Population Genomics Reveals Elevated Inbreeding and Accumulation of Deleterious Mutations in White Raccoon Dogs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Sequencing Data
2.2. DNA Isolation, Library Preparation, and Sequencing
2.3. Genome-Wide Variant Calling
2.4. Genetic Structure, Linkage Disequilibrium (LD) Decay, and Genetic Diversity
2.5. Estimation of Inbreeding by Screening ROHs
2.6. Screening of Genome-Wide Mutational Load
2.7. Historical Population Dynamics
3. Results
3.1. Genome-Wide Variant Calling and Identification of Deleterious SNPs
3.2. Genetic Structure and Kinship Analysis
3.3. The Accumulation of Deleterious Mutations in White Raccoon Dogs
3.4. Inbreeding Facilitated the Accumulation of Deleterious Mutations
3.5. Population Dynamics Analysis
3.6. Potentially Deleterious Mutations Associated with the Formation of White Coat Color
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Maruyama, T.; Crow, J.F. The Mutation Load in Small Populations. Genetics 1963, 48, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 1973, 246, 96–98. [Google Scholar] [CrossRef]
- Kono, T.J.; Fu, F.; Mohammadi, M.; Hoffman, P.J.; Liu, C.; Stupar, R.M.; Smith, K.P.; Tiffin, P.; Fay, J.C.; Morrell, P.L. The Role of Deleterious Substitutions in Crop Genomes. Mol. Biol. Evol. 2016, 33, 2307–2317. [Google Scholar] [CrossRef] [PubMed]
- Eyre-Walker, A.; Woolfit, M.; Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 2006, 173, 891–900. [Google Scholar] [CrossRef]
- Dussex, N.; Van Der Valk, T.; Morales, H.E.; Wheat, C.W.; Díez-del-Molino, D.; Von Seth, J.; Foster, Y.; Kutschera, V.E.; Guschanski, K.; Rhie, A.; et al. Population genomics of the critically endangered kākāpō. Cell Genom. 2021, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Patel, K.; Shukla, H.; Viswanathan, A.; van der Valk, T.; Borthakur, U.; Nigam, P.; Zachariah, A.; Jhala, Y.V.; Kardos, M.; et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. USA 2021, 118, e2023018118. [Google Scholar] [CrossRef] [PubMed]
- Kleinman-Ruiz, D.; Lucena-Perez, M.; Villanueva, B.; Fernandez, J.; Saveljev, A.P.; Ratkiewicz, M.; Schmidt, K.; Galtier, N.; Garcia-Dorado, A.; Godoy, J.A. Purging of deleterious burden in the endangered Iberian lynx. Proc. Natl. Acad. Sci. USA 2022, 119, e2110614119. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Yang, S.; Li, H.; Zhang, Y.; Li, R.; Sahu, S.K.; Deng, W.; Liu, B.; Shi, M.; Wang, S.; et al. Large-scale genome sequencing of giant pandas improves the understanding of population structure and future conservation initiatives. Proc. Natl. Acad. Sci. USA 2024, 121, e2406343121. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Tang, T.; Tang, H.; Huang, J.; Shi, S.; Wu, C.I. The accumulation of deleterious mutations in rice genomes: A hypothesis on the cost of domestication. Trends Genet. TIG 2006, 22, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Bosse, M.; Megens, H.J.; Derks, M.F.L.; de Cara, A.M.R.; Groenen, M.A.M. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol. Appl. 2019, 12, 6–17. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Heslop-Harrison, P.; Spillane, C.; McKeown, P.C.; Edwards, D.; Goldman, I.; Ortiz, R. Evolutionary dynamics and adaptive benefits of deleterious mutations in crop gene pools. Trends Plant Sci. 2023, 28, 685–697. [Google Scholar] [CrossRef]
