Integrating New Approach Methodologies to Address Environmental Pancreatic Toxicity and Metabolic Disorders
Simple Summary
Abstract
1. Introduction
2. Pancreas as a Target of Environmental Chemicals
Chemical | Outcome | Approach | Model | Year | Citations |
---|---|---|---|---|---|
Alloxan | Insulin-producing β-cells | Traditional toxicology | In vivo | 2008 | [11] |
VC | Tumor incidence | Epidemiology | Human | 1976 | [13] |
BPA | β-cell function | Traditional toxicology | In vivo | 2012 | [4] |
HFD | Metabolic pathways | Traditional toxicology | In vivo | 2010 | [7] |
Arsenic | Insulin secretion | Traditional Toxicology | In vivo | 2016 | [5] |
Phthalates | Insulin resistance | Epidemiology | Human | 2016 | [6] |
DEHP | Insulin homeostasis | Traditional toxicology | In vivo | 2011 | [14] |
PCBs | Glucose metabolism | Epidemiology | Human | 2014 | [15] |
Dioxins | Insulin secretion | Epidemiology | Human | 2008 | [16] |
PAHs | Glucose homeostasis | Epidemiology | Human | 2015 | [17] |
3. Integrated Modern Methodologies Provide Mechanistic Insights into Pancreatic Toxicity
4. Interplay Between Environmental Chemicals and Dietary Factors on Metabolic Dysfunction
Chemical/Cells | Outcome | Approach | Model | Year | Citation |
---|---|---|---|---|---|
Multiple Chemicals | β-cell function | HTS | In vitro | 2021 | [18] |
Multiple Chemicals | β-cell function | HTS | In vivo | 2023 | [19] |
Multiple Chemicals | β-cell function | Proteomics/Transcriptomics | In vitro | 2020 | [20] |
Cells | β and α cell development | Single Cell Transcriptomics | In vitro | 2017 | [21] |
Patient Tissues | Pancreatic cancer | OMICS | In vitro | 2023 | [22] |
Chemical Mixtures | Diabetes | Computational Model | In vivo | 2024 | [23] |
Multiple Chemicals | Pancreatic β-cell function | Machine Learning | In vitro | 2023 | [24] |
Cells | Multi-metabolic outcomes | hPSC | In vitro | 2021 | [25] |
Cells | Interactive effects | Cell Co-Cultures | In vitro | 2020 | [27] |
Cells | Interactive effects | Org Chip | In vitro | 2020 | [28] |
VC + HFD | Metabolic disorder | Proteomics | In vivo | 2023 | [31] |
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef]
- Pothuraju, R.; Rachagani, S.; Junker, W.M.; Chaudhary, S.; Saraswathi, V.; Kaur, S.; Batra, S.K. Pancreatic cancer associated with obesity and diabetes: An alternative approach for its targeting. J. Exp. Clin. Cancer Res. 2018, 37, 319. [Google Scholar] [CrossRef]
- Zanini, S.; Renzi, S.; Limongi, A.R.; Bellavite, P.; Giovinazzo, F.; Bermano, G. A review of lifestyle and environmental risk factors for pancreatic cancer. Eur. J. Cancer 2021, 145, 53–70. [Google Scholar] [CrossRef]
- Soriano, S.; Alonso-Magdalena, P.; García-Arévalo, M.; Novials, A.; Muhammed, S.J.; Salehi, A.; Gustafsson, J.A.; Quesada, I.; Nadal, A. Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of Langerhans: Role of estrogen receptor β. PLoS ONE 2012, 7, e31109. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Villaseñor, A.; Sánchez-Soto, M.C.; Cebrián, M.E.; Ostrosky-Wegman, P.; Hiriart, M. Sodium arsenite impairs insulin secretion and transcription in pancreatic beta-cells. Toxicol. Appl. Pharmacol. 2006, 214, 30–34. [Google Scholar] [CrossRef] [PubMed]
- James-Todd, T.; Huang, T.; Saxena, A. The association between phthalates and metabolic syndrome: The National Health and Nutrition Examination Survey 2001–2010. Environ. Health 2016, 15, 52. [Google Scholar] [CrossRef]
