Unlocking the Potential of Vitamin D: A Comprehensive Exploration of Its Role in Neurological Health and Diseases
Simple Summary
Abstract
1. Introduction
2. Metabolism of VD
3. Action Mechanism of VD
3.1. VD and Oxidative Stress
3.2. VD and Inflammation
3.3. VD and Apoptosis
3.4. VD and Neurotrophins
4. VD Treatment in Neurodegenerative Diseases
4.1. VD and Alzheimer’s Disease (AD)
4.2. VD and Parkinson’s Disease (PD)
4.3. VD and Huntington’s Disease (HD)
4.4. VD and Amyotrophic Lateral Sclerosis (ALS)
4.5. VD and Schizophrenia
Disease Type | Experimental Model | Administered Dose | Mechanism | References |
---|---|---|---|---|
Alzheimer’s disease | Albino rat | 1 µg/kg, 4 weeks | Nrf2, HO protein GSH, TNFα, GFAP, Ib-1, IL-10, MAPK, Erk, Tau, Aβ protein expression | [80] |
Wistar rat | 42 IU/kg, 7 days | SOD, CAT activity, GSH level TNFα, NFkB protein, MDA, nitrite content level, AchE activity | [56] | |
Wistar rat | 1 µg/kg, 14 days | SOD activity, working memory MDA content, cresyl violet H&E-positive cells | [81] | |
Wistar rat | 100, 1000, 10,000 IU/kg, 3 weeks | BDNF level, SOD, CAT activity MDA, NO, nitrite content | [57] | |
Wistar rat | 5 μg/kg/day, 2 weeks | TAC, thiol, spatial memory, DNA damage, MDA content | [12] | |
SH-SY5Y cells and ICR mice | 10% CCE in drinking water, 21 days | VDR, MTHFR, LCMT-1, PP2A, p-TAU (Thr396), T-TAU protein expression, methylated PP2A gene expression | [82] | |
APPswe/PS1dE9 | 10,000, 12,000 IU/kg | Aβ, GFAP | [83] | |
5XFAD mice model | 500, 1000, 7500 IU/kg, weeks | Aβ, GFAP, MAP2 and nestin protein levels | [84] | |
5XFAD mice model | 1000, 7500 IU/kg, 4 weeks | Aβ, Iba1 protein Level | [33] | |
Albino mice | 100 µg/kg, 4 weeks | Nrf2, HO, SYP, SIRT-1, PD-95 protein levels NF-kB, TNF-α, IL-1β protein levels | [32] | |
Kung Ming mice | 2.5 µg/kg, 14 days | Aβ, LRP, RAGE, and VDR protein levels | [85] | |
Wistar rat | 1000 IU/kg | Nrf2 and SOD, CAT activity, GSH level NF-kB, TNF-α, IL-10 protein expression, MDA content, and ROS level | [86] | |
APPswe/PS1dE9 mice | 10,000 IU/kg | Aβ, Iba1 protein Level | [87] | |
OVX rats | 1.0, 2.5, or 5.0 mg/kg, 14 days | Aβ, CAT activity, GSH level | [88] | |
Primary cortical neuronal cell culture | 1 nM, 72 h | SOD, CAT, GST activity and GSH level, NGF protein expression | [61] | |
Longe Evans hooded rats and CD1 mice, SHSY5Y | 100 nM, 24 h | Sphingosine kinase activity Aβ, S1P)/ceramide, p38MAPK/ATF4 protein expression | [89] | |
Parkinson’s disease | SH-SY5Y | 01, 0.5, 1, 5, or 10 nM | Calbindin-D28k (CB) and a-syn | [90] |
SH-SY5Y | 2.5 lM, 5 lM, and 10 lM for 2 h | LC3, beclin-1, AMPK, caspase-3, bak, Bax, beclin, and mTOR protein expression | [69] | |
C57BL/6 mice | 0.2, 1, and 5 μg/kg for 7 days | TH, LCII, beclin mTOR, P62 level | [91] | |
HN9.10e cells | 100 nM | Cadherin, VDR protein level GFAP, PPARγ | [40] | |
Mice | 1 µg/kg/day, 10 days | TH GFAP, Iba-1, TLR4, iNOS, TGF-β, IL-4, IL10, CD206, CD163, CD204 protein levels | [92] | |
Mice | 1 μg/kg/day, 10 days | TH GFAP, Iba-1, TLR4, iNOS, TGF-β, IL-4, IL- 10, CD206, CD163, CD204 protein levels | [61] | |
Mice | 30 mg/kg, 7 days | TH, DAT, BDNF, MAO-B CD11b, IL-I β, and p47phox protein levels | [67] | |
Wistar rat | 1 μg/kg VD3 for 7 days | TH, DAT, VDR3, DA, DOPAC levels, TNF-α expression and nitrite, TBARS content Level | [93] | |
Wistar rat | 100, 1000, 10,000 IU/kg, 6 months | Synaptogenein 1, 2 expression | [68] | |
Wistar rat | 1.0 μg/kg, 8 days | DA, DOPAC, HVA levels | [65] | |
Wistar rat | 1 μg/kg/day, 14 days | Respiratory consumption, SOD activity, TH, DAT, VDAC and HSP60 protein Levels H2O2 production | [43] | |
Huntington’s disease | N171-82Q | 12,000 IU/kg, 101 days | Lifespan | [13] |
Amyotrophic lateral sclerosis | G93A mouse | 1 IU/g, 113 days | No change in grip strength, movement motor activity | [75] |
Primary cortical neuron | 100 nM | BDNF expression Fas, caspase-3 protein expression | [76] | |
Schizophrenia | C57BL/6 mice | 10,000 IU/kg, 42 days | α7 nAChR NR2A | [8] |
5. Clinical Relevance of VD’s Role in Neurodegenerative Diseases
5.1. AD
5.2. PD
5.3. HD
5.4. ALS
5.5. Schizophrenia
Disease Type | Study Criteria | Outcome | Reference |
---|---|---|---|