- Charlesworth, B. Fundamental concepts in genetics: Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 2009, 10, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Marsden, C.D.; Ortega-Del Vecchyo, D.; O’Brien, D.P.; Taylor, J.F.; Ramirez, O.; Vila, C.; Marques-Bonet, T.; Schnabel, R.D.; Wayne, R.K.; Lohmueller, K.E. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA 2016, 113, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Fay, J.C. Evidence for hitchhiking of deleterious mutations within the human genome. PLoS Genet. 2011, 7, e1002240. [Google Scholar] [CrossRef] [PubMed]
- Hartfield, M.; Otto, S.P. Recombination and hitchhiking of deleterious alleles. Evol. Int. J. Org. Evol. 2011, 65, 2421–2434. [Google Scholar] [CrossRef] [PubMed]
- Wiener, P.; Wilkinson, S. Deciphering the genetic basis of animal domestication. Proc. Biol. Sci. 2011, 278, 3161–3170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yonezawa, T.; Liu, B.; Ma, T.; Shen, X.; Su, J.; Guo, S.; Hasegawa, M.; Liu, J. Domestication relaxed selective constraints on the yak mitochondrial genome. Mol. Biol. Evol. 2011, 28, 1553–1556. [Google Scholar] [CrossRef] [PubMed]
- Ostrander, E.A.; Kruglyak, L. Unleashing the canine genome. Genome Res. 2000, 10, 1271–1274. [Google Scholar] [CrossRef]
- Karlsson, E.K.; Lindblad-Toh, K. Leader of the pack: Gene mapping in dogs and other model organisms. Nat. Rev. Genet. 2008, 9, 713–725. [Google Scholar] [CrossRef]
- Schubert, M.; Jonsson, H.; Chang, D.; Der Sarkissian, C.; Ermini, L.; Ginolhac, A.; Albrechtsen, A.; Dupanloup, I.; Foucal, A.; Petersen, B.; et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc. Natl. Acad. Sci. USA 2014, 111, E5661–E5669. [Google Scholar] [CrossRef]
- Makino, T.; Rubin, C.J.; Carneiro, M.; Axelsson, E.; Andersson, L.; Webster, M.T. Elevated Proportions of Deleterious Genetic Variation in Domestic Animals and Plants. Genome Biol. Evol. 2018, 10, 276–290. [Google Scholar] [CrossRef]
- Renaut, S.; Rieseberg, L.H. The Accumulation of Deleterious Mutations as a Consequence of Domestication and Improvement in Sunflowers and Other Compositae Crops. Mol. Biol. Evol. 2015, 32, 2273–2283. [Google Scholar] [CrossRef]
- Lan, T.; Li, H.; Yang, S.; Shi, M.; Han, L.; Sahu, S.K.; Lu, Y.; Wang, J.; Zhou, M.; Liu, H.; et al. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022, 25, 105117. [Google Scholar] [CrossRef] [PubMed]
- Drygala, F.; Werner, U.; Zoller, H. Diet composition of the invasive raccoon dog (Nyctereutes procyonoides) and the native red fox (Vulpes vulpes) in north-east Germany. Hystrix 2013, 24, 190–194. [Google Scholar]
- Kauhala, K.; Kowalczyk, R. Invasion of the raccoon dog Nyctereutes procyonoides in Europe: History of colonization, features behind its success, and threats to native fauna. Curr. Zool. 2011, 57, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Helle, E.; Kauhala, K. Reproduction in the Raccoon Dog in Finland. J. Mammal. 1995, 76, 1036–1046. [Google Scholar] [CrossRef]
- Kauhala, K. Reproductive strategies of the racoon dog and the red fox in Finland. Acta Theriol. 1996, 41, 51–58. [Google Scholar] [CrossRef]
- Kowalczyk, R.; Zalewski, A.; Jędrzejewska, B.; Ansorge, H.; Bunevich, A.N. Reproduction and Mortality of Invasive Raccoon Dogs (Nyctereutes procyonoides) in the Białowieża Primeval Forest (Eastern Poland). Ann. Zool. Fenn. 2009, 46, 291–301. [Google Scholar] [CrossRef]
- Asikainen, J.; Mustonen, A.M.; Hyvarinen, H.; Nieminen, P. Seasonal physiology of the wild raccoon dog (Nyctereutes procyonoides). Zool. Sci. 2004, 21, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Mulder, J. A review of the ecology of the raccoon dog (Nyctereutes procyonoides) in Europe. Lutra 2012, 55, 27. [Google Scholar]
