Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Animals
2.2. Direct Acute Exposure Evaluations
2.3. Maximum Ability Evaluations
2.4. Natural Distribution Evaluations
3. Results
3.1. Direct Acute Exposure Evaluations
3.2. Maximum Ability Evaluations
3.3. Natural Distribution Evaluations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). The IPCC scientific assessment. In Contribution of Working Group I to the First Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 1990; 365p. [Google Scholar]
- Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J. Climate change: The IPCC scientific assessment. Am. Sci. 1990, 80, 6. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; 184p. [Google Scholar]
- Rosenzweig, C. Global climate change: Predictions and observations. Am. J. Agric. Econ. 1989, 71, 1265–1271. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Zhao, Z.C. Global climate projections. In Climate Change 2007: The Physical Science Basis, Contribution of: Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 747–846. [Google Scholar]
- Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A.; DeAngelo, B.; Doherty, S.; Hayhoe, K.; Horton, R.; Kossin, J.P.; Taylor, P.C.; Waple, A.M.; et al. Climate science special report: Fourth national climate assessment, Executive summary; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume 1, pp. 12–34.
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes. Clim. Change 2012, 113, 499–524. [Google Scholar] [CrossRef]
- Arismendi, I.; Safeeq, M.; Dunham, J.B.; Johnson, S.L. Can air temperature be used to project influences of climate change on stream temperature? Environ. Res. Lett. 2014, 9, 084015. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wenger, S.J.; Peterson, E.E.; Ver Hoef, J.M.; Nagel, D.E.; Luce, C.H.; Hostetler, S.W.; Dunham, J.B.; Roper, B.B.; Wollrab, S.P.; et al. The NorWeST summer stream temperature model and scenarios for the western US: A crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 2017, 53, 9181–9205. [Google Scholar] [CrossRef]
- Isaak, D.J.; Luce, C.H.; Horan, D.L.; Chandler, G.L.; Wollrab, S.P.; Dubois, W.B.; Nagel, D.E. Thermal regimes of perennial rivers and streams in the western United States. J. Am. Water Resour. Assoc. 2020, 56, 842–867. [Google Scholar] [CrossRef]
- Wu, H.; Kimball, J.S.; Elsner, M.M.; Mantua, N.; Adler, R.F.; Stanford, J. Projected climate change impacts on the hydrology and temperature of Pacific Northwest rivers. Water Resour. Res. 2012, 48, 11. [Google Scholar] [CrossRef]
- Reid, S.B.; Goodman, D.H. Exploring thermal conditions occupied by Lampreys (Petromyzontidae) in California and Northern Baja California: Current environment and implications for future scenarios. Environ. Biol. Fish. 2024, 107, 537–550. [Google Scholar] [CrossRef]
- Poff, N.L.; Brinson, M.M.; Day, J.W. Aquatic Ecosystems and Global Climate Change; Pew Center on Global Climate Change: Arlington, VA, USA, 2002; pp. 1–36. [Google Scholar]
- Brownstein, C.D.; Near, T.J. Phylogenetics and the Cenozoic radiation of lampreys. Cur. Biol. 2023, 33, 397–404. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Quintella, B.R.; Maia, C.; Mateus, C.S.; Alexandre, C.M.; Capinha, C.; Almeida, P.R. Influence of macrohabitat preferences on the distribution of European brook and river lampreys: Implications for conservation and management. Biol. Conserv. 2013, 159, 175–186. [Google Scholar] [CrossRef]
- Dawson, H.A.; Potts, D.D.; Maguffee, A.C.; O’Connor, L.M. Feasibility of passive integrated transponder technology to study in situ movements of larval sea lamprey. J. Fish. Wildl. Manag. 2015, 6, 71–82. [Google Scholar] [CrossRef]
- Jolley, J.C.; Silver, G.S.; Whitesel, T.A. Occupancy and detection of larval Pacific lampreys and Lampetra spp. in a large river: The Lower Willamette River. Trans. Am. Fish. Soc. 2012, 141, 305–312. [Google Scholar] [CrossRef]
- Blanchard, M.R.; Harris, J.E.; Skalicky, J.J.; Silver, G.S.; Jolley, J.C. Patterns in distribution and density of larval lampreys in the main-stem Columbia River, Washington–Oregon. N. Am. J. Fish. Manag. 2023, 43, 1458–1474. [Google Scholar] [CrossRef]
- The International Union for Conservation of Nature (IUCN). Red List of Species. 2020. Available online: https://www.iucnredlist.org/species/62225/18232572 (accessed on 8 October 2024).