Alzheimer’s disease | 40 healthy Canadian adults aged 50–60 (4000 and 400 IU/day, 18 weeks follow-up) | Improvement in visual memory but no change in verbal memory at higher doses | [94] |
16 MCI, 11 VEAD, 25 healthy patients evaluated (18-month follow-up) | After 6-month VD supplementation, Aβ1-40 level was normalized, and long-term treatment reduced the risk of cognitive decline | [102] | |
130 healthy African American postmenopausal women, trial intervention Vit D3 (2400 IU–3600 IU or 4800 IU/day, follow-up 3 years) | No difference in cognition over time in older African American women | [103] | |
120 patients, aged 60 years and older, participated (100,000 IU, every 4 weeks for 24 weeks) | Improvement in mental status and cognitive state, normalized Ca+2 and PTH levels | [80] | |
210 AD patients, 65 years and older, Chinese population (800 IU/kg for 6 and 12 months) | Aβ42, APP, BACE1 mRNA levels in the plasma | [95] | |
Parkinson’s disease | 51 randomized participants aged 52–66 and 67–86 years (10,000 IU/day, 16 weeks) | Higher dose is safe for the short term, with no significant change observed in the balance in older patients but improvement in the younger patients | [104] |
114 PD patients aged 45–85 years (1200 IU/day 12 months) | Significantly prevented PD deterioration, analyzed by the HY stage and UODRS score without inducing hypocalcemia | [80] | |
209 northern China patients aged 64.6 ± 9.4 years (different doses of VD administration 0–5 μg/d, 5–8 μg/d, 8–12 μg/d, >12 μg/d) | Outdoor activity and VD intake reduce the risk of PD | [105] | |
Huntington’s Disease | No evidence found | No evidence found | No evidence found |
ALS | 48 ALS patients, 34 with deficient (<20 ng/mL) and 14 with insufficient (20–29 ng/mL) serum levels of 25(OH)D (50.000, 75.000, and 100.000 international units (IU)/month for 6 months) | No effect observed on motor alteration, but significant increase in VD serum level was detected in 75.000 and 100.000 IU doses | [83] |
688 participants, aged 70 years and older (200, 1000, 2000, or 4000 IU of vitamin D3 per day) | No difference observed on fall or death | [106] | |
57 normal and 57 patients, aged 42–82 years old (100,000 every 3-month follow-up) | No better prognosis observed in relation to untreated ALS patients | [85] | |
Schizophrenia | 18–65 years old, Clozapine-treated participants (14,000 IU VD supplemented for two weeks) | Improved cognition but no effect on psychosis, mood, and metabolic profiling | [107] |
Total 149 (18–65-year-olds) were randomized, and 104 were followed up to 6 months after the screening (12,000 IU/month VD-supplemented) | No difference observed in mental health and metabolic profiling | [108] | |
18 and 65 years old, including women of child-bearing age, were included (120,000 IU/month for 6 months) | Improved early psychosis-related mental alteration | [109] | |
60 patients with chronic schizophrenia participated (50,000 IU vitamin D3 supplementation every 2 weeks in combination with probiotic for 12 weeks) | Beneficial effects observed on the general and total PANSS scores and metabolic profiles | [86] |
6. Conclusions
7. Future of VD as a Neuroprotective Agent
Funding
Conflicts of Interest
References
- Cutolo, M.; Paolino, S.; Sulli, A.; Smith, V.; Pizzorni, C.; Seriolo, B. Vitamin D, steroid hormones, and autoimmunity. Ann. N. Y. Acad. Sci. 2014, 1317, 39–46. [Google Scholar] [CrossRef]
- Eyles, D.W. Vitamin D: Brain and Behavior. JBMR Plus 2021, 5, e10419. [Google Scholar] [CrossRef] [PubMed]
- Farghali, M.; Ruga, S.; Morsanuto, V.; Uberti, F. Can Brain Health Be Supported by Vitamin D-Based Supplements? A Critical Review. Brain Sci. 2020, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Bivona, G.; Gambino, C.M.; Iacolino, G.; Ciaccio, M. Vitamin D and the nervous system. Neurol. Res. 2019, 41, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.; Taimuri, U.; Basnan, S.A.; Ai-Orabi, W.K.; Awadallah, A.; Almowald, F.; Hazazi, A. Low Vitamin D and Its Association with Cognitive Impairment and Dementia. J. Aging Res. 2020, 2020, 6097820. [Google Scholar] [CrossRef]
- Utkan Karasu, A.; Kaymak Karataş, G. Effect of vitamin D supplementation on lower extremity motor function and ambulation in stroke patients. Turk. J. Med. Sci. 2021, 51, 1413–1419. [Google Scholar] [CrossRef]