- Pitra, C.; Schwarz, S.; Fickel, J. Going west—Invasion genetics of the alien raccoon dog Nyctereutes procynoides in Europe. Eur. J. Wildl. Res. 2009, 56, 117–129. [Google Scholar] [CrossRef]
- Yan, S.Q.; Li, Y.M.; Bai, C.Y.; Ding, X.M.; Li, W.J.; Hou, J.N.; Zhao, Z.H.; Sun, J.H. Development and characterization of polymorphic microsatellite markers for Chinese raccoon dog (Nyctereutes procyonoides procyonoides). Genet. Mol. Res. GMR 2013, 12, 6351–6355. [Google Scholar] [CrossRef]
- Du, Z.; Huang, K.; Zhao, J.; Song, X.; Xing, X.; Wu, Q.; Zhang, L.; Xu, C. Comparative Transcriptome Analysis of Raccoon Dog Skin to Determine Melanin Content in Hair and Melanin Distribution in Skin. Sci. Rep. 2017, 7, 40903. [Google Scholar] [CrossRef]
- Guo, Y.; Xing, X.; Wu, Q.; Xu, C.; Zhao, J. Production Performance Testing of Wusuli Raccoon Dog with White Mutant Coat. J. Domest. Anim. Ecol. 2019, 40, 5. [Google Scholar]
- He, R.; He, Y.; Meng, Y.; Zhao, J. Research Progress on Genetics of Wusuli Racoon Dog of Three Kinds of Color Type (wild type, white type, red brown type). J. Jilin Agric. Sci. Technol. Univ. 2016, 25, 4. [Google Scholar]
- Shi, G. How to select the breeding source of white raccoon dog. Spec. Econ. Anim. Plants 2008, 6, 4. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010, 26, 2867–2873. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, E.M. vcf2phylip v2.0: Convert a VCF Matrix into Several Matrix Formats for Phylogenetic Analysis. Zenodo Geneva. 2019. Available online: https://zenodo.org/records/2540861 (accessed on 15 January 2019).
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Dobrynin, P.; Liu, S.; Tamazian, G.; Xiong, Z.; Yurchenko, A.A.; Krasheninnikova, K.; Kliver, S.; Schmidt-Küntzel, A.; Koepfli, K.-P.; Johnson, W. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 2015, 16, 277. [Google Scholar] [CrossRef] [PubMed]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genom. 2020, 21, 94. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Grantham, R. Amino acid difference formula to help explain protein evolution. Science 1974, 185, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Schiffels, S.; Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 2014, 46, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Santiago, E.; Novo, I.; Pardiñas, A.F.; Saura, M.; Wang, J.; Caballero, A. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol. Biol. Evol. 2020, 37, 3642–3653. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Li, L.; Zhang, G. Coverage recommendation for genotyping analysis of highly heterologous species using next-generation sequencing technology. Sci. Rep. 2016, 6, 35736. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yang, Y.; Ren, Q.; Ding, X.; Bao, P.; Yan, B.; Yan, X.; Han, J.; Yan, P.; Qiu, Q. Accumulation of deleterious mutations in the domestic yak genome. Anim. Genet. 2018, 49, 384–392. [Google Scholar] [CrossRef]