- Wicks-Arshack, A.; Dunkle, M.; Matsaw, S.; Caudill, C. An ecological, cultural and legal review of Pacific lamprey in the Columbia River basin. Idaho L. Rev. 2018, 54, 45. [Google Scholar]
- Pacific Lamprey Conservation Initiative (PLCI). Conservation Agreement. Available online: https://www.pacificlamprey.org/wp-content/uploads/2022/03/2-PLCI-2022-Conservation-Agreement-FAQ.pdf (accessed on 31 October 2024).
- Almeida, P.R.; Arakawa, H.; Aronsuu, K.; Baker, C.; Blair, S.R.; Beaulaton, L.; Belo, A.F.; Kitson, J.; Kucheryavyy, A.; Kynard, B.; et al. Lamprey fisheries: History, trends and management. J. Great Lakes Res. 2021, 47, S159–S185. [Google Scholar] [CrossRef]
- McLaughlin, R.; Adams, J.V.; Almeida, P.R.; Barber, J.; Burkett, D.P.; Docker, M.F.; Johnson, N.S.; Moser, M.L.; Muir, A.M.; Pereira, D.L.; et al. Foreword: Control and conservation of lampreys beyond 2020-Proceedings from the 3rd Sea Lamprey International Symposium (SLIS III). J. Great Lakes Res. 2021, 47, S1–S10. [Google Scholar] [CrossRef]
- Reid, S.B.; Goodman, D.H. Pacific lamprey in coastal drainages of California: Occupancy patterns and contraction of the southern range. Trans. Am. Fish. Soc. 2016, 145, 703–711. [Google Scholar] [CrossRef]
- Wang, C.; Schaller, H. Conserving Pacific lamprey through collaborative efforts. Fisheries 2015, 40, 72–79. [Google Scholar] [CrossRef]
- Wang, C.J.; Schaller, H.A.; Coates, K.C.; Hayes, M.C.; Rose, R.K. Climate change vulnerability assessment for Pacific lamprey in rivers of the western United States. J. Freshw. Ecol. 2020, 35, 29–55. [Google Scholar] [CrossRef]
- Clemens, B.J. Warmwater temperatures (≥20 °C) as a threat to Pacific lamprey: Implications of climate change. J. Fish Wildl. Manag. 2022, 13, 591–598. [Google Scholar] [CrossRef]
- Meeuwig, M.H.; Bayer, J.M.; Seelye, J.G. Effects of temperature on survival and development of early life stage Pacific and western brook lampreys. Trans. Am. Fish. Soc. 2005, 134, 19–27. [Google Scholar] [CrossRef]
- Potter, I.C.; Beamish, F.W.H. Lethal temperatures in ammocoetes of four species of lampreys. Acta Zool. 1975, 56, 85–91. [Google Scholar] [CrossRef]
- Arakawa, H.; Yanai, S. Upper thermal tolerance of larval Arctic lamprey (Lethenteron camtschaticum). Ichthyol. Res. 2021, 68, 158–163. [Google Scholar] [CrossRef]
- Whitesel, T.A.; Uh, C.T. Upper temperature limit of larval Pacific lamprey Entosphenus tridentatus: Implications for conservation in a warming climate. Environ. Biol. Fishes 2023, 106, 837–852. [Google Scholar] [CrossRef]
- Lennox, R.J.; Bravener, G.A.; Lin, H.Y.; Madenjian, C.P.; Muir, A.M.; Remucal, C.K.; Robinson, K.F.; Rous, A.M.; Siefkes, M.J.; Wilkie, M.P.; et al. Potential changes to the biology and challenges to the management of invasive sea lamprey Petromyzon marinus in the Laurentian Great Lakes due to climate change. Glob. Change Biol. 2020, 26, 1118–1137. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Kishi, D.; Yanai, S. Historical distribution of Arctic lamprey Lethenteron camtschaticum in Japanese rivers and its change estimated from fishery statistics and fishers’ local ecological knowledge. Fisher. Sci. 2021, 87, 479–490. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Yokoyama, R.; Nagai, T.; Goto, A. Formation of a fluvial non-parasitic population of Lethenteron camtschaticum as the first step in petromyzontid speciation. J. Fish. Biol. 2011, 79, 2043–2059. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Hudson, J.M.; Lassalle, G.; Whitesel, T.A. Impacts of a changing climate on native lamprey species: From physiology to ecosystem services. J. Great Lakes Res. 2021, 47, S106–S200. [Google Scholar] [CrossRef]
- Clemens, B.J.; Beamish, R.J.; Coates, K.C.; Docker, M.F.; Dunham, J.B.; Gray, A.E.; Hess, J.E.; Jolley, J.C.; Lampman, R.T.; McIlraith, B.J.; et al. Conservation challenges and research needs for Pacific lamprey in the Columbia River basin. Fisheries 2017, 42, 268–280. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Current Water Data. Available online: https://waterdata.usgs.gov/nwis/current/?type=quality (accessed on 7 November 2024).