- Moretti, R.; Morelli, M.E.; Caruso, P. Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. Int. J. Mol. Sci. 2018, 19, 2245. [Google Scholar] [CrossRef]
- Wu, B.; Tao, X.; Liu, C.; Li, H.; Jiang, T.; Chen, Z.; Wang, Q.; Liu, F.; Mu, M.; Chen, Z. Vitamin D3 reduces hippocampal NR2A and anxiety in nicotine withdrawal mice. Transl. Neurosci. 2021, 12, 273–281. [Google Scholar] [CrossRef]
- Karampela, I.; Sakelliou, A.; Vallianou, N.; Christodoulatos, G.-S.; Magkos, F.; Dalamaga, M. Vitamin D and Obesity: Current Evidence and Controversies. Curr. Obes. Rep. 2021, 10, 162–180. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Wang, T.; Lin, Y.; Yu, J.; Xia, Q.; Zhu, P.; Zhu, D.M. Vitamin D supplementation improves anxiety but not depression symptoms in patients with vitamin D deficiency. Brain Behav. 2020, 10, e01760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, J.; Shi, D.; Zhou, X.-Q.; Yin, L.; Feng, L.; Jiang, W.-D.; Liu, Y.; Tang, L.; Wu, P.; Zhao, Y. Vitamin D inhibits lipopolysaccharide-induced inflammatory response potentially through the Toll-like receptor 4 signalling pathway in the intestine and enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). Br. J. Nutr. 2015, 114, 1560–1568. [Google Scholar] [CrossRef]
- Mehri, N.; Haddadi, R.; Ganji, M.; Shahidi, S.; Soleimani Asl, S.; Taheri Azandariani, M.; Ranjbar, A. Effects of vitamin D in an animal model of Alzheimer’s disease: Behavioral assessment with biochemical investigation of Hippocampus and serum. Metab. Brain Dis. 2020, 35, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.F.; Török, R.; Szalárdy, L.; Sümegi, E.; Vécsei, L.; Klivényi, P. High-dose 1,25-dihydroxyvitamin D supplementation elongates the lifespan of Huntington’s disease transgenic mice. Acta Neurobiol. Exp. 2016, 76, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Tiangga, E.; Gowda, A.; Dent, J.A. Vitamin D deficiency in psychiatric in-patients and treatment with daily supplements of calcium and ergocalciferol. Psychiatr. Bull. 2008, 32, 390–393. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Jones, G.; Prosser, D.E.; Kaufmann, M. Cytochrome P450-mediated metabolism of vitamin D. J. Lipid Res. 2014, 55, 13–31. [Google Scholar] [CrossRef]
- Smolders, J.; Schuurman, K.G.; van Strien, M.E.; Melief, J.; Hendrickx, D.; Hol, E.M.; van Eden, C.; Luchetti, S.; Huitinga, I. Expression of vitamin D receptor and metabolizing enzymes in multiple sclerosis-affected brain tissue. J. Neuropathol. Exp. Neurol. 2013, 72, 91–105. [Google Scholar] [CrossRef]
- Gáll, Z.; Székely, O. Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings. Nutrients 2021, 13, 3672. [Google Scholar] [CrossRef]
- Di Somma, C.; Scarano, E.; Barrea, L.; Zhukouskaya, V.V.; Savastano, S.; Mele, C.; Scacchi, M.; Aimaretti, G.; Colao, A.; Marzullo, P. Vitamin D and Neurological Diseases: An Endocrine View. Int. J. Mol. Sci. 2017, 18, 2482. [Google Scholar] [CrossRef]
- Rotermund, C.; Machetanz, G.; Fitzgerald, J.C. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front. Endocrinol. 2018, 9, 400. [Google Scholar] [CrossRef] [PubMed]
- Franco-Iborra, S.; Vila, M.; Perier, C. The Parkinson Disease Mitochondrial Hypothesis: Where Are We at? Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2016, 22, 266–277. [Google Scholar] [CrossRef]
- Andersen, J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 10 (Suppl. S7), S18–S25. [Google Scholar] [CrossRef]
- Ibi, M.; Sawada, H.; Nakanishi, M.; Kume, T.; Katsuki, H.; Kaneko, S.; Shimohama, S.; Akaike, A. Protective effects of 1 alpha,25-(OH)2D3 against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology 2001, 40, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Hua, F.; Wang, J.; Yousuf, S.; Atif, F.; Sayeed, I.; Stein, D.G. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj. 2015, 29, 1165–1174. [Google Scholar] [CrossRef]
- Mello-Filho, A.C.; Meneghini, R. Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutat. Res. 1991, 251, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-B.; Lin, A.M.-Y.; Chiu, T.-H. Systemic vitamin D3 attenuated oxidative injuries in the locus coeruleus of rat brain. Ann. N. Y. Acad. Sci. 2003, 993, 313–324; discussion 345–349. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787–795. [Google Scholar] [CrossRef]