- Ding, S.; Fan, Y.; Zhao, N.; Yang, H.; Ye, X.; He, D.; Jin, X.; Liu, J.; Tian, C.; Li, H.; et al. High-fat diet aggravates glucose homeostasis disorder caused by chronic exposure to bisphenol A. J. Endocrinol. 2014, 221, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Pánico, P.; Velasco, M.; Salazar, A.M.; Picones, A.; Ortiz-Huidobro, R.I.; Guerrero-Palomo, G.; Salgado-Bernabé, M.E.; Ostrosky-Wegman, P.; Hiriart, M. Is arsenic exposure a risk factor for metabolic syndrome? A review of the potential mechanisms. Front. Endocrinol. 2022, 13, 878280. [Google Scholar] [CrossRef]
- Stucki, A.O.; Clippinger, A.J.; Henry, T.R.; Hirn, C.; Todd J Stedeford, T.J.; Claire Terry, C. Chemical testing using new approach methodologies (NAMs). Front. Toxicol. 2022, 4, 1048900. [Google Scholar] [CrossRef] [PubMed]
- Wegner, S.H.; Pinto, C.L.; Ring, C.L.; Wambaugh, J.F. High-throughput screening tools facilitate calculation of a combined exposure-bioactivity index for chemicals with endocrine activity. Environ. Int. 2020, 137, 105470. [Google Scholar] [CrossRef]
- Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–268. [Google Scholar] [CrossRef]
- Makk, L.; Creech, J.L.; Whelan, J.G.; Johnson, M.N. Liver damage and angiosarcoma in vinyl chloride workers: A systematic detection program. JAMA 1974, 230, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Byren, D.; Engholm, G.; Westernholm, P. Mortality and cancer morbidity in a group of Swedish VCM and PCV production workers. Environ. Health Perspect. 1976, 17, 167–170. [Google Scholar] [PubMed]
- Lin, Y.; Wei, J.; Li, Y.; Chen, J.; Zhou, Z.; Song, L.; Wei, Z.; Lv, Z.; Chen, X.; Xia, W.; et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am. J. Physiol.-Endocrinol. Metab. 2011, 301, E527–E538. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Timmermann, A.G.; Rossing, L.I.; Ried-Larsen, M.; Grøntved, A.; Andersen, L.B.; Dalgaard, C.; Hansen, O.H.; Scheike, T.; Nielsen, F.; et al. Polychlorinated biphenyl exposure and glucose metabolism in 9-year-old Danish children. J. Clin. Endocrinol. Metab. 2014, 99, E2643–E2651. [Google Scholar] [CrossRef]
- Chen, J.W.; Wang, S.L.; Liao, P.C.; Chen, H.Y.; Ko, Y.C.; Lee, C.C. Relationship between insulin sensitivity and exposure to dioxins and polychlorinated biphenyls in pregnant women. Environ. Res. 2008, 107, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Kan, H.; Kearney, G.D.; Xu, X. Associations between exposure to polycyclic aromatic hydrocarbons and glucose homeostasis as well as metabolic syndrome in nondiabetic adults. Sci. Total. Environ. 2015, 505, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, V.; Tran, T.; Zhu, S.; Choi, S.H.; Gamo, A.M. A small molecule UPR modulator for diabetes identified by high throughput screening. Acta Pharm. Sin. B 2021, 11, 3983–3993. [Google Scholar] [CrossRef] [PubMed]
- McCarty, S.M.; Clasby, M.C.; Sexton, J.Z. Automated high-throughput, high-content 3D imaging of intact pancreatic islets. SLAS Discov. 2023, 28, 316–324. [Google Scholar] [CrossRef]
- Lytrivi, M.; Ghaddar, K.; Lopes, M.; Rosengren, V.; Piron, A.; Yi, X.; Johansson, H.; Lehtiö, J.; Igoillo-Esteve, M.; Cunha, D.A.; et al. Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC Genom. 2020, 21, 590. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.L.; Zhang, Y.W.; Feng, Y.; Li, L.C.; Yang, L.; Xu, C.R. Deciphering pancreatic islet β cell and α cell maturation pathways and characteristic features at the single-cell level. Cell Metab. 2017, 25, 1194–1205.e4. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Jiang, W.; Dong, S.; Li, W.; Tang, H.; Yi, J.; Zhou, W.; Zhang, H. Integrated transcriptomics, proteomics, and metabolomics-based analysis uncover TAM2-associated glycolysis and pyruvate metabolic remodeling in pancreatic cancer. Front. Immunol. 2023, 14, 1170223. [Google Scholar] [CrossRef]
