Experimental PTSD Models in Zebrafish: A Systematic Review of Behavioral, Neurochemical, and Molecular Outcomes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Sources
2.2. Study Selection and Screening Criteria
- Title and Abstract Screening: Two independent reviewers assessed titles and abstracts for relevance, excluding 239 papers based on the following exclusion criteria:
- Studies focusing on non-zebrafish PTSD models (e.g., rodents, humans);
- General stress response studies not specifically modeling PTSD-like states;
- Reviews, meta-analyses, case studies, or non-experimental papers;
- In vitro studies exclusively examining isolated cells or tissues.
- Full-Text Review and Inclusion Criteria: The remaining 73 full-text articles were thoroughly examined based on a predefined set of inclusion criteria:
- Model Organism: The study must use zebrafish (Danio rerio) as the primary experimental model.
- PTSD Protocol: The study must implement an experimental PTSD paradigm beyond acute stress (e.g., chronic unpredictable stress, fear conditioning).
- Outcome Measures: At least one quantifiable outcome must be included:
- ▪
- Behavioral responses (e.g., social withdrawal, hypervigilance);
- ▪
- Neurochemical changes (e.g., cortisol, serotonin, norepinephrine alterations);
- ▪
- Molecular markers (e.g., oxidative stress, neuroplasticity-related genes).
- Control Groups: Studies must include unstressed or non-traumatized control zebrafish.
- Study Type: Only primary research articles with experimental designs were included.
- Stress Duration: The study must examine stress effects beyond immediate (acute) responses to model persistent PTSD-like conditions.
- Behavioral Paradigms: Studies must use at least one standardized behavioral test, such as:
- ▪
- Novel tank diving test;
- ▪
- Open field test;
- ▪
- Alarm reaction test;
- ▪
- Light–dark preference test.
- Pharmacological Interventions: If applicable, studies were assessed for therapeutic agents tested (e.g., N-acetylcysteine (NAC), fluoxetine).
- Molecular Pathways: Biological mechanisms explored included oxidative stress, inflammation, and epigenetic modifications.
- Sex/Gender Considerations: The study had to analyze sex-specific differences in PTSD responses.
- Sample Size Justification: The statistical power and sample size had to be adequately justified.
2.3. Data Extraction and Categorization
- Study Characteristics
- Year of publication, author(s), study location
- PTSD model employed (acute trauma, chronic unpredictable stress, fear conditioning)
- Behavioral Assessments
- Anxiety-like behavior (bottom-dwelling, reduced exploration)
- Hypervigilance and avoidance responses
- Social withdrawal metrics
- Neurochemical and Molecular Findings
- Neurotransmitter levels (e.g., serotonin, dopamine, norepinephrine)
- Cortisol response (as a marker of HPI-axis activation)
- Molecular markers (BDNF, oxidative stress pathways, inflammation markers)
- Pharmacological Interventions (if applicable)
- Antidepressants (e.g., fluoxetine, ketamine)
- Neuroprotective agents (e.g., NAC, polyunsaturated fatty acids)
- Anti-inflammatory compounds
- Sex-Specific Effects
- Whether male vs. female zebrafish exhibited differential PTSD responses
2.4. Methodological Quality Assessment
3. Results
3.1. Behavioral Outcomes
3.2. Neurochemical and Molecular Changes
3.3. Comparison of PTSD Models in Zebrafish
3.4. Statistical Analysis Approaches Across Zebrafish PTSD Studies
4. Discussion
5. Conclusions
6. Limitations of the Study
- Anatomical and Physiological Differences: Despite anatomical homologies, significant differences exist between zebrafish and human brain architecture that may limit the translational value of certain findings. The zebrafish telencephalon, while functionally analogous to the mammalian amygdala and hippocampus, exhibits distinct organizational patterns that could impact stress response mechanisms [1].
- Methodological Variability: Considerable heterogeneity exists in experimental protocols across studies, including stress induction methods, duration, and intensity; behavioral assessment paradigms; and analytical approaches. This variability compromises direct comparisons between studies and potentially affects reproducibility. Our analysis revealed that only a small proportion of studies explicitly reported power calculations, and nearly 30% exhibited inadequate control group quality. Standardization of methodologies is crucial for improving the reliability and translational value of zebrafish PTSD models.
- Limited Sex-Specific Analyses: One of the most critical gaps identified in this review is the insufficient exploration of sex differences in zebrafish PTSD responses. Few studies have compared male and female zebrafish, despite growing evidence that stress responses differ significantly between sexes in humans. This limitation is particularly significant given the well-documented sex differences in PTSD prevalence and symptomatology in clinical populations. Future research should incorporate sex-based analyses to improve the translational relevance of zebrafish PTSD models.