- Mahar, K.; Gurao, A.; Kumar, A.; Pratap Singh, L.; Chitkara, M.; Gowane, G.R.; Ahlawat, S.; Niranjan, S.K.; Pundir, R.K.; Kataria, R.S.; et al. Genomic inbreeding analysis reveals resilience and genetic diversity in Indian yak populations. Gene 2024, 928, 148787. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Luo, Z.; Jia, X.; Zhou, J.; Lai, S.-J. Evaluating genomic inbreeding of two Chinese yak (Bos grunniens) populations. BMC Genom. 2024, 25, 712. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lan, T.; Li, H.; Sahu, S.K.; Shi, M.; Zhu, Y.; Han, L.; Yang, S.; Li, Q.; Zhang, L.; et al. Whole-genome resequencing of Chinese pangolins reveals a population structure and provides insights into their conservation. Commun. Biol. 2022, 5, 821. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Zhao, X.; Chen, J.; Li, H.; Liang, H.; Fan, J.; Zhou, M.; Wang, S.; Zhang, X.; et al. Genomic exploration of the endangered oriental stork, Ciconia boyciana, sheds light on migration adaptation and future conservation. GigaScience 2024, 13, giae081. [Google Scholar] [CrossRef]
- Subramanian, S.; Kumar, M. The Association between the Abundance of Homozygous Deleterious Variants and the Morbidity of Dog Breeds. Biology 2024, 13, 574. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Liu, J.; Zhang, W.; Zhou, M.; Wang, J.; Liu, L.; Su, S.; Zhao, F.; Chen, H.; et al. Genome-wide detection of genetic structure and runs of homozygosity analysis in Anhui indigenous and Western commercial pig breeds using PorcineSNP80k data. BMC Genom. 2022, 23, 373. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.P.; Singh, S.; Ganguly, I.; Bhatia, A.K.; Sharma, A.; Kumar, N.A.; Dang, A.K.; Jayakumar, S. Genome-Wide Runs of Homozygosity Revealed Selection Signatures in Bos indicus. Front. Genet. 2020, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.; Vila, C.; Webster, M.T. The Legacy of Domestication: Accumulation of Deleterious Mutations in the Dog Genome. Mol. Biol. Evol. 2008, 25, 2331–2336. [Google Scholar] [CrossRef]
- Skorczyk, A.; Flisikowski, K.; Switonski, M. A comparative analysis of MC4R gene sequence, polymorphism, and chromosomal localization in Chinese raccoon dog and Arctic fox. DNA Cell Biol. 2012, 31, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Si, S.; Guo, P.C.; Li, L.L.; Bai, C.Y.; Yan, S.Q. Cloning and identification of the ASIP gene in Chinese raccoon dog (Nyctereutes procyonoides procyonoides). Genet. Mol. Res. GMR 2015, 14, 16312–16316. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, X.; Xie, M.; Arefnezhad, B.; Wang, Z.; Wang, W.; Feng, S.; Huang, G.; Guan, R.; Shen, W.; et al. Reference genome of wild goat (Capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genom. 2015, 16, 431. [Google Scholar] [CrossRef]
- Moore, R.K.; Shimasaki, S. Molecular biology and physiological role of the oocyte factor, BMP-15. Mol. Cell. Endocrinol. 2005, 234, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.; Singh, A.; Iqbal, Z.; Kaushik, J.K.; Rao, A.R.; Ahmad, S.M.; Bhat, H.; Ayaz, A.; Sheikh, F.D.; Kalra, S.; et al. Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat. Sci. Rep. 2019, 9, 6361. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, L.; Lan, X.; Asif, N.; Guan, F.; Fu, D.; Li, B.; Yan, C.; Zhang, H.; Zhang, X.; et al. Genome-wide definition of selective sweeps reveals molecular evidence of trait-driven domestication among elite goat (Capra species) breeds for the production of dairy, cashmere, and meat. GigaScience 2018, 7, giy105. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Zhou, G.; Guo, J.; Yan, H.; Niu, Y.; Li, Y.; Yuan, C.; Geng, R.; Lan, X.; et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 2016, 6, 38932. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.K.; Uy, J.A.C.; Hauber, M.E.; Hoekstra, H.E.; Safran, R.J. Vertebrate pigmentation: From underlying genes to adaptive function. Trends Genet. 