- Hajiluian, G.; Abbasalizad Farhangi, M.; Nameni, G.; Shahabi, P.; Megari-Abbasi, M. Oxidative stress-induced cognitive impairment in obesity can be reversed by vitamin D administration in rats. Nutr. Neurosci. 2018, 21, 744–752. [Google Scholar] [CrossRef]
- Cui, C.; Wang, C.; Jin, F.; Yang, M.; Kong, L.; Han, W.; Jiang, P. Calcitriol confers neuroprotective effects in traumatic brain injury by activating Nrf2 signaling through an autophagy-mediated mechanism. Mol. Med. Camb. Mass 2021, 27, 118. [Google Scholar] [CrossRef]
- Domenico, P.; Guido, P.; Carlo, M.; Sara, L.; Serenella, S.; De Stefano, N. Vitamin D in Neurological Diseases. Int. J. Mol. Sci. 2023, 24, 87. [Google Scholar] [CrossRef]
- Ali Ammar Shah, S.A.; Zaman, N.; Uddin, M.N.; Khan, W.; Ali Abid Riaz, M.; Kamil, A. Vitamin D exerts neuroprotection via SIRT1/nrf-2/NF-kB signaling pathways against D-galactose-induced memory impairment in adult mice. Neurochem. Int. 2021, 142, 104893. [Google Scholar] [CrossRef]
- Landel, V.; Millet, P.; Baranger, K.; Loriod, B.; Féron, F. Vitamin D interacts with Esr1 and Igf1 to regulate molecular pathways relevant to Alzheimer’s disease. Mol. Neurodegener. 2016, 11, 22. [Google Scholar] [CrossRef]
- Rao, Z.; Chen, X.; Wu, J.; Xiao, M.; Zhang, J.; Wang, B.; Fang, L.; Zhang, H.; Wang, X.; Yang, S.; et al. Vitamin D Receptor Inhibits NLRP3 Activation by Impeding Its BRCC3-Mediated Deubiquitination. Front. Immunol. 2019, 10, 2783. [Google Scholar] [CrossRef] [PubMed]
- Radi, E.; Formichi, P.; Battisti, C.; Federico, A. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimer’s Dis. JAD 2014, 42 (Suppl. S3), S125–S152. [Google Scholar] [CrossRef]
- Lin, A.M.Y.; Chen, K.B.; Chao, P.L. Antioxidative effect of vitamin D3 on zinc-induced oxidative stress in CNS. Ann. N. Y. Acad. Sci. 2005, 1053, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Wang, X.; Li, Y.; Feng, F. Vitamin D Alleviates Cognitive Dysfunction by Activating the VDR/ERK1/2 Signaling Pathway in an Alzheimer’s Disease Mouse Model. Neuroimmunomodulation 2020, 27, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-L.; Lee, M.-H.; Chen, Y.-C.; Lee, Y.-C.; Lai, T.-C.; Lin, H.Y.-H.; Hsu, L.-F.; Sung, H.-C.; Lee, C.-W.; Chen, Y.-L. Vitamin D Attenuates Ischemia/Reperfusion-Induced Cardiac Injury by Reducing Mitochondrial Fission and Mitophagy. Front. Pharmacol. 2020, 11, 604700. [Google Scholar] [CrossRef]
- Wang, J.-W.; Zhu, L.; Shi, P.-Z.; Wang, P.-C.; Dai, Y.; Wang, Y.-X.; Lu, X.-H.; Cheng, X.-F.; Feng, X.-M.; Zhang, L. 1,25(OH)2D3 Mitigates Oxidative Stress-Induced Damage to Nucleus Pulposus-Derived Mesenchymal Stem Cells through PI3K/Akt Pathway. Oxid. Med. Cell. Longev. 2020, 2022, 1427110. [Google Scholar] [CrossRef]
- Cataldi, S.; Arcuri, C.; Hunot, S.; Mecca, C.; Codini, M.; Laurenti, M.E.; Ferri, I.; Loreti, E.; Garcia-Gil, M.; Traina, G.; et al. Effect of Vitamin D in HN9.10e Embryonic Hippocampal Cells and in Hippocampus from MPTP-Induced Parkinson’s Disease Mouse Model. Front. Cell. Neurosci. 2018, 12, 31. [Google Scholar] [CrossRef]
- Ricca, C.; Aillon, A.; Bergandi, L.; Alotto, D.; Castagnoli, C.; Silvagno, F. Vitamin D Receptor Is Necessary for Mitochondrial Function and Cell Health. Int. J. Mol. Sci. 2018, 19, 1672. [Google Scholar] [CrossRef] [PubMed]
- Britti, E.; Delaspre, F.; Sanz-Alcázar, A.; Medina-Carbonero, M.; Llovera, M.; Purroy, R.; Mincheva-Tasheva, S.; Tamarit, J.; Ros, J. Calcitriol increases frataxin levels and restores mitochondrial function in cell models of Friedreich Ataxia. Biochem. J. 2021, 478, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Araújo de Lima, L.; Oliveira Cunha, P.L.; Felicio Calou, I.B.; Tavares Neves, K.R.; Facundo, H.T.; Socorro de Barros Viana, G. Effects of vitamin D (VD3) supplementation on the brain mitochondrial function of male rats, in the 6-OHDA-induced model of Parkinson’s disease. Neurochem. Int. 2020, 154, 105280. [Google Scholar] [CrossRef]
- Yuan, J.; Guo, X.; Liu, Z.; Zhao, X.; Feng, Y.; Song, S.; Cui, C.; Jiang, P. Vitamin D receptor activation influences the ERK pathway and protects against neurological deficits and neuronal death. Int. J. Mol. Med. 2018, 41, 364–372. [Google Scholar] [CrossRef]