- Stone, J.; Barndt, S. Spatial Distribution and Habitat Use of Pacific Lamprey (Lampetra tridentata) Ammocoetes in a Western Washington Stream. J. Freshw. Ecol. 2005, 20, 171–185. [Google Scholar] [CrossRef]
- Weisser, J.W.; Klar, G.T. Electric fishing for sea lampreys (Petromyzon marinus) in the Great Lakes region of North America. In Developments in Electric Fishing; Cowx, I., Ed.; Cambridge University Press: Cambridge, UK, 1990; pp. 59–64. [Google Scholar]
- Docker, M.F.; Silver, G.S.; Jolley, J.C.; Spice, E.K. Simple genetic assay distinguishes lamprey genera Entosphenus and Lampetra: Comparison with existing genetic and morphological identification methods. N. Am. J. Fish. Manag. 2016, 36, 780–787. [Google Scholar] [CrossRef]
- Brett, J.R. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Board Can. 1952, 9, 265–323. [Google Scholar] [CrossRef]
- Kaya, C.M. Thermal resistance of rainbow trout from a permanently heated stream, and of two hatchery strains. Prog. Fish-Cult. 1978, 40, 37–39. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Stream Flow Data in the USA. Available online: https://waterdata.usgs.gov/wa/nwis/current?type=qw&PARAmeter_cds=STATION_NM,DATETIME,00010,00011 (accessed on 7 November 2024).
- Beitinger, T.L.; Bennett, W.A.; McCauley, R.W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fish. 2000, 58, 237–275. [Google Scholar] [CrossRef]
- Fry, F.E.J.; Hart, J.S.; Walker, K.F. Lethal temperature relations for a sample of young speckled trout. Biol. Ser. Univ. Tor. Stud. Can. 1946, 54, 9–35. [Google Scholar]
- Reynolds, W.W.; Casterlin, M.E. Behavioral thermoregulation and the “final preferendum” paradigm. Am. Zool. 1979, 19, 211–224. [Google Scholar] [CrossRef]
- Fry, F.E.J. The effect of environmental factors on the physiology of fish. In Fish Physiology; Hoar, W.S., Randall, D.J., Eds.; Academic Press: London, UK, 1971; Volume 6, pp. 1–98. [Google Scholar]
- Elliot, J.M. Some aspects of thermal stress in freshwater teleosts. In Stress in Fish, Pickering, A.D., Ed.; Academic Press: London, UK, 1981; pp. 209–245. [Google Scholar]
- Jobling, M. Temperature tolerance and the final preferendum—rapid methods for the assessment of optimum growth temperatures. J. Fish. Biol. 1981, 19, 439–455. [Google Scholar] [CrossRef]
- Stevens, D.L.; Olsen, A.R. Spatially balanced sampling of natural resources. J. Am. Stat. Assoc. 2004, 99, 262–278. [Google Scholar] [CrossRef]
- Harris, J.E.; Silver, G.S.; Jolley, J.C.; Nelle, R.D.; Whitesel, T.A. A stepwise approach to assess the occupancy state of larval lampreys in streams. J. Fish Wildl. Manag. 2020, 11, 226–237. [Google Scholar] [CrossRef]
- Slade, J.W.; Adams, J.V.; Christie, G.C.; Cuddy, D.W.; Fodale, M.F.; Heinrich, J.W.; Quinlan, H.R.; Weise, J.G.; Weisser, J.W.; Young, R.J. Techniques and methods for estimating abundance of larval and metamorphosed sea lampreys in Great Lakes tributaries, 1995 to 2001. J. Great Lakes Res. 2003, 29, 137–151. [Google Scholar] [CrossRef]
- Eberhardt, L.L. Quantitative ecology and impact assessment. J. Environ. Manag. 1976, 4, 27–70. [Google Scholar]
- Smith, E.P. BACI design. Encycl. Environ. 2002, 1, 141–148. [Google Scholar]
- United States Bureau of Reclamation (BOR). Stream Gauge Data at Pendleton, Oregon (PDTO). Available online: https://www.usbr.gov/pn/hydromet/arcread.html (accessed on 23 August 2020).