2010, 26, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Benjelloun, B.; Alberto, F.J.; Streeter, I.; Boyer, F.; Coissac, E.; Stucki, S.; BenBati, M.; Ibnelbachyr, M.; Chentouf, M.; Bechchari, A.; et al. Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data. Front. Genet. 2015, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, M.R.; Vaughn-Wolfe, J.; Elias, A.; Kump, D.K.; Kendall, K.D.; Timoshevskaya, N.; Timoshevskiy, V.; Perry, D.W.; Smith, J.J.; Spiewak, J.E.; et al. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum. Sci. Rep. 2017, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Square, T.A.; Jandzik, D.; Massey, J.L.; Romášek, M.; Stein, H.P.; Hansen, A.W.; Purkayastha, A.; Cattell, M.V.; Medeiros, D.M. Evolution of the endothelin pathway drove neural crest cell diversification. Nature 2020, 585, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, H.; Li, P.; Li, L.; Zhong, T.; Wang, L.; Ma, J.; Chen, X.; Song, T.; Zhang, H. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci. Rep. 2018, 8, 10405. [Google Scholar] [CrossRef]
- Praetorius, C.; Grill, C.; Stacey, S.N.; Metcalf, A.M.; Gorkin, D.U.; Robinson, K.C.; Van Otterloo, E.; Kim, R.S.; Bergsteinsdottir, K.; Ogmundsdottir, M.H.; et al. A Polymorphism in IRF4 Affects Human Pigmentation through a Tyrosinase-Dependent MITF/TFAP2A Pathway. Cell 2013, 155, 1022–1033. [Google Scholar] [CrossRef]
- Han, J.; Kraft, P.; Nan, H.; Guo, Q.; Chen, C.; Qureshi, A.; Hankinson, S.E.; Hu, F.B.; Duffy, D.L.; Zhao, Z.Z. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008, 4, e1000074. [Google Scholar] [CrossRef]
- Sulem, P.; Gudbjartsson, D.F.; Stacey, S.N.; Helgason, A.; Rafnar, T.; Magnusson, K.P.; Manolescu, A.; Karason, A.; Palsson, A.; Thorleifsson, G.; et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 2007, 39, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Kraft, P.; Qureshi, A.A.; Guo, Q.; Chen, C.; Hankinson, S.E.; Hu, F.B.; Thomas, G.; Hoover, R.N.; Chanock, S.; et al. Genome-wide association study of tanning phenotype in a population of European ancestry. J. Investig. Dermatol. 2009, 129, 2250–2257. [Google Scholar] [CrossRef] [PubMed]
- Chhotaray, S.; Panigrahi, M.; Bhushan, B.; Gaur, G.; Dutt, T.; Mishra, B.; Singh, R. Genome-wide association study reveals genes crucial for coat color production in Vrindavani cattle. Livest. Sci. 2021, 247, 104476. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Y.; Zhao, B.; Yang, N.; Chen, S.; Shen, J.; Bao, G.; Wu, X. KIT is involved in melanocyte proliferation, apoptosis and melanogenesis in the Rex Rabbit. PeerJ 2020, 8, e9402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, M.; Yang, M.; Liao, A.; Lv, P.; Liu, X.; Chen, Y.; Liu, H.; He, Z. Efficient generation of cloned cats with altered coat colour by editing of the KIT gene. Theriogenology 2024, 222, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Kottler, V.A.; Fadeev, A.; Weigel, D.; Dreyer, C. Pigment pattern formation in the guppy, Poecilia reticulata, involves the Kita and Csf1ra receptor tyrosine kinases. Genetics 2013, 194, 631–646. [Google Scholar] [CrossRef]