- Huang, Y.-N.; Ho, Y.-J.; Lai, C.-C.; Chiu, C.-T.; Wang, J.-Y. 1,25-Dihydroxyvitamin D3 attenuates endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation in primary cortical neuron-glia cultures. J. Neuroinflamm. 2015, 12, 147. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. Biology 2019, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Matthes, F.; Hettich, M.M.; Schilling, J.; Flores-Dominguez, D.; Blank, N.; Wiglenda, T.; Buntru, A.; Wolf, H.; Weber, S.; Vorberg, I.; et al. Inhibition of the MID1 protein complex: A novel approach targeting APP protein synthesis. Cell Death Discov. 2018, 4, 4. [Google Scholar] [CrossRef]
- Cui, C.; Cui, J.; Jin, F.; Cui, Y.; Li, R.; Jiang, X.; Tian, Y.; Wang, K.; Jiang, P.; Gao, J. Induction of the Vitamin D Receptor Attenuates Autophagy Dysfunction-Mediated Cell Death Following Traumatic Brain Injury. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 42, 1888–1896. [Google Scholar] [CrossRef]
- Gezen-Ak, D.; Dursun, E.; Yilmazer, S. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS ONE 2011, 6, e17553. [Google Scholar] [CrossRef]
- Peitl, V.; Silić, A.; Orlović, I.; Vidrih, B.; Crnković, D.; Karlović, D. Vitamin D and Neurotrophin Levels and Their Impact on the Symptoms of Schizophrenia. Neuropsychobiology 2020, 79, 179–185. [Google Scholar] [CrossRef]
- Orme, R.P.; Bhangal, M.S.; Fricker, R.A. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS ONE 2013, 8, e62040. [Google Scholar] [CrossRef]
- Shirazi, H.A.; Rasouli, J.; Ciric, B.; Rostami, A.; Zhang, G.-X. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp. Mol. Pathol. 2015, 98, 240–245. [Google Scholar] [CrossRef]
- Domanskyi, A.; Parlato, R. Oxidative Stress in Neurodegenerative Diseases. Antioxidants 2022, 11, 504. [Google Scholar] [CrossRef] [PubMed]
- Karin, A.; Mario, S.; Magdalena, H.; Stefan, N.; Markus, K.; Adelina, T.B.; Gennaro, M.; Stefan, P.; Oliver, M. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Medhat, E.; Rashed, L.; Abdelgwad, M.; Aboulhoda, B.E.; Khalifa, M.M.; El-Din, S.S. Exercise enhances the effectiveness of vitamin D therapy in rats with Alzheimer’s disease: Emphasis on oxidative stress and inflammation. Metab. Brain Dis. 2020, 35, 111–120. [Google Scholar] [CrossRef]
- Yamini, P.; Ray, R.S.; Chopra, K. Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease. Inflammopharmacology 2018, 26, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, F.; Ghanbari, H.; Marefati, N.; Arab, Z.; Salmani, H.; Beheshti, F.; Hosseini, M. Protective effects of vitamin D on learning and memory deficit induced by scopolamine in male rats: The roles of brain-derived neurotrophic factor and oxidative stress. Naunyn. Schmiedebergs Arch. Pharmacol. 2021, 394, 1451–1466. [Google Scholar] [CrossRef] [PubMed]
- Khairy, E.Y.; Attia, M.M. Protective effects of vitamin D on neurophysiologic alterations in brain aging: Role of brain-derived neurotrophic factor (BDNF). Nutr. Neurosci. 2021, 24, 650–659. [Google Scholar] [CrossRef]
- Khatoon, R.; Rasheed, M.Z.; Rawat, M.; Alam, M.M.; Tabassum, H.; Parvez, S. Effect of melatonin on Aβ42 induced changes in the mitochondrial function related to Alzheimer’s disease in Drosophila melanogaster. Neurosci. Lett. 2019, 711, 134376. [Google Scholar] [CrossRef]
- Rodrigues, M.V.; Gutierres, J.M.; Carvalho, F.; Lopes, T.F.; Antunes, V.; da Costa, P.; Pereira, M.E.; Schetinger, M.R.C.; Morsch, V.M.; de Andrade, C.M. Protection of cholinergic and antioxidant system contributes to the effect of Vitamin D3 ameliorating memory dysfunction in sporadic dementia of Alzheimer’s type. Redox Rep. Commun. Free Radic. Res. 2019, 24, 34–40. [Google Scholar] [CrossRef]
- Alamro, A.A.; Alsulami, E.A.; Almutlaq, M.; Alghamedi, A.; Alokail, M.; Haq, S.H. Therapeutic Potential of Vitamin D and Curcumin in an In Vitro Model of Alzheimer Disease. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520924311. [Google Scholar] [CrossRef] [PubMed]
- Grimm, M.O.W.; Lehmann, J.; Mett, J.; Zimmer, V.C.; Grösgen, S.; Stahlmann, C.P.; Hundsdörfer, B.; Haupenthal, V.J.; Rothhaar, T.L.; Herr, C.; et al. Impact of Vitamin D on amyloid precursor protein processing and amyloid-β peptide degradation in Alzheimer’s disease. Neurodegener. Dis. 2014, 13, 75–81. [Google Scholar] [CrossRef]