- Technical Limitations in Assessment: Current zebrafish models face technical constraints in monitoring long-term stress responses due to the inability to obtain sufficient blood samples without euthanizing the animal. This limitation hinders longitudinal studies of stress hormone dynamics and restricts the comprehensive assessment of neuroendocrine adaptations over time. Additionally, the relatively small size of zebrafish brains presents challenges for region-specific analyses of neurochemical and molecular changes.
- Cognitive and Emotional Complexity: Zebrafish lack the complex cognitive and emotional aspects of PTSD that humans experience, limiting their utility for modeling certain psychological symptoms [1]. While zebrafish exhibit anxiety-like behaviors and social withdrawal, they cannot replicate the intrusive thoughts, nightmares, or complex emotional processing characteristic of human PTSD. This fundamental limitation necessitates caution when extrapolating findings from zebrafish to human PTSD pathophysiology and treatment.
- Pharmacological Considerations: Although pharmacological interventions such as NAC and fluoxetine have shown promising results in zebrafish PTSD models [17], drug metabolism and pharmacokinetics differ substantially between fish and humans. The aquatic environment also introduces unique challenges for drug administration and dosing, potentially affecting the predictive validity of pharmacological studies. Furthermore, the effects of drug combinations and long-term treatments remain incompletely characterized in zebrafish PTSD models.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BDNF | Brain-derived neurotrophic factor |
CUS | Chronic unpredictable stress |
HCC | Hair cortisol concentration |
HPA | Hypothalamic–pituitary–adrenal |
HPI | Hypothalamic–pituitary–interrenal |
IL-6 | Interleukin 6 |
LDT | Light–dark test |
NTT | Novel tank test |
PCUS | Prolonged chronic unpredictable stress |
PTSD | Post-traumatic stress disorder |
PUCS | Prolonged unpredictable chronic stress |
SYRCLE | Systematic Review Centre for Laboratory Animal Experimentation |
UCS | Unpredictable chronic stress |
References
- Al-Asmakh, M.; Bawadi, H. Zebrafish Model in Illuminating the Complexities of Post-Traumatic Stress Disorders: A Unique Research Tool. Int. J. Mol. Sci. 2024, 25, 4895. [Google Scholar] [CrossRef] [PubMed]
- Sarapultsev, A.; Komelkova, M.; Lookin, O.; Khatsko, S.; Gusev, E.; Trofimov, A.; Tokay, T.; Hu, D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. Pathophysiology 2024, 31, 709–760. [Google Scholar] [CrossRef] [PubMed]
- Manukhina, E.B.; Tseilikman, V.E.; Komelkova, M.V.; Lapshin, M.S.; Goryacheva, A.V.; Kondashevskaya, M.V.; Mkhitarov, V.A.; Lazuko, S.S.; Tseilikman, O.B.; Sarapultsev, A.P.; et al. Cardiac Injury in Rats with Experimental Posttraumatic Stress Disorder and Mechanisms of Its Limitation in Experimental Posttraumatic Stress Disorder-Resistant Rats. J. Appl. Physiol. 2021, 130, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Caramillo, E.M.; Khan, K.M.; Collier, A.D.; Echevarria, D.J. Modeling PTSD in the Zebrafish: Are We There Yet? Behav. Brain Res. 2015, 276, 151–160. [Google Scholar] [CrossRef]
- Stewart, A.M.; Yang, E.; Nguyen, M.; Kalueff, A.V. Developing Zebrafish Models Relevant to PTSD and Other Trauma- and Stressor-Related Disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 55, 67–79. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Fang, Y.; Ma, J.; Wang, J.; Qu, L.; Yang, Q.; Wu, W.; Jin, L.; Sun, D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress. Anxiety 2023, 2023, e6663141. [Google Scholar] [CrossRef]
- Piato, Â.L.; Capiotti, K.M.; Tamborski, A.R.; Oses, J.P.; Barcellos, L.J.G.; Bogo, M.R.; Lara, D.R.; Vianna, M.R.; Bonan, C.D. Unpredictable Chronic Stress Model in Zebrafish (Danio rerio): Behavioral and Physiological Responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 561–567. [Google Scholar] [CrossRef]