- Otsuki, Y.; Okuda, Y.; Naruse, K.; Saya, H. Identification of kit-ligand a as the Gene Responsible for the Medaka Pigment Cell Mutant few melanophore. G3 2020, 10, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Picardo, M.; Cardinali, G. The genetic determination of skin pigmentation: KITLG and the KITLG/c-Kit pathway as key players in the onset of human familial pigmentary diseases. J. Investig. Dermatol. 2011, 131, 1182–1185. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zhou, N.; Liu, J.; Zhang, S.; Li, X.; Li, Z.; Yang, Z.; Sun, M.; Li, M. Identification of a novel mutation in the KITLG gene in a Chinese family with familial progressive hyper- and hypopigmentation. BMC Med. Genom. 2021, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Horrell, E.M.W.; Boulanger, M.C.; D’orazio, J.A. Melanocortin 1 receptor: Structure, function, and regulation. Front. Genet. 2016, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Nasti, T.H.; Timares, L. MC1R, Eumelanin and Pheomelanin: Their role in determining the susceptibility to skin cancer. Photochem. Photobiol. 2014, 91, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-Y.; Zhu, M.-X.; Lu, N.-H.; Peng, R.; Yang, X.; Zhang, P.-F.; Wang, L.; Gu, J.-Y. Bioinformatics-based analysis reveals elevated MFSD12 as a key promoter of cell proliferation and a potential therapeutic target in melanoma. Oncogene 2019, 38, 1876–1891. [Google Scholar] [CrossRef]
- Del Bino, S.; Duval, C.; Bernerd, F. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact. Int. J. Mol. Sci. 2018, 19, 2668. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, A.; Fisher, D.E. The master role of microphthalmia-associated transcription factor in melanocyte and mela-noma biology. Lab. Investig. 2017, 97, 649–656. [Google Scholar] [CrossRef]
- Wang, C.; Kocher, T.D.; Wu, J.; Li, P.; Liang, G.; Lu, B.; Xu, J.; Chen, X.; Wang, D. Knockout of microphthalmia-associated transcription factor (mitf) confers a red and yellow tilapia with few pigmented melanophores. Aquaculture 2023, 565, 739151. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, J.; Ko, J.-K.; Lee, K. Melanophilin regulates dendritogenesis in melanocytes for feather pigmentation. Commun. Biol. 2024, 7, 592. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhang, X.; Pang, Y.; Qi, Y.; Wang, Q.; Hu, Y.; Zhao, Y.; Ren, S.; Huo, L. Association analysis of melanophilin (MLPH) gene expression and polymorphism with plumage color in quail. Arch. Anim. Breed. 2023, 66, 131–139. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Yang, L.; Zhang, Z.; Chen, H.; Ren, J. Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J. 2021, 35, e21261. [Google Scholar] [CrossRef]
- O’Sullivan, T.N.; Wu, X.S.; Rachel, R.A.; Huang, J.-D.; Swing, D.A.; Matesic, L.E.; Hammer, J.A., III; Copeland, N.G.; Jenkins, N.A. Dsu functions in a MYO5A-independent pathway to suppress the coat color of dilute mice. Proc. Natl. Acad. Sci. USA 2004, 101, 16831–16836. [Google Scholar] [CrossRef]
- Kidd, K.K.; Pakstis, A.J.; Donnelly, M.P.; Bulbul, O.; Cherni, L.; Gurkan, C.; Kang, L.; Li, H.; Yun, L.; Paschou, P.; et al. The distinctive geographic patterns of common pigmentation variants at the OCA2 gene. Sci. Rep. 2020, 10, 15433. [Google Scholar] [CrossRef] [PubMed]
- Vacher, J.; Bruccoleri, M.; Pata, M. Ostm1 from mouse to human: Insights into osteoclast maturation. Int. J. Mol. Sci. 2020, 21, 5600. [Google Scholar] [CrossRef]
- Pandruvada, S.N.M.; Beauregard, J.; Benjannet, S.; Pata, M.; Lazure, C.; Seidah, N.G.; Vacher, J. Role of Ostm1 cytosolic complex with kinesin 5B in intracellular dispersion and trafficking. Mol. Cell. Biol. 2016, 36, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Watt, B.; van Niel, G.; Raposo, G.; Marks, M.S. PMEL: A pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res. 2013, 26, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Hee, J.S.; Mitchell, S.M.; Liu, X.; Leonhardt, R.M. Melanosomal formation of PMEL core amyloid is driven by aromatic residues. Sci. Rep. 2017, 7, srep44064. [Google Scholar] [CrossRef]
