A Biochemical View on Intermittent Fasting’s Effects on Human Physiology—Not Always a Beneficial Strategy
Simple Summary
Abstract
1. Intermittent Fasting Is Increasingly Used in a Medical/Clinical Context
2. Influence of Diet Composition and Cultural Eating Patterns on Fasting Outcomes
3. Intermittent Fasting and Reset of Metabolic Physiology
4. Intermittent Fasting, Activation of AMPK, and Human Disease
4.1. Molecular and Biochemical Pathways Underlying Fasting-Induced Metabolic
4.2. Intermittent Fasting in Athletes: Benefits, Risks, and Metabolic Trade-Offs
5. Potential Effects of Intermittent Fasting via AMPK-Mediated mTOR Inhibition on Cancer and Immunity
6. Genetic Variation in the Regulation of AMPK/mTOR Pathways: Implications for Fasting Response
7. Intermittent Fasting May Drive the Acquisition of Oncogenic Mutations or Confer Protective Effects Depending on the Individual Context
8. Effects of Time-Restricted Eating Through the Modulation of the Microbiome
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bonnefont, X. Circadian Timekeeping and Multiple Timescale Neuroendocrine Rhythms. J. Neuroendocrinol. 2010, 22, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.L.; Reddy, V.S.; Saier, M.H., Jr. Health Benefits of Intermittent Fasting. Microb. Physiol. 2024, 34, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.E.; Sears, D.D. Metabolic Effects of Intermittent Fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef]
- Cho, Y.; Hong, N.; Kim, K.; Cho, S.; Lee, M.; Lee, Y.; Lee, Y.; Kang, E.; Cha, B.-S.; Lee, B.-W. The Effectiveness of Intermittent Fasting to Reduce Body Mass Index and Glucose Metabolism: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 1645. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Q.; Liao, Q.; Li, M.; Zhang, P.; Santos, H.O.; Kord-Varkaneh, H.; Abshirini, M. Effects of Intermittent Fasting Diets on Plasma Concentrations of Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrition 2020, 79–80, 110974. [Google Scholar] [CrossRef]
- Wei, X.; Lin, B.; Huang, Y.; Yang, S.; Huang, C.; Shi, L.; Liu, D.; Zhang, P.; Lin, J.; Xu, B.; et al. Effects of Time-Restricted Eating on Nonalcoholic Fatty Liver Disease. JAMA Netw. Open 2023, 6, e233513. [Google Scholar] [CrossRef]
- Di Francesco, A.; Deighan, A.G.; Litichevskiy, L.; Chen, Z.; Luciano, A.; Robinson, L.; Garland, G.; Donato, H.; Vincent, M.; Schott, W.; et al. Dietary Restriction Impacts Health and Lifespan of Genetically Diverse Mice. Nature 2024, 634, 684–692. [Google Scholar] [CrossRef]
- Hofer, S.J.; Carmona-Gutierrez, D.; Mueller, M.I.; Madeo, F. The Ups and Downs of Caloric Restriction and Fasting: From Molecular Effects to Clinical Application. EMBO Mol. Med. 2022, 14, e14418. [Google Scholar] [CrossRef]
- Kapogiannis, D.; Manolopoulos, A.; Mullins, R.; Avgerinos, K.; Delgado-Peraza, F.; Mustapic, M.; Nogueras-Ortiz, C.; Yao, P.J.; Pucha, K.A.; Brooks, J.; et al. Brain Responses to Intermittent Fasting and the Healthy Living Diet in Older Adults. Cell Metab. 2024, 36, 1668–1678.e5. [Google Scholar] [CrossRef]