- Güil-Oumrait, N.; Stratakis, N.; Maitre, L.; Anguita-Ruiz, A.; Urquiza, J.; Fabbri, L.; Basagaña, X.; Heude, B.; Haug, L.S.; Sakhi, A.K.; et al. Prenatal exposure to chemical mixtures and metabolic syndrome risk in children. JAMA Netw. Open. 2024, 7, e2412040. [Google Scholar] [CrossRef]
- Azzarello, F.; Carli, F.; De Lorenzi, V.; Tesi, M.; Marchetti, P.; Beltram, F.; Raimondi, F.; Cardarelli, F. Machine-learning-guided recognition of α and β cells from label-free infrared micrographs of living human islets of Langerhans. Sci. Rep. 2024, 14, 14235. [Google Scholar] [CrossRef]
- MacFarlane, E.M.; Bruin, J.E. Human pluripotent stem cells: A unique tool for toxicity testing in pancreatic progenitor and endocrine cells. Front. Endocrinol. 2021, 11, 604998. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Huangfu, D. Human pluripotent stem cells: An emerging model in developmental biology. Development 2013, 140, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.R.; Buha-Djordjevic, A.; Benton, A. Toxicity of organic and inorganic nickel in pancreatic cell cultures: Comparison to cadmium. Arch. Pharm. 2020, 70, 344–359. [Google Scholar] [CrossRef]
- Essaouiba, A.; Okitsu, T.; Kinoshita, R.; Jellali, R.; Shinohara, M.; Danoy, M.; Legallais, C.; Sakai, Y.; Leclerc, E. Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies. Biochem. Eng. J. 2020, 164, 107783. [Google Scholar] [CrossRef]
- Riccardi, G.; Giacco, R.; Rivellese, A.A. Dietary fat, insulin sensitivity, and the metabolic syndrome. Clin. Nutr. 2004, 23, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, I.K. Can lipophilic pollutants in adipose tissue explain weight change-related risk in type 2 diabetes mellitus? J. Diabetes Investig. 2023, 14, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Bruno, M.; Nash, M.S.; Coates, N.H.; Chorley, B.N.; Cave, M.C.; Beier, J.I. Vinyl chloride enhances high-fat diet-induced proteome alterations in the mouse pancreas related to metabolic dysfunction. Toxicol. Sci. 2023, 193, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Hakomäki, H.; Pitkänen, S.; Levonen, A.L.; Honkakoski, P.; Greco, D.; Saarimäki, L.A.; Viegas, S.; Godinho, C.; Fyhrquist, N.; Wincent, E.; et al. Unmasking metabolic disruptors: The NEMESIS project’s quest for novel biomarkers, evidence on adverse effects, and efficient methodologies. Open Res. Eur. 2024, 4, 194. [Google Scholar] [CrossRef]
- Amorim, M.J.B.; Peijnenburg, W.; Greco, D.; Saarimäki, L.A.; Dumit, V.I.; Bahl, A.; Haase, A.; Tran, L.; Hackermüller, J.; Canzler, S.; et al. Systems toxicology to advance human and environmental hazard assessment: A roadmap for advanced materials. Nano Today. 2023, 48, 101735. [Google Scholar] [CrossRef]
- Sewell, F.; Alexander-White, C.; Brescia, S.; Currie, R.A.; Roberts, R.; Roper, C.; Vickers, C.; Westmoreland, C.; Kimber, I. New approach methodologies (NAMs): Identifying and overcoming hurdles to accelerated adoption. Toxicol. Res. 2024, 13, tfae044. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y. Integrating New Approach Methodologies to Address Environmental Pancreatic Toxicity and Metabolic Disorders. Biology 2025, 14, 85. https://doi.org/10.3390/biology14010085
Ge Y. Integrating New Approach Methodologies to Address Environmental Pancreatic Toxicity and Metabolic Disorders. Biology. 2025; 14(1):85. https://doi.org/10.3390/biology14010085
Chicago/Turabian StyleGe, Yue. 2025. "Integrating New Approach Methodologies to Address Environmental Pancreatic Toxicity and Metabolic Disorders" Biology 14, no. 1: 85. https://doi.org/10.3390/biology14010085
APA StyleGe, Y. (2025). Integrating New Approach Methodologies to Address Environmental Pancreatic Toxicity and Metabolic Disorders. Biology, 14(1), 85. https://doi.org/10.3390/biology14010085