- Demin, K.A.; Lakstygal, A.M.; Krotova, N.A.; Masharsky, A.; Tagawa, N.; Chernysh, M.V.; Ilyin, N.P.; Taranov, A.S.; Galstyan, D.S.; Derzhavina, K.A.; et al. Understanding Complex Dynamics of Behavioral, Neurochemical and Transcriptomic Changes Induced by Prolonged Chronic Unpredictable Stress in Zebrafish. Sci. Rep. 2020, 10, 19981. [Google Scholar] [CrossRef]
- Rambo, C.L.; Mocelin, R.; Marcon, M.; Villanova, D.; Koakoski, G.; de Abreu, M.S.; Oliveira, T.A.; Barcellos, L.J.G.; Piato, A.L.; Bonan, C.D. Gender Differences in Aggression and Cortisol Levels in Zebrafish Subjected to Unpredictable Chronic Stress. Physiol. Behav. 2017, 171, 50–54. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.-B.; He, K.-J.; Wang, F.; Liu, C.-F. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front. Pharmacol. 2021, 12, 713963. [Google Scholar] [CrossRef]
- Ijaz, S.; Hoffman, E.J. Zebrafish: A Translational Model System for Studying Neuropsychiatric Disorders. J. Am. Acad. Child. Adolesc. Psychiatry 2016, 55, 746–748. [Google Scholar] [CrossRef]
- Costa, F.V.; Kolesnikova, T.O.; Galstyan, D.S.; Ilyin, N.P.; de Abreu, M.S.; Petersen, E.V.; Demin, K.A.; Yenkoyan, K.B.; Kalueff, A.V. Current State of Modeling Human Psychiatric Disorders Using Zebrafish. Int. J. Mol. Sci. 2023, 24, 3187. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sheynin, J.; Shind, C.; Radell, M.; Ebanks-Williams, Y.; Gilbertson, M.W.; Beck, K.D.; Myers, C.E. Greater Avoidance Behavior in Individuals with Posttraumatic Stress Disorder Symptoms. Stress 2017, 20, 285–293. [Google Scholar] [CrossRef]
- Mordeno, I.G.; Luzano, J.G.C. Examining Specific and Non-Specific Symptoms of the Best-Fitting Posttraumatic Stress Disorder Model in Conflict-Exposed Adolescents. BMC Psychol. 2023, 11, 353. [Google Scholar] [CrossRef]
- Song, C.; Liu, B.-P.; Zhang, Y.-P.; Peng, Z.; Wang, J.; Collier, A.D.; Echevarria, D.J.; Savelieva, K.V.; Lawrence, R.F.; Rex, C.S.; et al. Modeling Consequences of Prolonged Strong Unpredictable Stress in Zebrafish: Complex Effects on Behavior and Physiology. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 81, 384–394. [Google Scholar] [CrossRef]
- Demin, K.A.; Kolesnikova, T.O.; Galstyan, D.S.; Krotova, N.A.; Ilyin, N.P.; Derzhavina, K.A.; Levchenko, N.A.; Strekalova, T.; de Abreu, M.S.; Petersen, E.V.; et al. Modulation of Behavioral and Neurochemical Responses of Adult Zebrafish by Fluoxetine, Eicosapentaenoic Acid and Lipopolysaccharide in the Prolonged Chronic Unpredictable Stress Model. Sci. Rep. 2021, 11, 14289. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, S.; Reddy, B.R.; Sudhakar, S.R.; Saxena, S.; Das, T.; Meghah, V.; Brahmendra Swamy, C.V.; Kumar, A.; Idris, M.M. Chronic Unpredictable Stress (CUS)-Induced Anxiety and Related Mood Disorders in a Zebrafish Model: Altered Brain Proteome Profile Implicates Mitochondrial Dysfunction. PLoS ONE 2013, 8, e63302. [Google Scholar] [CrossRef]
- Selvaraj, L.K.; Jeyabalan, S.; Wong, L.S.; Sekar, M.; Logeshwari, B.; Umamaheswari, S.; Premkumar, S.; Sekar, R.T.; Begum, M.Y.; Gan, S.H.; et al. Baicalein Prevents Stress-Induced Anxiety Behaviors in Zebrafish Model. Front. Pharmacol. 2022, 13, 990799. [Google Scholar] [CrossRef]
- Amir-Zilberstein, L.; Blechman, J.; Sztainberg, Y.; Norton, W.H.J.; Reuveny, A.; Borodovsky, N.; Tahor, M.; Bonkowsky, J.L.; Bally-Cuif, L.; Chen, A.; et al. Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress. Neuron 2012, 73, 279–291. [Google Scholar] [CrossRef]
- Graves, C.L.; Norloff, E.; Thompson, D.; Kosyk, O.; Sang, Y.; Chen, A.; Zannas, A.S.; Wallet, S.M. Chronic Early Life Stress Alters the Neuroimmune Profile and Functioning of the Developing Zebrafish Gut. Brain Behav. Immun. Health 2023, 31, 100655. [Google Scholar] [CrossRef] [PubMed]