- Teong, X.T.; Liu, K.; Vincent, A.D.; Bensalem, J.; Liu, B.; Hattersley, K.J.; Zhao, L.; Feinle-Bisset, C.; Sargeant, T.J.; Wittert, G.A.; et al. Intermittent Fasting plus Early Time-Restricted Eating versus Calorie Restriction and Standard Care in Adults at Risk of Type 2 Diabetes: A Randomized Controlled Trial. Nat. Med. 2023, 29, 963–972. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults. JAMA Intern. Med. 2017, 177, 930. [Google Scholar] [CrossRef]
- Khalafi, M.; Maleki, A.H.; Ehsanifar, M.; Symonds, M.E.; Rosenkranz, S.K. Longer-term Effects of Intermittent Fasting on Body Composition and Cardiometabolic Health in Adults with Overweight and Obesity: A Systematic Review and Meta-analysis. Obes. Rev. 2025, 26, e13855. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Braat, H.; Verhaar, A.; Peppelenbosch, M. Commentary: Intermittent Fasting and Akkermansia Muciniphila Potentiate the Antitumor Efficacy of FOLFOX in Colon Cancer. Front. Pharmacol. 2022, 13, e843133. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.; Brenner, W.; Gebhard, S.; Schmidt, M.; Singer, S.; Weidenbach, L.; Hahn, H.; Puzankova, D.; Blau-Schneider, B.; Lehnert, A.; et al. Effects of Intermittent Fasting on Quality of Life Tolerance of Chemotherapy in Patients with Gynecological Cancers: Study Protocol of a Randomized-Controlled Multi-Center Trial. Front. Oncol. 2023, 13, 1222573. [Google Scholar] [CrossRef]
- Han, K.; Nguyen, A.; Traba, J.; Yao, X.; Kaler, M.; Huffstutler, R.D.; Levine, S.J.; Sack, M.N. A Pilot Study To Investigate the Immune-Modulatory Effects of Fasting in Steroid-Naive Mild Asthmatics. J. Immunol. 2018, 201, 1382–1388. [Google Scholar] [CrossRef]
- Ranjbar, M.; Shab-Bidar, S.; Rostamian, A.; Mohammadi, H.; Djafarian, K. The Effects of Intermittent Fasting Diet on Quality of Life, Clinical Symptoms, Inflammation, and Oxidative Stress in Overweight and Obese Postmenopausal Women with Rheumatoid Arthritis: Study Protocol of a Randomized Controlled Trial. Trials 2024, 25, 168. [Google Scholar] [CrossRef]
- Proietti, E.; Fuhler, G.M.; Peppelenbosch, M.P. Mycobacterium Avium Subspecies Paratuberculosis Infection and Biological Treatment of IBD: Cause or Consequence? J. Crohns Colitis 2021, 15, 1247–1249. [Google Scholar] [CrossRef] [PubMed]
- Lavallee, C.M.; Bruno, A.; Ma, C.; Raman, M. A Review of the Role of Intermittent Fasting in the Management of Inflammatory Bowel Disease. Ther. Adv. Gastroenterol. 2023, 16, 17562848231171756. [Google Scholar] [CrossRef]
- Barati, M.; Ghahremani, A.; Namdar Ahmadabad, H. Intermittent Fasting: A Promising Dietary Intervention for Autoimmune Diseases. Autoimmun. Rev. 2023, 22, 103408. [Google Scholar] [CrossRef]
- Ojha, U.; Khanal, S.; Park, P.-H.; Hong, J.T.; Choi, D.-Y. Intermittent Fasting Protects the Nigral Dopaminergic Neurons from MPTP-Mediated Dopaminergic Neuronal Injury in Mice. J. Nutr. Biochem. 2023, 112, 109212. [Google Scholar] [CrossRef]
