid Metabolism Were Affected in Mice after NiCl2 Stress
3.2. NiCl2 Stress Caused Kidney Injury
3.3. Transcriptome Sequencing-Based Analysis of the Effect of NiCl2 Stress on Mouse Kidneys
3.4. Effects of Nickel Chloride Stress on Key Genes of the AMPK Signaling Pathway and the PPAR Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Harasim, P.; Filipek, T. Nickel in the Environment. J. Elem. 2015, 20, 525–534. [Google Scholar] [CrossRef]
- Yin, H.; Zuo, Z.; Yang, Z.; Guo, H.; Fang, J.; Cui, H.; Ouyang, P.; Chen, X.; Chen, J.; Geng, Y.; et al. Nickel induces autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney. Ecotoxicol. Environ. Saf. 2021, 223, 112583. [Google Scholar] [CrossRef]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity—An overview. J. Basic. Clin. Physiol. Pharmacol. 2018, 30, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Anyachor, C.P.; Dooka, D.B.; Orish, C.N.; Amadi, C.N.; Bocca, B.; Ruggieri, F.; Senofonte, M.; Frazzoli, C.; Orisakwe, O.E. Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neurosci. Rep. 2022, 13, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.B.; Pelletier, J.L.; Jacob, S.E.; Schneider, L.C.; Cohen, B.; Horii, K.A.; Kristal, L.; Maguiness, S.M.; Tollefson, M.M.; Weinstein, M.G.; et al. Immunology. Nickel Allergic Contact Dermatitis: Identification, Treatment, and Prevention. Pediatrics 2020, 145, e20200628. [Google Scholar] [CrossRef]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef]
- Oller, A.R.; Oberdorster, G.; Seilkop, S.K. Derivation of PM10 size-selected human equivalent concentrations of inhaled nickel based on cancer and non-cancer effects on the respiratory tract. Inhal. Toxicol. 2014, 26, 559–578. [Google Scholar] [CrossRef]
- Nan, Y.; Yang, J.; Ma, L.; Jin, L.; Bai, Y. Associations of nickel exposure and kidney function in U.S. adults, NHANES 2017–2018. J. Trace Elem. Med. Biol. 2022, 74, 127065. [Google Scholar] [CrossRef] [PubMed]
- Vyskocil, A.; Senft, V.; Viau, C.; Cizkova, M.; Kohout, J. Biochemical renal changes in workers exposed to soluble nickel compounds. Hum. Exp. Toxicol. 1994, 13, 257–261. [Google Scholar] [CrossRef]
- Alegre-Martinez, A.; Martinez-Martinez, M.I.; Rubio-Briones, J.; Cauli, O. Plasma Nickel Levels Correlate with Low Muscular Strength and Renal Function Parameters in Patients with Prostate Cancer. Diseases 2022, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, S.J. Association of Blood Heavy Metal Levels and Renal Function in Korean Adults. Int. J. Environ. Res. Public Health 2022, 19, 6646. [Google Scholar] [CrossRef] [PubMed]
- Orr, S.E.; Bridges, C.C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Xiao, Y.; Li, Y.; Yu, Y.; Mo, T.; Jiang, H.; Li, X.; Yang, H.; Xu, C.; et al. Associations of plasma metal concentrations with the decline in kidney function: A longitudinal study of Chinese adults. Ecotoxicol. Environ. Saf. 2020, 189, 110006. [Google Scholar] [CrossRef]
- Das, S.; Reddy, R.C.; Chadchan, K.S.; Patil, A.J.; Biradar, M.S.; Das, K.K. Nickel and Oxidative Stress: Cell Signaling Mechanisms and Protective Role of Vitamin C. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 1024–1031. [Google Scholar] [CrossRef]
- Hasanein, P.; Felegari, Z. Chelating effects of carnosine in ameliorating nickel-induced nephrotoxicity in rats. Can. J. Physiol. Pharmacol. 2017, 95, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wu, B.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Deng, J.; Yin, S.; et al. NiCl2-down-regulated antioxidant enzyme mRNA expression causes oxidative damage in the broiler’s kidney. Biol. Trace Elem. Res. 2014, 162, 288–295. [Google Scholar] [CrossRef]
- Guo, H.; Deng, H.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Wu, B.; Chen, K. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-kappaB pathway and reduction of anti-inflammatory mediator expression in the kidney. Oncotarget 2015, 6, 28607–28620. [Google Scholar] [CrossRef]
- Tyagi, R.; Rana, P.; Gupta, M.; Khan, A.R.; Bhatnagar, D.; Bhalla, P.J.; Chaturvedi, S.; Tripathi, R.P.; Khushu, S. Differential biochemical response of rat kidney towards low and high doses of NiCl2 as revealed by NMR spectroscopy. J. Appl. Toxicol. 2013, 33, 134–141. [Google Scholar] [CrossRef]