- Marcon, M.; Mocelin, R.; Sachett, A.; Siebel, A.M.; Herrmann, A.P.; Piato, A. Enriched Environment Prevents Oxidative Stress in Zebrafish Submitted to Unpredictable Chronic Stress. PeerJ 2018, 6, e5136. [Google Scholar] [CrossRef]
- Marcon, M.; Mocelin, R.; Benvenutti, R.; Costa, T.; Herrmann, A.P.; de Oliveira, D.L.; Koakoski, G.; Barcellos, L.J.G.; Piato, A. Environmental Enrichment Modulates the Response to Chronic Stress in Zebrafish. J. Exp. Biol. 2018, 221, jeb176735. [Google Scholar] [CrossRef]
- Nakajo, H.; Tsuboi, T.; Okamoto, H. The Behavioral Paradigm to Induce Repeated Social Defeats in Zebrafish. Neurosci. Res. 2020, 161, 24–32. [Google Scholar] [CrossRef]
- O’Daniel, M.P.; Petrunich-Rutherford, M.L. Effects of Chronic Prazosin, an Alpha-1 Adrenergic Antagonist, on Anxiety-like Behavior and Cortisol Levels in a Chronic Unpredictable Stress Model in Zebrafish (Danio rerio). PeerJ 2020, 8, e8472. [Google Scholar] [CrossRef] [PubMed]
- Quadros, V.A.; Rosa, L.V.; Costa, F.V.; Koakoski, G.; Barcellos, L.J.G.; Rosemberg, D.B. Predictable Chronic Stress Modulates Behavioral and Neuroendocrine Phenotypes of Zebrafish: Influence of Two Homotypic Stressors on Stress-Mediated Responses. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 247, 109030. [Google Scholar] [CrossRef]
- Reddy, B.R.; Babu, N.S.; Das, T.; Bhattacharya, D.; Murthy, C.L.N.; Kumar, A.; Idris, M.M.; Chakravarty, S. Proteome Profile of Telencephalon Associates Attenuated Neurogenesis with Chronic Stress Induced Mood Disorder Phenotypes in Zebrafish Model. Pharmacol. Biochem. Behav. 2021, 204, 173170. [Google Scholar] [CrossRef] [PubMed]
- Theron, V.; Harvey, B.H.; Botha, T.; Weinshenker, D.; Wolmarans, D.W. Life-Threatening, High-Intensity Trauma- and Context-Dependent Anxiety in Zebrafish and Its Modulation by Epinephrine. Horm. Behav. 2023, 153, 105376. [Google Scholar] [CrossRef]
- Borba, J.V.; Gonçalves, F.L.; Canzian, J.; Resmim, C.M.; Luchiari, A.C.; Rosemberg, D.B. Expanding the Use of Homebase-Related Parameters to Investigate How Distinct Stressful Conditions Affect Zebrafish Behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 125, 110748. [Google Scholar] [CrossRef]
- Shams, S.; Khan, A.; Gerlai, R. Early Social Deprivation Does Not Affect Cortisol Response to Acute and Chronic Stress in Zebrafish. Stress 2021, 24, 273–281. [Google Scholar] [CrossRef]
- Magdeldin, S.; Blaser, R.E.; Yamamoto, T.; Yates, J.R. Behavioral and Proteomic Analysis of Stress Response in Zebrafish (Danio rerio). J. Proteome Res. 2015, 14, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Marcon, M.; Herrmann, A.P.; Mocelin, R.; Rambo, C.L.; Koakoski, G.; Abreu, M.S.; Conterato, G.M.M.; Kist, L.W.; Bogo, M.R.; Zanatta, L.; et al. Prevention of Unpredictable Chronic Stress-Related Phenomena in Zebrafish Exposed to Bromazepam, Fluoxetine and Nortriptyline. Psychopharmacology 2016, 233, 3815–3824. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Wang, D.; Hu, G.; Liu, Z.; Yan, D.; Serikuly, N.; Alpyshov, E.T.; Demin, K.A.; Strekalova, T.; et al. Delayed Behavioral and Genomic Responses to Acute Combined Stress in Zebrafish, Potentially Relevant to PTSD and Other Stress-Related Disorders: Focus on Neuroglia, Neuroinflammation, Apoptosis and Epigenetic Modulation. Behav. Brain Res. 2020, 389, 112644. [Google Scholar] [CrossRef]
- Kleinhappel, T.K.; Pike, T.W.; Burman, O.H.P. Stress-Induced Changes in Group Behaviour. Sci. Rep. 2019, 9, 17200. [Google Scholar] [CrossRef]
- Chin, J.S.R.; Albert, L.T.; Loomis, C.L.; Keene, A.C.; Duboué, E.R. Behavioral Approaches to Studying Innate Stress in Zebrafish. J. Vis. Exp. 2019, 147, e59092. [Google Scholar] [CrossRef]