- Rubovitch, V.; Pharayra, A.; Har-Even, M.; Dvir, O.; Mattson, M.P.; Pick, C.G. Dietary Energy Restriction Ameliorates Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J. Mol. Neurosci. 2019, 67, 613–621. [Google Scholar] [CrossRef]
- Jeong, S.; Chokkalla, A.K.; Davis, C.K.; Jeong, H.; Chelluboina, B.; Arruri, V.; Kim, B.; Narman, A.; Bathula, S.; Arumugam, T.V.; et al. Circadian-Dependent Intermittent Fasting Influences Ischemic Tolerance and Dendritic Spine Remodeling. Stroke 2024, 55, 2139–2150. [Google Scholar] [CrossRef]
- Ahmet, I.; Wan, R.; Mattson, M.P.; Lakatta, E.G.; Talan, M. Cardioprotection by Intermittent Fasting in Rats. Circulation 2005, 112, 3115–3121. [Google Scholar] [CrossRef]
- Dutzmann, J.; Knöpp, K.; Kefalianakis, Z.; Daniel, J.-M.; Gufler, H.; Wohlgemuth, W.; Kahles, F.; Sedding, D.G. Effect of Intermittent Fasting after ST-Elevation Myocardial Infarction on Left Ventricular Function: Study Protocol of a Pilot Randomised Controlled Trial (INTERFAST-MI). BMJ Open 2022, 12, e050067. [Google Scholar] [CrossRef]
- López-Taboada, I.; González-Pardo, H.; Conejo, N.M. Western Diet: Implications for Brain Function and Behavior. Front. Psychol. 2020, 11, e564413. [Google Scholar] [CrossRef]
- Rakhra, V.; Galappaththy, S.L.; Bulchandani, S.; Cabandugama, P.K. Obesity and the Western Diet: How We Got Here. Mo. Med. 2020, 117, 536–538. [Google Scholar]
- Wongvibulsin, S.; Lee, S.S.; Hui, K.-K. Achieving Balance Through the Art of Eating: Demystifying Eastern Nutrition and Blending It with Western Nutrition. J. Tradit. Complement. Med. 2012, 2, 1–5. [Google Scholar] [CrossRef]
- Shi, Y.; Kan, J.; Li, X.; Yu, Y.; Yuan, C.; Jiang, Y.; Wu, Q.; Hao, Y.; Wang, N.; Wang, W.; et al. Eastern Diet—A Healthful Dietary Pattern from Eastern China: Its Characteristics and Relation to Adiposity, Cardiometabolic Diseases, Mortality, and Gut Microbiota. medRxiv 2024. [Google Scholar]
- Su, J.; Li, F.; Wang, Y.; Su, Y.; Verhaar, A.; Ma, Z.; Peppelenbosch, M.P. Investigating Ramadan Like Fasting Effects on the Gut Microbiome in BALB/c Mice. Front. Nutr. 2022, 9, 832757. [Google Scholar] [CrossRef] [PubMed]
- Varady, K.A.; Cienfuegos, S.; Ezpeleta, M.; Gabel, K. Clinical Application of Intermittent Fasting for Weight Loss: Progress and Future Directions. Nat. Rev. Endocrinol. 2022, 18, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Cook, F.; Langdon-Daly, J.; Serpell, L. Compliance of Participants Undergoing a ‘5-2’ Intermittent Fasting Diet and Impact on Body Weight. Clin. Nutr. ESPEN 2022, 52, 257–261. [Google Scholar] [CrossRef]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G.; Leeuwenburgh, C.; Mattson, M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef]
- Bogin, B. Kung Nutritional Status and the Original “Affluent Society”—a New Analysis. Anthropol. Anz. 2011, 68, 349–366. [Google Scholar] [CrossRef]
- Kraft, T.S.; Venkataraman, V.V.; Wallace, I.J.; Crittenden, A.N.; Holowka, N.B.; Stieglitz, J.; Harris, J.; Raichlen, D.A.; Wood, B.; Gurven, M.; et al. The Energetics of Uniquely Human Subsistence Strategies. Science 2021, 374, abf0130. [Google Scholar] [CrossRef]