- Claudio, G.; Silvia, C.; Fabio, B. Potential therapeutic effects of polyphenols in Parkinson’s disease: In vivo and in vitro pre-clinical studies. Neural Regen Res. 2021, 16, 234–241. [Google Scholar] [CrossRef]
- Khang, R.; Park, C.; Shin, J.-H. Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice. Neuroscience 2015, 294, 182–192. [Google Scholar] [CrossRef]
- Cass, W.A.; Peters, L.E.; Fletcher, A.M.; Yurek, D.M. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats. Neurochem. Res. 2014, 39, 1467–1476. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, W.; Zhang, S.; Gao, N.; Xu, T.; Wang, X.; Zhang, M. Vitamin D Inhibits the Early Aggregation of α-Synuclein and Modulates Exocytosis Revealed by Electrochemical Measurements. Angew. Chem. Int. Ed. Engl. 2020, 61, e202111853. [Google Scholar] [CrossRef] [PubMed]
- Bayo-Olugbami, A.; Nafiu, A.B.; Amin, A.; Ogundele, O.M.; Lee, C.C.; Owoyele, B.V. Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutr. Neurosci. 2020, 25, 823–834. [Google Scholar] [CrossRef]
- Latimer, C.S.; Brewer, L.D.; Searcy, J.L.; Chen, K.-C.; Popović, J.; Kraner, S.D.; Thibault, O.; Blalock, E.M.; Landfield, P.W.; Porter, N.M. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc. Natl. Acad. Sci. USA 2014, 111, E4359–E4366. [Google Scholar] [CrossRef]
- Jang, W.; Park, H.-H.; Lee, K.-Y.; Lee, Y.J.; Kim, H.-T.; Koh, S.-H. 1,25-dyhydroxyvitamin D3 attenuates L-DOPA-induced neurotoxicity in neural stem cells. Mol. Neurobiol. 2015, 51, 558–570. [Google Scholar] [CrossRef]
- Sanchis, A.; García-Gimeno, M.A.; Cañada-Martínez, A.J.; Sequedo, M.D.; Millán, J.M.; Sanz, P.; Vázquez-Manrique, R.P. Metformin treatment reduces motor and neuropsychiatric phenotypes in the zQ175 mouse model of Huntington disease. Exp. Mol. Med. 2019, 51, 1–16. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Flower, M.D.; Ross, C.A.; Wild, E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020, 16, 529–546. [Google Scholar] [CrossRef]
- Rai, S.N.; Singh, P.; Steinbusch, H.W.M.; Vamanu, E.; Ashraf, G.; Singh, M.P. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021, 9, 1284. [Google Scholar] [CrossRef]
- Faye, P.A.; Poumeaud, F.; Miressi, F.; Lia, A.S.; Demiot, C.; Magy, L.; Favreau, F.; Sturtz, F.G. Focus on 1,25-Dihydroxyvitamin D3 in the Peripheral Nervous System. Front. Neurosci. 2019, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Lương, K.V.Q.; Nguyễn, L.T.H. Roles of vitamin D in amyotrophic lateral sclerosis: Possible genetic and cellular signaling mechanisms. Mol. Brain 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.A.; Gianforcaro, A.; Hamadeh, M.J. Vitamin D3 deficiency differentially affects functional and disease outcomes in the G93A mouse model of amyotrophic lateral sclerosis. PLoS ONE 2011, 6, e29354. [Google Scholar] [CrossRef]
- Camu, W.; Tremblier, B.; Plassot, C.; Alphandery, S.; Salsac, C.; Pageot, N.; Juntas-Morales, R.; Scamps, F.; Daures, J.-P.; Raoul, C. Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol. Aging 2014, 35, 1198–1205. [Google Scholar] [CrossRef]
- Gianforcaro, A.; Solomon, J.A.; Hamadeh, M.J. Vitamin D(3) at 50x AI attenuates the decline in paw grip endurance, but not disease outcomes, in the G93A mouse model of ALS, and is toxic in females. PLoS ONE 2013, 8, e30243. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, B.U.; Kum-Nji, P. Tobacco smoke exposure is an independent predictor of vitamin D deficiency in US children. PLoS ONE 2018, 13, e0205342. [Google Scholar] [CrossRef]
- Cui, X.; McGrath, J.J.; Burne, T.H.J.; Eyles, D.W. Vitamin D and schizophrenia: 20 years on. Mol. Psychiatry 2021, 26, 2708–2720. [Google Scholar] [CrossRef]
- Saad El-Din, S.; Rashed, L.; Medhat, E.; Emad Aboulhoda, B.; Desoky Badawy, A.; Mohammed ShamsEldeen, A.; Abdelgwad, M. Active form of vitamin D analogue mitigates neurodegenerative changes in Alzheimer’s disease in rats by targeting Keap1/Nrf2 and MAPK-38p/ERK signaling pathways. Steroids 2020, 156, 108586. [Google Scholar] [CrossRef]