- Lima, M.G.; Silva, S.d.N.D.S.; Silva, R.X.d.C.; Oliveira, K.R.H.M.; Batista, E.d.J.O.; Maximino, C.; Herculano, A.M. Putative Involvement of the Nitrergic System on the Consolidation, but Not Initiation, of Behavioral Sensitization after Conspecific Alarm Substance in Zebrafish. Pharmacol. Biochem. Behav. 2015, 139 Pt B, 127–133. [Google Scholar] [CrossRef]
- Lima, M.G.; Silva, R.X.d.C.; Silva, S.d.N.D.S.; Rodrigues, L.d.S.D.S.; Oliveira, K.R.H.M.; Batista, E.d.J.O.; Maximino, C.; Herculano, A.M. Time-Dependent Sensitization of Stress Responses in Zebrafish: A Putative Model for Post-Traumatic Stress Disorder. Behav. Processes 2016, 128, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Peles, G.; Swaminathan, A.; Levkowitz, G. Glucocorticoid-Sensitive Period of Corticotroph Development-Implications for Mechanisms of Early Life Stress. J. Neuroendocrinol. 2023, 35, e13229. [Google Scholar] [CrossRef]
- Saszik, S.M.; Smith, C.M. The Impact of Stress on Social Behavior in Adult Zebrafish (Danio rerio). Behav. Pharmacol. 2018, 29, 53–59. [Google Scholar] [CrossRef]
- Xin, N.; Wang, D.-T.; Zhang, L.; Zhou, Y.; Cheng, Y. Early Developmental Stage Glucocorticoid Exposure Causes DNA Methylation and Behavioral Defects in Adult Zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 256, 109301. [Google Scholar] [CrossRef]
- Schindler-Gmelch, L.; Capito, K.; Steudte-Schmiedgen, S.; Kirschbaum, C.; Berking, M. Hair Cortisol Research in Posttraumatic Stress Disorder—10 Years of Insights and Open Questions. A Systematic Review. Curr. Neuropharmacol. 2024, 22, 1697–1719. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, F.F.; Altenhofen, S.; Kist, L.W.; Leite, C.E.; Bogo, M.R.; Cognato, G.P.; Bonan, C.D. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain. Mol. Neurobiol. 2016, 53, 2518–2528. [Google Scholar] [CrossRef]
- van Zuiden, M.; Savas, M.; Koch, S.B.J.; Nawijn, L.; Staufenbiel, S.M.; Frijling, J.L.; Veltman, D.J.; van Rossum, E.F.C.; Olff, M. Associations Among Hair Cortisol Concentrations, Posttraumatic Stress Disorder Status, and Amygdala Reactivity to Negative Affective Stimuli in Female Police Officers. J. Trauma. Stress 2019, 32, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, N.; Tran, S.; Shams, S.; Chatterjee, D.; Gerlai, R. Neurochemical and Behavioral Responses to Unpredictable Chronic Mild Stress Following Developmental Isolation: The Zebrafish as a Model for Major Depression. Zebrafish 2017, 14, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Riesco, M.F.; Valcarce, D.G.; Sellés-Egea, A.; Esteve-Codina, A.; Herráez, M.P.; Robles, V. miR-29a Is Downregulated in Progenies Derived from Chronically Stressed Males. Int. J. Mol. Sci. 2023, 24, 14107. [Google Scholar] [CrossRef] [PubMed]
- Van Staden, C.; Finger-Baier, K.; Weinshenker, D.; Botha, T.; Brand, L.; Wolmarans, D.W. A Single Life-Threatening Stressor in Juvenile Zebrafish Causes Anxiety-like Behaviour in Adulthood: Modulation by Alpha-2A Adrenoceptor Agonism. Neurosci. Appl. 2023, 2, 103051. [Google Scholar] [CrossRef]
- van Staden, C.; Weinshenker, D.; Finger-Baier, K.; Botha, T.L.; Brand, L.; Wolmarans, D.W. Posttraumatic Anxiety-like Behaviour in Zebrafish Is Dose-Dependently Attenuated by the Alpha-2A Receptor Agonist, Guanfacine. Behav. Pharmacol. 2025, 36, 47–59. [Google Scholar] [CrossRef]
- Bertelli, P.R.; Mocelin, R.; Marcon, M.; Sachett, A.; Gomez, R.; Rosa, A.R.; Herrmann, A.P.; Piato, A. Anti-Stress Effects of the Glucagon-like Peptide-1 Receptor Agonist Liraglutide in Zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110388. [Google Scholar] [CrossRef]
- Ziv, L.; Muto, A.; Schoonheim, P.J.; Meijsing, S.H.; Strasser, D.; Ingraham, H.A.; Schaaf, M.J.M.; Yamamoto, K.R.; Baier, H. An Affective Disorder in Zebrafish with Mutation of the Glucocorticoid Receptor. Mol. Psychiatry 2013, 18, 681–691. [Google Scholar] [CrossRef]