- Suyoto, P.S.; de Rijk, M.G.; de Vries, J.H.; Feskens, E.J. The Effect of Meal Glycemic Index and Meal Frequency on Glycemic Control and Variability in Female Nurses Working Night Shifts: A Two-Arm Randomized Cross-Over Trial. J. Nutr. 2024, 154, 69–78. [Google Scholar] [CrossRef]
- Ramesh, B. Dietary Management of Pancreatic Beta-Cell Homeostasis and Control of Diabetes. Med. Hypotheses 1996, 46, 357–361. [Google Scholar] [CrossRef]
- Kanaley, J.A.; Heden, T.D.; Liu, Y.; Fairchild, T.J. Alteration of Postprandial Glucose and Insulin Concentrations with Meal Frequency and Composition. Br. J. Nutr. 2014, 112, 1484–1493. [Google Scholar] [CrossRef]
- van Veelen, W.; Korsse, S.E.; van de Laar, L.; Peppelenbosch, M.P. The Long and Winding Road to Rational Treatment of Cancer Associated with LKB1/AMPK/TSC/MTORC1 Signaling. Oncogene 2011, 30, 2289–2303. [Google Scholar] [CrossRef]
- Viollet, B. Targeting the AMPK Pathway for the Treatment of Type 2 Diabetes. Front. Biosci. 2009, 14, 3380. [Google Scholar] [CrossRef]
- Karakas, S.E.; Almario, R.U.; Kim, K. Serum Fatty Acid Binding Protein 4, Free Fatty Acids, and Metabolic Risk Markers. Metabolism 2009, 58, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Sanjabi, B.; Dashty, M.; Özcan, B.; Akbarkhanzadeh, V.; Rahimi, M.; Vinciguerra, M.; van Rooij, F.; Al-Lahham, S.; Sheedfar, F.; van Kooten, T.G.; et al. Lipid Droplets Hypertrophy: A Crucial Determining Factor in Insulin Regulation by Adipocytes. Sci. Rep. 2015, 5, 8816. [Google Scholar] [CrossRef]
- Ayada, I.; van Kleef, L.A.; Zhang, H.; Liu, K.; Li, P.; Abozaid, Y.J.; Lavrijsen, M.; Janssen, H.L.A.; van der Laan, L.J.W.; Ghanbari, M.; et al. Dissecting the Multifaceted Impact of Statin Use on Fatty Liver Disease: A Multidimensional Study. EBioMedicine 2023, 87, 104392. [Google Scholar] [CrossRef]
- Li, H.; Dun, Y.; Zhang, W.; You, B.; Liu, Y.; Fu, S.; Qiu, L.; Cheng, J.; Ripley-Gonzalez, J.W.; Liu, S. Exercise Improves Lipid Droplet Metabolism Disorder through Activation of AMPK-Mediated Lipophagy in NAFLD. Life Sci. 2021, 273, 119314. [Google Scholar] [CrossRef]
- Venkatesan, N.; Doskey, L.C.; Malhi, H. The Role of Endoplasmic Reticulum in Lipotoxicity during Metabolic Dysfunction–Associated Steatotic Liver Disease (MASLD) Pathogenesis. Am. J. Pathol. 2023, 193, 1887–1899. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, S.; Chen, M.; Zhou, X.; Rao, M.; Guo, D.; Xie, J.; Huang, Q.; Su, L. Evaluating the Efficacy of Intermittent Fasting and Exercise Combinations for Weight Loss: A Network Meta-analysis. Obes. Rev. 2024, 25, 13834. [Google Scholar] [CrossRef]
- Bartels, P.D.; Kristensen, L.Ø.; Heding, L.G.; Sestoft, L. Development of Ketonemia in Fasting Patients with Hyperthyroidism. Acta Med. Scand. 1979, 205, 43–47. [Google Scholar] [CrossRef]
- Williams, A.S.; Crown, S.B.; Lyons, S.P.; Koves, T.R.; Wilson, R.J.; Johnson, J.M.; Slentz, D.H.; Kelly, D.P.; Grimsrud, P.A.; Zhang, G.-F.; et al. Ketone Flux through BDH1 Supports Metabolic Remodeling of Skeletal and Cardiac Muscles in Response to Intermittent Time-Restricted Feeding. Cell Metab. 2024, 36, 422–437.e8. [Google Scholar] [CrossRef]