- Sokal, R.R.; Rohlf, F.J. Biometry, 3rd ed.; WH Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Smirnov, A.K.; Golovanov, V.K.; Zvezdin, A.O.; Golovanova, I.L.; Kucheryavyy, A.V. Unusual thermoregulatory behavior of anadromous and resident larvae of the river lamprey Lampetra fluviatilis (Petromyzontidae). Inland. Water Biol. 2020, 13, 648–654. [Google Scholar] [CrossRef]
- Selong, J.H.; McMahon, T.E.; Zale, A.V.; Barrows, F.T. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Trans. Am. Fish. Soc. 2001, 130, 1026–1037. [Google Scholar] [CrossRef]
- Munoz, N.J.; Anttila, K.; Chen, Z.; Heath, J.W.; Farrell, A.P.; Neff, B.D. Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141082. [Google Scholar]
- Richter, A.; Kolmes, S.A. Maximum temperature limits for Chinook, coho, and chum salmon, and steelhead trout in the Pacific Northwest. Rev. Fish. Sci. 2005, 13, 23–49. [Google Scholar] [CrossRef]
- Mayer, N.B.; Hinch, S.G.; Eliason, E.J. Thermal tolerance in Pacific salmon: A systematic review of species, populations, life stages and methodologies. Fish Fish. 2024, 25, 283–302. [Google Scholar] [CrossRef]
- Spice, E.K.; Goodman, D.H.; Reid, S.B.; Docker, M.F. Neither philopatric nor panmictic: Microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey. Mol. Ecol. 2012, 21, 2916–2930. [Google Scholar] [CrossRef] [PubMed]
- Golovanov, V.K.; Nekrutov, N.S.; Zvezdin, A.O.; Smirnov, A.K.; Tsimbalov, I.A. Thermoadaptation characteristics of European river lamprey Lampetra fluviatilis smolts. J. Ichthyol. 2019, 59, 805–809. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Real-Time Water Quality. Available online: https://waterwatch.usgs.gov/wqwatch/ (accessed on 29 July 2023).
- Sloat, M.R.; Osterback, A.M.K. Maximum stream temperature and the occurrence, abundance, and behavior of steelhead trout (Oncorhynchus mykiss) in a southern California stream. Can. J. Fish. Aquat. Sci. 2013, 70, 64–73. [Google Scholar] [CrossRef]
- Speers-Roesch, B.; Norin, T. Ecological significance of thermal tolerance and performance in fishes. Funct. Ecol. 2016, 30, 842–844. [Google Scholar] [CrossRef]
- Roeder, K.A.; Roeder, D.V.; Bujan, J. Ant thermal tolerance: A review of methods, hypotheses, and sources of variation. Ann. Entom. Soc. Am. 2021, 114, 459–469. [Google Scholar] [CrossRef]
- Leong, C.M.; Tsang, T.P.; Guénard, B. Testing the reliability and ecological implications of ramping rates in the measurement of Critical Thermal maximum. PLoS ONE 2022, 17, e0265361. [Google Scholar] [CrossRef] [PubMed]
- Sutphin, Z.A.; Hueth, C.D. Swimming performance of larval Pacific lamprey (Lampetra tridentata). Northw. Sci. 2010, 84, 196–200. [Google Scholar]
- McCarthy, M.A.; Moore, J.L.; Morris, W.K.; Parris, K.M.; Garrard, G.E.; Vesk, P.A.; Rumpff, L.; Giljohann, K.M.; Camac, J.S.; Bau, S.S.; et al. The influence of abundance on detectability. Oikos 2013, 122, 717–726. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Kendall, W.L. How should detection probability be incorporated into estimates of relative abundance? Ecol. 2002, 83, 2387–2393. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D. Occupancy as a surrogate for abundance estimation. Anim. Biodiv. Conserv. 2004, 27, 461–467. [Google Scholar] [CrossRef]
- Wenger, S.J.; Freeman, M.C. Estimating species occurrence, abundance, and detection probability using zero-inflated distributions. Ecology 2008, 89, 2953–2959. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.A.; Lin, P. Thermal niche of larval sea lamprey, Petromyzon marinus. Can. J. Fish. Aquat. Sci. 1994, 51, 253–262. [Google Scholar] [CrossRef]