- Kubrak, O.I.; Husak, V.V.; Rovenko, B.M.; Poigner, H.; Mazepa, M.A.; Kriews, M.; Abele, D.; Lushchak, V.I. Tissue specificity in nickel uptake and induction of oxidative stress in kidney and spleen of goldfish Carassius auratus, exposed to waterborne nickel. Aquat. Toxicol. 2012, 118–119, 88–96. [Google Scholar] [CrossRef]
- Tesauro, M.; Canale, M.P.; Rodia, G.; Di Daniele, N.; Lauro, D.; Scuteri, A.; Cardillo, C. Metabolic syndrome, chronic kidney, and cardiovascular diseases: Role of adipokines. Cardiol. Res. Pract. 2011, 2011, 653182. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cao, Y.; Li, L.; Wang, Y.; Meng, Q. Overexpression of miR-29ab1 Cluster Results in Excessive Muscle Growth in 1-Month-old Mice by Inhibiting Mstn. DNA Cell Biol. 2023, 42, 43–52. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic. Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhou, X.; Huang, N.; Li, H.; Tian, J.; Li, T.; Yao, K.; Nyachoti, C.M.; Kim, S.W.; Yin, Y. AMPK Regulation of Glucose, Lipid and Protein Metabolism: Mechanisms and Nutritional Significance. Curr. Protein Pept. Sci. 2017, 18, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef]
- Hwang, Y.P.; Kim, H.G.; Choi, J.H.; Do, M.T.; Chung, Y.C.; Jeong, T.C.; Jeong, H.G. S-allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway. J. Nutr. Biochem. 2013, 24, 1469–1478. [Google Scholar] [CrossRef]
- Witters, L.A.; Gao, G.; Kemp, B.E.; Quistorff, B. Hepatic 5’-AMP-activated protein kinase: Zonal distribution and relationship to acetyl-CoA carboxylase activity in varying nutritional states. Arch. Biochem. Biophys. 1994, 308, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Xin, L.; Langhui, L.; Huan, C.; Ningjuan, Z.; Xiaoli, Z.; Xiang, X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci. 2024, 352, 122866. [Google Scholar] [CrossRef]
- Lee, L.E.; Doke, T.; Mukhi, D.; Susztak, K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int. 2024, 106, 24–34. [Google Scholar] [CrossRef]
- Li, Y.; Long, W.; Zhang, H.; Zhao, M.; Gao, M.; Guo, W.; Yu, L. Irbesartan ameliorates diabetic nephropathy by activating the Nrf2/Keap1 pathway and suppressing NLRP3 inflammasomes In Vivo and In Vitro. Int. Immunopharmacol. 2024, 131, 111844. [Google Scholar] [CrossRef]
- Ji, R.; Chen, W.; Wang, Y.; Gong, F.; Huang, S.; Zhong, M.; Liu, Z.; Chen, Y.; Ma, L.; Yang, Z.; et al. The Warburg Effect Promotes Mitochondrial Injury Regulated by Uncoupling Protein-2 in Septic Acute Kidney Injury. Shock 2021, 55, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Rauckhorst, A.J.; Martinez, G.V.; Andrade, G.M.; Wen, H.; Kim, J.Y.; Simoni, A.; Mapuskar, K.A.; Rastogi, P.; Steinbach, E.J.; McCormick, M.L.; et al. Tubular Mitochondrial Pyruvate Carrier Disruption Elicits Redox Adaptations that Protect from Acute Kidney Injury. BioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Zheng, X.; Zhang, D.; Wei, S.; Feng, J.; Wang, W.; Zhang, L.; Wu, C.; Hu, W. CircHIF1A induces cetuximab resistance in colorectal cancer by promoting HIF1alpha-mediated glycometabolism alteration. Biol. Direct 2024, 19, 36. [Google Scholar] [CrossRef]
- Ferreira, G.; Vieira, P.; Alves, A.; Nunes, S.; Preguica, I.; Martins-Marques, T.; Ribeiro, T.; Girao, H.; Figueirinha, A.; Salgueiro, L.; et al. Effect of Blueberry Supplementation on a Diet-Induced Rat Model of Prediabetes-Focus on Hepatic Lipid Deposition, Endoplasmic Stress Response and Autophagy. Nutrients 2024, 16, 513. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gao, Y.; Li, Y.; Liu, D.; Sun, W.; Liu, C.; Zhao, X. Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney. Biology 2024, 13, 655. https://doi.org/10.3390/biology13090655
Zhang J, Gao Y, Li Y, Liu D, Sun W, Liu C, Zhao X. Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney. Biology. 2024; 13(9):655. https://doi.org/10.3390/biology13090655
Chicago/Turabian StyleZhang, Jing, Yahong Gao, Yuewen Li, Dongdong Liu, Wenpeng Sun, Chuncheng Liu, and Xiujuan Zhao. 2024. "Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney" Biology 13, no. 9: 655. https://doi.org/10.3390/biology13090655
APA StyleZhang, J., Gao, Y., Li, Y., Liu, D., Sun, W., Liu, C., & Zhao, X. (2024). Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney. Biology, 13(9), 655. https://doi.org/10.3390/biology13090655