- Benjamin, D.I.; Both, P.; Benjamin, J.S.; Nutter, C.W.; Tan, J.H.; Kang, J.; Machado, L.A.; Klein, J.D.D.; de Morree, A.; Kim, S.; et al. Fasting Induces a Highly Resilient Deep Quiescent State in Muscle Stem Cells via Ketone Body Signaling. Cell Metab. 2022, 34, 902–918.e6. [Google Scholar] [CrossRef]
- Owen, O.E.; Felig, P.; Morgan, A.P.; Wahren, J.; Cahill, G.F. Liver and Kidney Metabolism during Prolonged Starvation. J. Clin. Investig. 1969, 48, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; You, D.; Lin, J.; Zou, H.; Zhang, L.; Luo, S.; Yuan, Y.; Wang, Z.; Qi, J.; Wang, W.; et al. SGLT2 Inhibitor Promotes Ketogenesis to Improve MASH by Suppressing CD8+ T Cell Activation. Cell Metab. 2024, 36, 2245–2261.e6. [Google Scholar] [CrossRef] [PubMed]
- Queathem, E.D.; Stagg, D.B.; Nelson, A.B.; Chaves, A.B.; Crown, S.B.; Fulghum, K.; Andre d’Avignon, D.; Ryder, J.R.; Bolan, P.J.; Hayir, A.; et al. Ketogenesis Protects against MASLD-MASH Progression through Mechanisms That Extend beyond Overall Fat Oxidation Rate. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kumar, A.; Karuppagounder, S.S.; Chen, Y.; Corona, C.; Kawaguchi, R.; Cheng, Y.; Balkaya, M.; Sagdullaev, B.T.; Wen, Z.; Stuart, C.; et al. 2-Deoxyglucose Drives Plasticity via an Adaptive ER Stress-ATF4 Pathway and Elicits Stroke Recovery and Alzheimer’s Resilience. Neuron 2023, 111, 2831–2846.e10. [Google Scholar] [CrossRef]
- Rajeev, V.; Fann, D.Y.; Dinh, Q.N.; Kim, H.A.; De Silva, T.M.; Jo, D.-G.; Drummond, G.R.; Sobey, C.G.; Lai, M.K.P.; Chen, C.L.-H.; et al. Intermittent Fasting Attenuates Hallmark Vascular and Neuronal Pathologies in a Mouse Model of Vascular Cognitive Impairment. Int. J. Biol. Sci. 2022, 18, 6052–6067. [Google Scholar] [CrossRef] [PubMed]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus Late Parenteral Nutrition in Critically Ill Adults. New Engl. J. Med. 2011, 365, 506–517. [Google Scholar] [CrossRef]
- Fivez, T.; Kerklaan, D.; Mesotten, D.; Verbruggen, S.; Wouters, P.J.; Vanhorebeek, I.; Debaveye, Y.; Vlasselaers, D.; Desmet, L.; Casaer, M.P.; et al. Early versus Late Parenteral Nutrition in Critically Ill Children. New Engl. J. Med. 2016, 374, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Doig, G.S. Early Parenteral Nutrition in Critically Ill Patients With Short-Term Relative Contraindications to Early Enteral Nutrition. JAMA 2013, 309, 2130. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.; Gunst, J. Are Periods of Feeding and Fasting Protective during Critical Illness? Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 183–188. [Google Scholar] [CrossRef]
- Hardie, D.G. The AMP-Activated Protein Kinase Pathway—New Players Upstream and Downstream. J. Cell Sci. 2004, 117, 5479–5487. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Kemp, B.E. AMPK in Health and Disease. Physiol. Rev. 2009, 89, 1025–1078. [Google Scholar] [CrossRef]
- Kim, S.G.; Buel, G.R.; Blenis, J. Nutrient Regulation of the MTOR Complex 1 Signaling Pathway. Mol. Cells 2013, 35, 463–473. [Google Scholar] [CrossRef]