- Yoshida-Amano, Y.; Hachiya, A.; Ohuchi, A.; Kobinger, G.P.; Kitahara, T.; Takema, Y.; Fukuda, M. Essential role of RAB27A in determining constitutive human skin color. PLoS ONE 2012, 7, e41160. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.C.; Hamer, M.A.; Gunn, D.A.; Deelen, J.; Lall, J.S.; van Heemst, D.; Uh, H.-W.; Hofman, A.; Uitterlinden, A.G.; Griffiths, C.E.; et al. A genome-wide association study identifies the skin color genes IRF4, MC1R, ASIP, and BNC2 influencing facial pigmented spots. J. Investig. Dermatol. 2015, 135, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Visser, M.; Duffy, D.L.; Hysi, P.G.; Jacobs, L.C.; Lao, O.; Zhong, K.; Walsh, S.; Chaitanya, L.; Wollstein, A.; et al. Genetics of skin color variation in Europeans: Genome-wide association studies with functional follow-up. Hum. Genet. 2015, 134, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Twumasi, G.; Wang, H.; Xi, Y.; Qi, J.; Li, L.; Bai, L.; Liu, H. Genome-Wide Association Studies Reveal Candidate Genes Associated with Pigmentation Patterns of Single Feathers of Tianfu Nonghua Ducks. Animals 2023, 14, 85. [Google Scholar] [CrossRef]
- Al Mahi, A.; Ablain, J. RAS pathway regulation in melanoma. Dis. Model. Mech. 2022, 15, dmm049229. [Google Scholar] [CrossRef]
- Costin, G.-E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.P.; Farrukh, S.N. Influence of ethnicities and skin color variations in different populations: A review. Skin Pharmacol. Physiol. 2022, 35, 65–76. [Google Scholar] [CrossRef]
- Batai, K.; Cui, Z.; Arora, A.; Shah-Williams, E.; Hernandez, W.; Ruden, M.; Hollowell, C.M.P.; Hooker, S.E.; Bathina, M.; Murphy, A.B.; et al. Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency. PLoS Genet. 2021, 17, e1009319. [Google Scholar] [CrossRef] [PubMed]
- Branicki, W.; Brudnik, U.; Draus-Barini, J.; Kupiec, T.; Wojas-Pelc, A. Association of the SLC45A2 gene with physio-logical human hair colour variation. J. Hum. Genet. 2008, 53, 966–971. [Google Scholar] [CrossRef]
- Huo, L.; Zhang, X.; Pang, Y.; Qi, Y.; Ren, S.; Wu, F.; Shang, Y.; Xi, J. Expression and Mutation of SLC45A2 Affects Iris Color in Quail. J. Poult. Sci. 2024, 61, 2024015. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-M.; Bu, H.-Y.; Song, F.-B.; Zhu, W.-B.; Fu, J.-J.; Dong, Z.-J. Characterization and functional analysis of slc7a11 gene, involved in skin color differentiation in the red tilapia. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 236, 110529. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, S.; Mu, L.; Zhao, B.; Wang, M.; Yang, N.; Bao, G.; Zhu, C.; Wu, X. Slc7a11 Modulated by POU2F1 is Involved in Pigmentation in Rabbit. Int. J. Mol. Sci. 2019, 20, 2493. [Google Scholar] [CrossRef] [PubMed]
- Arnoldi, A.; Tonelli, A.; Crippa, F.; Villani, G.; Pacelli, C.; Sironi, M.; Pozzoli, U.; D’Angelo, M.G.; Meola, G.; Martinuzzi, A.; et al. A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia. Hum. Mutat. 2008, 29, 522–531. [Google Scholar] [CrossRef]
- Yee, N.S.; Kazi, A.A.; Yee, R.K. Cellular and developmental biology of TRPM7 channel-kinase: Implicated roles in cancer. Cells 2014, 3, 751–777. [Google Scholar] [CrossRef] [PubMed]