- Gemmer, A.; Mirkes, K.; Anneser, L.; Eilers, T.; Kibat, C.; Mathuru, A.; Ryu, S.; Schuman, E. Oxytocin Receptors Influence the Development and Maintenance of Social Behavior in Zebrafish (Danio rerio). Sci. Rep. 2022, 12, 4322. [Google Scholar] [CrossRef]
- Müller, T.E.; Dos Santos, M.M.; Ferreira, S.A.; Claro, M.T.; de Macedo, G.T.; Fontana, B.D.; Barbosa, N.V. Negative Impacts of Social Isolation on Behavior and Neuronal Functions Are Recovered after Short-Term Social Reintroduction in Zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 134, 111038. [Google Scholar] [CrossRef] [PubMed]
- Meewisse, M.-L.; Reitsma, J.B.; de Vries, G.-J.; Gersons, B.P.R.; Olff, M. Cortisol and Post-Traumatic Stress Disorder in Adults: Systematic Review and Meta-Analysis. Br. J. Psychiatry 2007, 191, 387–392. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, M.S.; Demin, K.A.; Giacomini, A.C.V.V.; Amstislavskaya, T.G.; Strekalova, T.; Maslov, G.O.; Kositsin, Y.; Petersen, E.V.; Kalueff, A.V. Understanding How Stress Responses and Stress-Related Behaviors Have Evolved in Zebrafish and Mammals. Neurobiol. Stress 2021, 15, 100405. [Google Scholar] [CrossRef]
- Engel, S.; Laufer, S.; Klusmann, H.; Schulze, L.; Schumacher, S.; Knaevelsrud, C. Cortisol Response to Traumatic Stress to Predict PTSD Symptom Development—A Systematic Review and Meta-Analysis of Experimental Studies. Eur. J. Psychotraumatol. 2023, 14, 2225153. [Google Scholar] [CrossRef]
- Schumacher, S.; Engel, S.; Klusmann, H.; Niemeyer, H.; Küster, A.; Burchert, S.; Skoluda, N.; Rau, H.; Nater, U.M.; Willmund, G.-D.; et al. Trauma-Related but Not PTSD-Related Increases in Hair Cortisol Concentrations in Military Personnel. J. Psychiatr. Res. 2022, 150, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Borba, J.V.; Biasuz, E.; Sabadin, G.R.; Savicki, A.C.; Canzian, J.; Luchiari, A.C.; Adedara, I.A.; Rosemberg, D.B. Influence of Acute and Unpredictable Chronic Stress on Spatio-Temporal Dynamics of Exploratory Activity in Zebrafish with Emphasis on Homebase-Related Behaviors. Behav. Brain Res. 2022, 435, 114034. [Google Scholar] [CrossRef]
- Ramsay, J.M.; Feist, G.W.; Varga, Z.M.; Westerfield, M.; Kent, M.L.; Schreck, C.B. Whole-Body Cortisol Response of Zebrafish to Acute Net Handling Stress. Aquaculture 2009, 297, 157–162. [Google Scholar] [CrossRef]
- Li, X.; Fu, C.; Tan, X.; Fu, S. Responses of Zebrafish to Chronic Environmental Stressors: Anxiety-like Behavior and Its Persistence. Front. Mar. Sci. 2025, 12, 1551595. [Google Scholar] [CrossRef]
- Wong, R.Y.; French, J.; Russ, J.B. Differences in Stress Reactivity between Zebrafish with Alternative Stress Coping Styles. R. Soc. Open Sci. 2019, 6, 181797. [Google Scholar] [CrossRef]
- Blacker, C.J.; Frye, M.A.; Morava, E.; Kozicz, T.; Veldic, M. A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes 2019, 10, 140. [Google Scholar] [CrossRef]
- Wilker, S.; Vukojevic, V.; Schneider, A.; Pfeiffer, A.; Inerle, S.; Pauly, M.; Elbert, T.; Papassotiropoulos, A.; de Quervain, D.; Kolassa, I.-T. Epigenetics of Traumatic Stress: The Association of NR3C1 Methylation and Posttraumatic Stress Disorder Symptom Changes in Response to Narrative Exposure Therapy. Transl. Psychiatry 2023, 13, 14. [Google Scholar] [CrossRef] [PubMed]
Model Type | Duration | Stressors Used | Behavioral Outcomes | Neurochemical/Molecular Findings | Primary Outcomes | Endpoint Timing |
---|---|---|---|---|---|---|
Acute stress: osmotic + physical | 4 min + 2 h recovery | Osmotic shock + netting | Reduced exploration, stress reactivity | ↑ CRH, PAC1, otp | Behavioral responses, gene expression | 2 h post-stress |
Acute stress: combined (crowding/chasing/cold) | 90 min | Crowding, chasing, cold shock | Freezing, bottom-dwelling, hyperactivity | Stress/inflammatory gene shifts | Anxiety-like behavior, gene expression | 48 h post-stress |