- Shimobayashi, M.; Hall, M.N. Making New Contacts: The MTOR Network in Metabolism and Signalling Crosstalk. Nat. Rev. Mol. Cell Biol. 2014, 15, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.K.; Lamming, D.W. The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab. 2016, 23, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Bertholdt, L.; Gudiksen, A.; Stankiewicz, T.; Villesen, I.; Tybirk, J.; van Hall, G.; Bangsbo, J.; Plomgaard, P.; Pilegaard, H. Impact of Training State on Fasting-Induced Regulation of Adipose Tissue Metabolism in Humans. J. Appl. Physiol. 2018, 124, 729–740. [Google Scholar] [CrossRef]
- Vasim, I.; Majeed, C.N.; DeBoer, M.D. Intermittent Fasting and Metabolic Health. Nutrients 2022, 14, 631. [Google Scholar] [CrossRef]
- Bieńko, M.; Rutkowska, M.; Król, T.; Toborek, M.; Marchaj, M.; Korta, K.; Putra, A.; Niedziela, N.; Margas, M. Sports Performance and Intermittent Fasting: Impact on Training and Results, Mechanisms and Health Benefits in Weight Management, Metabolic Health, and Chronic Diseases—A Review of Risks, Current Evidence, and Future Research Directions. Qual. Sport. 2024, 16, 52500. [Google Scholar] [CrossRef]
- Korsse, S.E.; Peppelenbosch, M.P.; van Veelen, W. Targeting LKB1 Signaling in Cancer. Biochim. Et Biophys. Acta (BBA)—Rev. Cancer 2013, 1835, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Ruela-de-Sousa, R.R.; Fuhler, G.M.; Blom, N.; Ferreira, C.V.; Aoyama, H.; Peppelenbosch, M.P. Cytotoxicity of Apigenin on Leukemia Cell Lines: Implications for Prevention and Therapy. Cell Death Dis. 2010, 1, e19. [Google Scholar] [CrossRef]
- Ouahoud, S.; Jacobs, R.J.; Peppelenbosch, M.P.; Fühler, G.M.; Heijmans, J.; Diks, S.; Wildenberg, M.E.; Hawinkels, L.J.A.C.; Kodach, L.L.; Voorneveld, P.W.; et al. Kinome-Wide Analysis of the Effect of Statins in Colorectal Cancer. Br. J. Cancer 2021, 124, 1978–1987. [Google Scholar] [CrossRef]
- Xie, K.; Neff, F.; Markert, A.; Rozman, J.; Aguilar-Pimentel, J.A.; Amarie, O.V.; Becker, L.; Brommage, R.; Garrett, L.; Henzel, K.S.; et al. Every-Other-Day Feeding Extends Lifespan but Fails to Delay Many Symptoms of Aging in Mice. Nat. Commun. 2017, 8, 155. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted Role of MTOR (Mammalian Target of Rapamycin) Signaling Pathway in Human Health and Disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef]
- Yoon, M.-S. The Role of Mammalian Target of Rapamycin (MTOR) in Insulin Signaling. Nutrients 2017, 9, 1176. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.C.; Guan, K. The Multifaceted Role of Autophagy in Cancer. EMBO J. 2022, 41, 2021110031. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Dang, W.; Zhou, X.; Xu, L.; Wang, W.; Cao, W.; Chen, S.; Su, J.; Cai, X.; Xiao, S.; et al. PI3K-Akt-MTOR Axis Sustains Rotavirus Infection via the 4E-BP1 Mediated Autophagy Pathway and Represents an Antiviral Target. Virulence 2018, 9, 83–98. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Metselaar, H.J.; Janssen, H.L.A.; Peppelenbosch, M.P.; Pan, Q. Rapamycin and Everolimus Facilitate Hepatitis E Virus Replication: Revealing a Basal Defense Mechanism of PI3K-PKB-MTOR Pathway. J. Hepatol. 2014, 61, 746–754. [Google Scholar] [CrossRef]