- Mehrabadi, S.; Sadr, S.S. Administration of Vitamin D3 and E supplements reduces neuronal loss and oxidative stress in a model of rats with Alzheimer’s disease. Neurol. Res. 2020, 42, 862–868. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Liu, N.; Lu, W.; Yang, J.; Li, Y.; Liu, Z.; Wei, Y.; Lou, Y.; Kong, J. Vitamin D Attenuates Alzheimer-like Pathology Induced by Okadaic Acid. ACS Chem. Neurosci. 2021, 12, 1343–1350. [Google Scholar] [CrossRef]
- Morello, M.; Landel, V.; Lacassagne, E.; Baranger, K.; Annweiler, C.; Féron, F.; Millet, P. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 6463–6479. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Broberg, D.N.; Doad, J.; Umoh, J.U.; Bellyou, M.; Norley, C.J.D.; Holdsworth, D.W.; Montero-Odasso, M.; Beauchet, O.; Annweiler, C.; et al. Effect of Memantine Treatment and Combination with Vitamin D Supplementation on Body Composition in the APP/PS1 Mouse Model of Alzheimer’s Disease Following Chronic Vitamin D Deficiency. J. Alzheimer’s Dis. JAD 2021, 81, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; He, L.Y.; Zhang, M.; Wang, F.; Liu, F.; Peng, W.X. 1,25-Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Aβ1-40 brain-to-blood efflux and peripheral uptake transport. Neuroscience 2016, 322, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Hoseinrad, H.; Shahrestanaki, J.K.; Moosazadeh Moghaddam, M.; Mousazadeh, A.; Yadegari, P.; Afsharzadeh, N. Protective Effect of Vitamin D3 Against Pb-Induced Neurotoxicity by Regulating the Nrf2 and NF-κB Pathways. Neurotox. Res. 2021, 39, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Pierucci, F.; Garcia-Gil, M.; Frati, A.; Bini, F.; Martinesi, M.; Vannini, E.; Mainardi, M.; Luzzati, F.; Peretto, P.; Caleo, M.; et al. Vitamin D3 protects against Aβ peptide cytotoxicity in differentiated human neuroblastoma SH- SY5Y cells: A role for S1P1/p38MAPK/ATF4 axis. Neuropharmacology 2017, 116, 328–342. [Google Scholar] [CrossRef]
- Fedotova, J.; Zarembo, D.; Dragasek, J.; Caprnda, M.; Kruzliak, P.; Dudnichenko, T. Modulating Effects of Cholecalciferol Treatment on Estrogen Deficiency-Induced Anxiety-Like Behavior of Adult Female Rats. Folia Med. 2017, 59, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Libonati, L.; Onesti, E.; Gori, M.C.; Ceccanti, M.; Cambieri, C.; Fabbri, A.; Frasca, V.; Inghilleri, M. Vitamin D in amyotrophic lateral sclerosis. Funct. Neurol. 2017, 32, 35–40. [Google Scholar] [CrossRef]
- Rcom-H’cheo-Gauthier, A.N.; Meedeniya, A.C.; Pountney, D.L. Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism. J. Neurochem. 2017, 141, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jang, W.; Kim, H.J.; Jo, K.D.; Lee, M.K.; Song, S.H.; Yang, H.O. Biochemical protective effect of 1,25-dihydroxyvitamin D3 through autophagy induction in the MPTP mouse model of Parkinson’s disease. Neuroreport. 2015, 26, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Calvello, R.; Cianciulli, A.; Nicolardi, G.; De Nuccio, F.; Giannotti, L.; Salvatore, R.; Porro, C.; Trotta, T.; Panaro, M.A.; Lofrumento, D.D. Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses. J. Neuroimmune Pharmacol. 2017, 12, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.A.R.; Lopes, M.J.P.; Costa, R.O.; Lima, F.A.V.; Neves, K.R.T.; Calou, I.B.F.; Andrade, G.M.; Viana, G.S.B. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J. Neuroinflamm. 2018, 15, 249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pettersen, J.A. Does high dose vitamin D supplementation enhance cognition?: A randomized trial in healthy adults. Exp. Gerontol. 2017, 90, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry. 2019, 90, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Yoshioka, M.; Hashimoto, M.; Murakami, M.; Noya, M.; Takahashi, D.; Urashima, M. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am. J. Clin. Nutr. 2013, 97, 1004–1013. [Google Scholar] [CrossRef]
- Karam, C.; Barrett, M.J.; Imperato, T.; MacGowan, D.J.L.; Scelsa, S. Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2013, 20, 1550–1553. [Google Scholar] [CrossRef]
- Trojsi, F.; Siciliano, M.; Passaniti, C.; Bisecco, A.; Russo, A.; Lavorgna, L.; Esposito, S.; Ricciardi, D.; Monsurro, M.R.; Tedeschi, G.; et al. Vitamin D supplementation has no effects on progression of motor dysfunction in amyotrophic lateral sclerosis (ALS). Eur. J. Clin. Nutrition. 2020, 74, 167–175. [Google Scholar] [CrossRef]
- Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.-A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry 2019, 19, 77. [Google Scholar] [CrossRef]
- Fond, G.; Godin, O.; Schürhoff, F.; Berna, F.; Bulzacka, E.; Andrianarisoa, M.; Brunel, L.; Aouizerate, B.; Capdevielle, D.; Chereau, I.; et al. Hypovitaminosis D is associated with depression and anxiety in schizophrenia: Results from the national FACE-SZ cohort. Psychiatry Res. 2018, 270, 104–110. [Google Scholar] [CrossRef]
- Thakurathi, N.; Stock, S.; Oppenheim, C.E.; Borba, C.P.; Vincenzi, B.; Seidman, L.J. Open-label pilot study on vitamin D3 supplementation for antipsychotic-associated metabolic anomalies. Int. Clin. Psychopharmacol. 2013, 28, 275–282. [Google Scholar] [CrossRef] [PubMed]
- SanMartin, C.D.; Henriquez, M.; Chacon, C.; Ponce, D.P.; Salech, F.; Rogers, N.K.; Behrens, M.I. Vitamin D Increases Aβ140 Plasma Levels and Protects Lymphocytes from Oxidative Death in Mild Cognitive Impairment Patients. Curr. Alzheimer Res. 2018, 15, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Owusu, J.E.; Islam, S.; Katumuluwa, S.S.; Stolberg, A.R.; Usera, G.L.; Anwarullah, A.A.; Shieh, A.; Dhaliwal, R.; Ragolia, L.; Mikhail, M.B.; et al. Cognition and Vitamin D in Older African-American Women- Physical performance and Osteoporosis prevention with vitamin D in older African Americans Trial and Dementia. J. Am. Geriatr. Soc. 2019, 67, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Hiller, A.L.; Murchison, C.F.; Lobb, B.M.; O’Connor, S.; O’Connor, M.; Quinn, J.F. A randomized, controlled pilot study of the effects of vitamin D supplementation on balance in Parkinson’s disease: Does age matter? PLoS ONE 2018, 13, e0203637. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, D.; Liu, G.Y.; Lv, Z.; Wen, S.R.; Bi, S.; Wang, W.Z. Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson’s disease. J. Zhejiang Univ. Sci. B 2014, 15, 923–927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Appel, L.J.; Michos, E.D.; Mitchell, C.M.; Blackford, A.L.; Sternberg, A.L.; Miller, E.R., 3rd; Juraschek, S.P.; Schrack, J.A.; Szanton, S.L.; Charleston, J.; et al. The Effects of Four Doses of Vitamin D Supplements on Falls in Older Adults: A Response-Adaptive, Randomized Clinical Trial. Ann. Intern. Med. 2021, 174, 145–156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krivoy, A.; Onn, R.; Vilner, Y.; Hochman, E.; Weizman, S.; Paz, A.; Hess, S.; Sagy, R.; Kimhi-Nesher, S.; Kalter, E.; et al. Vitamin D Supplementation in Chronic Schizophrenia Patients Treated with Clozapine: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. EBioMedicine 2017, 26, 138–145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaughran, F.; Stringer, D.; Wojewodka, G.; Landau, S.; Smith, S.; Gardner-Sood, P.; Taylor, D.; Jordan, H.; Whiskey, E.; Krivoy, A.; et al. Effect of Vitamin D Supplementation on Outcomes in People with Early Psychosis: The DFEND Randomized Clinical Trial. JAMA Netw. Open. 2021, 4, e2140858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaughran, F.; Stringer, D.; Berk, M.; Smith, S.; Taylor, D.; Whiskey, E.; Landau, S.; Murray, R.; McGuire, P.; Gardner-Sood, P.; et al. Vitamin D supplementation compared to placebo in people with First Episode psychosis—Neuroprotection Design (DFEND): A protocol for a randomised, double-blind, placebo-controlled, parallel-group trial. Trials 2020, 21, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatoon, R. Unlocking the Potential of Vitamin D: A Comprehensive Exploration of Its Role in Neurological Health and Diseases. Biology 2025, 14, 280. https://doi.org/10.3390/biology14030280
Khatoon R. Unlocking the Potential of Vitamin D: A Comprehensive Exploration of Its Role in Neurological Health and Diseases. Biology. 2025; 14(3):280. https://doi.org/10.3390/biology14030280
Chicago/Turabian StyleKhatoon, Rehana. 2025. "Unlocking the Potential of Vitamin D: A Comprehensive Exploration of Its Role in Neurological Health and Diseases" Biology 14, no. 3: 280. https://doi.org/10.3390/biology14030280
APA StyleKhatoon, R. (2025). Unlocking the Potential of Vitamin D: A Comprehensive Exploration of Its Role in Neurological Health and Diseases. Biology, 14(3), 280. https://doi.org/10.3390/biology14030280