Acute stress: novel environment | Immediate (30–60 min) | Novel environment exposure | Group freezing, disrupted cohesion | ↑ Cortisol | Group behavior, cortisol levels | 30 min post-exposure |
Innate stress (novel tank test) | 10 min | Depth change, novelty | Bottom-dwelling, anxiety-like behavior | ↑ HPI activation | Anxiety-like behavior | Immediately post-test |
CUS/UCS (7 days) | 7 days | Tank change, predator, temperature, restraint | Anxiety, oxidative stress, gene regulation | ↑ Cortisol, ↓ GR, oxidative markers | Anxiety-like behavior, oxidative stress, gene regulation | 24 h post-stress |
CUS/UCS/PCS (10–15 days) | 10–15 days | Predator, light, netting, chase | Anxiety, social changes, gene regulation | ↑ CRF, BDNF, IL-6 | Behavior, cortisol, gene expression, social interaction | 24 h post last exposure |
CUS/PUCS (3–5 weeks) | 3–5 weeks | Unpredictable mixed physical/psychological stressors | Sustained anxiety, social avoidance | ↑ cytokines, ↓ BDNF | Anxiety-like behavior, social withdrawal, cytokine shifts | Post 5-week exposure |
PCUS (11 weeks) | 11 weeks | Extended mixed unpredictable stressors | Persistent anxiety, neurotransmitter shift | Monoamine shifts | Persistent neurotransmitter shifts | Post 15-day exposure |
Social defeat | 6 days | Aggressive confrontation | Reduced social interaction, motivation | ↑ Habenula activity, stress memory | Social preference, motivation | Day 7–8 post-defeat |
Predator Threat (CAS) | Single event | Alarm substance | Avoidance, freezing | Nitrergic signaling | Anxiety-like behavior | Same day post-stimulus |
Time-dependent sensitization | 24 h | Shock context re-exposure | Sensitized stress reactivity | Altered nitrergic signaling | Stress sensitization | 24 h post-exposure |
Chemical stress (varied) | Varied | Dexamethasone, ethanol, crowding | Shoaling disruption, dark preference | Dopaminergic + neuroimmune signaling | Dark preference, shoaling disruption | Post-intervention behavioral testing |
High-intensity trauma (THIT) | Not specified | Triple hit (visual, tactile, olfactory) | Contextual anxiety and sensitization | HPI-adrenaline interaction | Anxiety-like behavior | 1–14 days post trauma |
Behavioral Test Type | Tank Dimensions (Typical or Reported) | Common Timeline of Testing | Reported in Studies |
---|---|---|---|
Novel tank diving test (NTT) | 28 × 15 × 7 cm; 24 × 15 × 10 cm | 24 h to 14 days post-stress; 5–6 min trials | [7,17,41] |
Open field test (OFT) | 15 × 15 × 5 cm; 20 × 20 × 10 cm | Immediately to 7 days post-stress; 5 min trials | [33,35] |
Light–dark preference test (LDT) | 20 × 10 × 10 cm; 25 × 15 × 10 cm | Day 1 or 2 post-stress; 5–10 min | [19,36] |
Alarm reaction test (AR) | 10 × 20 × 20 cm; variable with predator/CAS exposure | Minutes to hours post-CAS/predator; 3–5 min | [30,37] |
Shoaling/social interaction test | 30 × 15 × 15 cm; 35 × 20 × 15 cm | 1–3 days post-stress; ~10 min social approach testing | [9,39] |
Conditioned place avoidance (CPA) | Two-chamber: each ~15 × 10 × 10 cm | Conditioning + testing phase on day 2–3 post-stress | [18] |
Model Type | Duration | Neurochemical/Molecular Findings | Representative Studies |
---|---|---|---|
Acute Stress | 4–90 min | ↑ CRH, otp, PAC1; immediate early gene activation | [20,33] |
Short-term CUS/UCS (7 days) | 7 days | ↑ Cortisol, ↓ GR, ↑ CRF | [7,9] |
Medium-term CUS/UCS (10–15 days) | 10–15 days | ↑ Cortisol, ↑ CRF, ↑ BDNF, ↑ IL-6, oxidative stress | [8,19] |
Long-term CUS/PUCS (3–5 weeks) | 3–5 weeks | ↑ Cytokines (IL-1β, TNF-α), ↓ BDNF | [16,21] |
Prolonged CUS (11 weeks) | 11 weeks | Monoamine imbalance, chronic neurotransmitter shifts | [17] |
Social defeat stress | 6 days | ↑ Habenula activity, stress memory markers | [24] |
Early life stress | 1–6 dpf | ↓ POMC intensity, altered stress circuits | [38] |
Chemical stress models | 3–5 days | ↓ Dopamine signaling, altered stress hormone response | [39] |