- Garrido-Amaro, C.; Cardona, P.; Gassó, D.; Arias, L.; Velarde, R.; Tvarijonativiciute, A.; Serrano, E.; Cardona, P.-J. Protective Effect of Intestinal Helminthiasis Against Tuberculosis Progression Is Abrogated by Intermittent Food Deprivation. Front. Immunol. 2021, 12, 627638. [Google Scholar] [CrossRef]
- Jordan, S.; Tung, N.; Casanova-Acebes, M.; Chang, C.; Cantoni, C.; Zhang, D.; Wirtz, T.H.; Naik, S.; Rose, S.A.; Brocker, C.N.; et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2019, 178, 1102–1114.e17. [Google Scholar] [CrossRef] [PubMed]
- Galmiche, S.; Charmet, T.; Rakover, A.; Chény, O.; Omar, F.; David, C.; Mailles, A.; Carrat, F.; Fontanet, A. Risk of SARS-CoV-2 Infection in Professional Settings, Shops, Shared Transport, and Leisure Activities in France, 2020–2022. BMC Public. Health 2024, 24, 2411. [Google Scholar] [CrossRef]
- Odaira, T.; Nakagawasai, O.; Takahashi, K.; Nemoto, W.; Sakuma, W.; Lin, J.-R.; Tan-No, K. Mechanisms Underpinning AMP-Activated Protein Kinase-Related Effects on Behavior and Hippocampal Neurogenesis in an Animal Model of Depression. Neuropharmacology 2019, 150, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Frota, E.R.C.; Rodrigues, D.H.; Donadi, E.A.; Brum, D.G.; Maciel, D.R.K.; Teixeira, A.L. Increased Plasma Levels of Brain Derived Neurotrophic Factor (BDNF) after Multiple Sclerosis Relapse. Neurosci. Lett. 2009, 460, 130–132. [Google Scholar] [CrossRef]
- Wingo, B.C.; Rinker, J.R.; Green, K.; Peterson, C.M. Feasibility and Acceptability of Time-Restricted Eating in a Group of Adults with Multiple Sclerosis. Front. Neurol. 2023, 13, 1087126. [Google Scholar] [CrossRef]
- Utomo, W.K.; Narayanan, V.; Biermann, K.; van Eijck, C.H.J.; Bruno, M.J.; Peppelenbosch, M.P.; Braat, H. MTOR Is a Promising Therapeutical Target in a Subpopulation of Pancreatic Adenocarcinoma. Cancer Lett. 2014, 346, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Utomo, W.K.; de Vries, M.; Braat, H.; Bruno, M.J.; Parikh, K.; Comalada, M.; Peppelenbosch, M.P.; van Goor, H.; Fuhler, G.M. Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids. Front. Mol. Neurosci. 2017, 10, 14. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Yu, B.; Shi, S.; Liu, J.; Zhang, R.; Ayada, I.; Verstegen, M.M.A.; van der Laan, L.J.W.; Peppelenbosch, M.P.; et al. Recapitulating Lipid Accumulation and Related Metabolic Dysregulation in Human Liver-Derived Organoids. J. Mol. Med. 2022, 100, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Acar, S.O.; Tahta, N.; Al, I.O.; Erdem, M.; Gözmen, S.; Karapınar, T.H.; Kılınç, B.; Celkan, T.; Kirkiz, S.; Koçak, Ü.; et al. Sirolimus Is Effective and Safe in Childhood Relapsed-refractory Autoimmune Cytopenias: A Multicentre Study. Scand. J. Immunol. 2024, 100. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Madej, A.; Okopień, B. The Effect of Metformin on Plasma Prolactin Levels in Young Women with Autoimmune Thyroiditis. J. Clin. Med. 2023, 12, 3769. [Google Scholar] [CrossRef]