- Rodriguez-Munoz, R.; Nicieza, A.G.; Brana, F. Density-dependent growth of sea lamprey larvae: Evidence for chemical interference. Funct. Ecol. 2003, 17, 403–408. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Liss, W.J.; Frissell, C.A. Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid-land streams in the northwestern United States. Ecol. Freshw. Fish 2001, 10, 1–10. [Google Scholar] [CrossRef]
- Hester, E.T.; Doyle, M.W.; Poole, G.C. The influence of in-stream structures on summer water temperatures via induced hyporheic exchange. Limnol. Oceanog. 2009, 54, 355–367. [Google Scholar] [CrossRef]
- Geist, D.R.; Hanrahan, T.P.; Arntzen, E.V.; McMichael, G.A.; Murray, C.J.; Chien, Y.J. Physicochemical characteristics of the hyporheic zone affect redd site selection by chum salmon and fall Chinook salmon in the Columbia River. N. Am. J. Fish. Manag. 2002, 22, 1077–1085. [Google Scholar] [CrossRef]
- Lutterschmidt, W.I.; Hutchison, V.H. The critical thermal maximum: History and critique. Can. J. Zool. 1997, 75, 1561–1574. [Google Scholar] [CrossRef]
- Beitinger, T.L.; Bennett, W.A. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ. Biol. Fish. 2000, 58, 277–288. [Google Scholar] [CrossRef]
- Spigarelli, S.A.; Thommes, M.M.; Beitinger, T.L. The influence of body weight on heating and cooling of selected Lake Michigan fishes. Comp. Biochem. Physiol. Part A Physiol. 1977, 56, 51–57. [Google Scholar] [CrossRef]
- Muñoz, N.J.; Farrell, A.P.; Heath, J.W.; Neff, B.D. Adaptive potential of a Pacific salmon challenged by climate change. Nat. Clim. Change 2015, 5, 163–166. [Google Scholar] [CrossRef]
- Anlauf-Dunn, K.; Kraskura, K.; Eliason, E.J. Intraspecific variability in thermal tolerance: A case study with coastal cutthroat trout. Conser. Physiol. 2022, 10, coac029. [Google Scholar] [CrossRef] [PubMed]
- Sutherby, J. The Effect of Temperature on Sea Lamprey (Petromyzon marinus): Ecological and Cellular Implications. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2019. [Google Scholar]
Experiment | Acclimation Temperature (°C) a | Test Temperature (°C) for SNT Cycles b | Survival (% [n]) | LT50 (h) |
---|---|---|---|---|
1 | 19.2 | 21.2–27.0 | 77.8 [9] | - |
22.4–29.1 | 90.0 [10] | - | ||
25.1–31.0 | 0.0 [10] | 11.2 | ||
27.0–33.6 | 0.0 [10] | 4.9 | ||
2 | 23.1 | 21.2–27.0 | 100.0 [6] | - |
22.4–29.1 | 100.0 [7] | - | ||
25.1–31.0 | 16.7 [6] | 83.6 | ||
3 | 25.0 | 22.4–29.1 | 85.7 [7] | - |
25.1–31.0 | 50.0 [8] | 169.3 | ||
27.0–33.6 | 0.0 [6] | 9.8 | ||
4 | 26.8 | 17.3–21.5 | 100.0 [8] | - |
22.4–29.1 | 100.0 [8] | - | ||
25.1–31.0 | 100.0 [8] | - | ||
27.0–33.6 | 0.0 [4] | 12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitesel, T.A.; Sankovich, P.M. Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming. Biology 2025, 14, 74. https://doi.org/10.3390/biology14010074
Whitesel TA, Sankovich PM. Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming. Biology. 2025; 14(1):74. https://doi.org/10.3390/biology14010074
Chicago/Turabian StyleWhitesel, Timothy A., and Paul M. Sankovich. 2025. "Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming" Biology 14, no. 1: 74. https://doi.org/10.3390/biology14010074
APA StyleWhitesel, T. A., & Sankovich, P. M. (2025). Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming. Biology, 14(1), 74. https://doi.org/10.3390/biology14010074