Time-dependent sensitization | Acute + 24 h | Altered nitrergic signaling | [36] |
Model Type | Construct Validity | Predictive Validity | Notes |
---|---|---|---|
CUS/UCS (10–15 days) | High: Reproduces persistent anxiety, social withdrawal, HPI activation | Moderate to high: Responsive to fluoxetine, NAC | Most consistent model; parallels mammalian stress literature |
Acute combined stress | Moderate: Induces transient anxiety, some HPI-axis activation | Moderate: Pharmacological response shown in select studies | Short-term; limited persistence of PTSD-like symptoms |
High-intensity trauma (THIT) | Moderate to high: PTSD-like anxiety sustained for 14 days | Unknown/not tested | Strong reactivity but limited pharmacological validation |
Social defeat stress | Variable: Social withdrawal observed; aggression context-sensitive | Low to moderate: No consistent pharmacological validation reported | High inter-study variability; needs protocol refinement |
Prolonged UCS (PCUS/PUCS) | High: Persistent behavioral and cytokine changes | Moderate: Response to fluoxetine shown in one study | Potential for long-term modeling; requires replication |
Developmental ELS/isolation | Moderate: Alters stress responsivity and social behavior | Low: Mixed drug effects | Useful for modeling susceptibility; not PTSD-specific |
Behavioral Domain | Observed in Zebrafish | Observed in Rats |
---|---|---|
Hyperarousal/startle response | Increased startle response (e.g., looming stimulus, CAS) | Exaggerated acoustic startle response, hypervigilance (SPS, footshock) |
Avoidance behavior | Reduced top zone exploration, dark area preference (NTT, LDT) | Avoidance of trauma-associated context or cues (CPA) |
Freezing/immobilization | Freezing, reduced mobility after shock/isolation | Freezing in conditioned fear paradigms |
Social withdrawal | Reduced shoaling, impaired social approach after stress | Reduced social interaction post-stress (social defeat, SPS) |
Cognitive impairment (learning, memory) | Impaired fear learning, reduced conditioned avoidance, disrupted retention | Impaired spatial learning (Morris water maze), contextual fear extinction |
Contextual fear/traumatic memory recall | Persistent context-associated anxiety after single trauma exposure [46,47] | Persistent avoidance or fear reinstatement following trauma cue re-exposure |
Circadian disruption/sleep disturbances | Impaired circadian rhythm (altered light/dark cycle or early-life stress) | Fragmented sleep, altered REM patterns (SPS, predator exposure) |
Erratic/anxiety-like locomotion | Erratic swimming, thigmotaxis, reduced exploration | Reduced open field exploration, increased grooming |
Aggression or irritability | Suppressed aggression (cold stress, confinement) | Model-dependent increase or suppression (social defeat, variable stress) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarapultsev, A.; Gusev, E.; Hu, D.; Komelkova, M. Experimental PTSD Models in Zebrafish: A Systematic Review of Behavioral, Neurochemical, and Molecular Outcomes. Biology 2025, 14, 456. https://doi.org/10.3390/biology14050456
Sarapultsev A, Gusev E, Hu D, Komelkova M. Experimental PTSD Models in Zebrafish: A Systematic Review of Behavioral, Neurochemical, and Molecular Outcomes. Biology. 2025; 14(5):456. https://doi.org/10.3390/biology14050456
Chicago/Turabian StyleSarapultsev, Alexey, Evgenii Gusev, Desheng Hu, and Maria Komelkova. 2025. "Experimental PTSD Models in Zebrafish: A Systematic Review of Behavioral, Neurochemical, and Molecular Outcomes" Biology 14, no. 5: 456. https://doi.org/10.3390/biology14050456
APA StyleSarapultsev, A., Gusev, E., Hu, D., & Komelkova, M. (2025). Experimental PTSD Models in Zebrafish: A Systematic Review of Behavioral, Neurochemical, and Molecular Outcomes. Biology, 14(5), 456. https://doi.org/10.3390/biology14050456