- Shchagina, O.; Stepanova, A.; Mishakova, P.; Kadyshev, V.; Demina, N.; Bessonova, L.; Ionova, S.; Guseva, D.; Marakhonov, A.; Zinchenko, R.; et al. Common Variants in the TYR Gene with Unclear Pathogenicity as the Cause of Oculocutaneous Albinism in a Cohort of Russian Patients. Biomedicines 2024, 12, 2234. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wichers, H.J.; Soler-Lopez, M.; Dijkstra, B.W. Structure and function of human tyrosinase and tyrosinase-related proteins. Chem.–A Eur. J. 2017, 24, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Wagatsuma, T.; Suzuki, E.; Shiotsu, M.; Sogo, A.; Nishito, Y.; Ando, H.; Hashimoto, H.; Petris, M.J.; Kinoshita, M.; Kambe, T. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins. Commun. Biol. 2023, 6, 403. [Google Scholar] [CrossRef] [PubMed]
- Gissen, P.; Johnson, C.A.; Gentle, D.; Hurst, L.D.; Doherty, A.J.; O’Kane, C.J.; Kelly, D.A.; Maher, E.R. Comparative evolutionary analysis of VPS33 homologues: Genetic and functional insights. Hum. Mol. Genet. 2005, 14, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.C.; Wartosch, L.; Gray, S.R.; Scourfield, E.J.; Deane, J.E.; Luzio, J.P.; Owen, D.J. Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proc. Natl. Acad. Sci. USA 2013, 110, 13345–13350. [Google Scholar] [CrossRef] [PubMed]
- Harney, É.; Patterson, N.; Reich, D.; Wakeley, J. Assessing the performance of qpAdm: A statistical tool for studying popu-lation admixture. Genetics 2021, 217, iyaa045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, S.-S.; Xu, J.-Y.; He, W.-M.; Yang, T.-L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
SNP Type | SNP Count in Wild-Type Raccoon Dogs | SNP Count in White-Type Raccoon Dogs |
---|---|---|
Intergenic region | 2,248,754 ± 65,291 | 2,245,684 ± 36,736 |
Intron variant | 888,747 ± 26,938 | 882,183 ± 14,448 |
Upstream gene variant | 108,076 ± 3393 | 106,533 ± 1856 |
Downstream gene variant | 105,060 ± 3222 | 104,215 ± 1583 |
Synonymous variant | 12,825 ± 404 | 12,560 ± 234 |
Missense variant | 8375 ± 247 | 8295 ± 137 |
LoF variant | 174 ± 10 | 177 ± 8 |
dnsSNP variant | 480 ± 19 | 471 ± 15 |
Splice acceptor variant | 38 ± 3 | 41 ± 4 |
Splice donor variant | 48 ± 4 | 49 ± 5 |
Splice region variant | 2007 ± 67 | 1994 ± 31 |
Start lost | 8 ± 2 | 8 ± 2 |
Stop_lost | 6.76 ± 1.63 | 7 ± 1 |
Stop gained | 77 ± 6.41 | 76 ± 7 |
Stop retained variant | 4.92 ± 1 | 5 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Lin, Y.; Ma, Y.; Li, J.; Sahu, S.K.; Fan, J.; Lin, C.; Li, Z.; Shi, M.; He, F.; et al. Population Genomics Reveals Elevated Inbreeding and Accumulation of Deleterious Mutations in White Raccoon Dogs. Biology 2025, 14, 30. https://doi.org/10.3390/biology14010030
Tian Y, Lin Y, Ma Y, Li J, Sahu SK, Fan J, Lin C, Li Z, Shi M, He F, et al. Population Genomics Reveals Elevated Inbreeding and Accumulation of Deleterious Mutations in White Raccoon Dogs. Biology. 2025; 14(1):30. https://doi.org/10.3390/biology14010030
Chicago/Turabian StyleTian, Yinping, Yu Lin, Yue Ma, Jiayi Li, Sunil Kumar Sahu, Jiale Fan, Chen Lin, Zhiang Li, Minhui Shi, Fengping He, and et al. 2025. "Population Genomics Reveals Elevated Inbreeding and Accumulation of Deleterious Mutations in White Raccoon Dogs" Biology 14, no. 1: 30. https://doi.org/10.3390/biology14010030
APA StyleTian, Y., Lin, Y., Ma, Y., Li, J., Sahu, S. K., Fan, J., Lin, C., Li, Z., Shi, M., He, F., Bai, L., Fu, Y., Deng, Z., Guo, H., Li, H., Li, Q., Xu, Y., Lan, T., Hou, Z., ... Yang, S. (2025). Population Genomics Reveals Elevated Inbreeding and Accumulation of Deleterious Mutations in White Raccoon Dogs. Biology, 14(1), 30. https://doi.org/10.3390/biology14010030