- Deuring, J.J.; Fuhler, G.M.; Konstantinov, S.R.; Peppelenbosch, M.P.; Kuipers, E.J.; de Haar, C.; van der Woude, C.J. Genomic ATG16L1 Risk Allele-Restricted Paneth Cell ER Stress in Quiescent Crohn’s Disease. Gut 2014, 63, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Comalada, M.; Peppelenbosch, M.P. Impaired Innate Immunity in Crohn’s Disease. Trends Mol. Med. 2006, 12, 397–399. [Google Scholar] [CrossRef]
- Cheng, T.-Y.D.; Ambrosone, C.B.; Hong, C.-C.; Lunetta, K.L.; Liu, S.; Hu, Q.; Yao, S.; Sucheston-Campbell, L.; Bandera, E.V.; Ruiz-Narváez, E.A.; et al. Genetic Variants in the MTOR Pathway and Breast Cancer Risk in African American Women. Carcinogenesis 2016, 37, 49–55. [Google Scholar] [CrossRef]
- Roelands, J.; Mall, R.; Almeer, H.; Thomas, R.; Mohamed, M.G.; Bedri, S.; Al-Bader, S.B.; Junejo, K.; Ziv, E.; Sayaman, R.W.; et al. Ancestry-Associated Transcriptomic Profiles of Breast Cancer in Patients of African, Arab, and European Ancestry. NPJ Breast Cancer 2021, 7, 10. [Google Scholar] [CrossRef]
- Wijngaarden, M.A.; van der Zon, G.C.; van Dijk, K.W.; Pijl, H.; Guigas, B. Effects of Prolonged Fasting on AMPK Signaling, Gene Expression, and Mitochondrial Respiratory Chain Content in Skeletal Muscle from Lean and Obese Individuals. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1012-21. [Google Scholar] [CrossRef]
- Mulukutla, A.; Shreshtha, R.; Kumar Deb, V.; Chatterjee, P.; Jain, U.; Chauhan, N. Recent Advances in Antimicrobial Peptide-Based Therapy. Bioorg Chem. 2024, 145, 107151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Deighan, A.; Raj, A.; Robinson, L.; Donato, H.J.; Garland, G.; Leland, M.; Martin-McNulty, B.; Kolumam, G.A.; Riegler, J.; et al. Intermittent Fasting and Caloric Restriction Interact with Genetics to Shape Physiological Health in Mice. Genetics 2022, 220, iyab157. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; MengHuan, L.; TingTing, Y.; XueJie, Y.; HaiNing, G. Research Progress on AMPK in the Pathogenesis and Treatment of MASLD. Front. Immunol. 2025, 16, 1558041. [Google Scholar] [CrossRef]
- Prior, I.A.; Lewis, P.D.; Mattos, C. A Comprehensive Survey of Ras Mutations in Cancer. Cancer Res. 2012, 72, 2457–2467. [Google Scholar] [CrossRef]
- Levink, I.J.M.; Jansen, M.P.H.M.; Azmani, Z.; van IJcken, W.; van Marion, R.; Peppelenbosch, M.P.; Cahen, D.L.; Fuhler, G.M.; Bruno, M.J. Mutation Analysis of Pancreatic Juice and Plasma for the Detection of Pancreatic Cancer. Int. J. Mol. Sci. 2023, 24, 13116. [Google Scholar] [CrossRef] [PubMed]
- Kimmelman, A.C. Metabolic Dependencies in RAS -Driven Cancers. Clin. Cancer Res. 2015, 21, 1828–1834. [Google Scholar] [CrossRef]
- Ying, H.; Kimmelman, A.C.; Lyssiotis, C.A.; Hua, S.; Chu, G.C.; Fletcher-Sananikone, E.; Locasale, J.W.; Son, J.; Zhang, H.; Coloff, J.L.; et al. Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell 2012, 149, 656–670. [Google Scholar] [CrossRef]
- Amendola, C.R.; Mahaffey, J.P.; Parker, S.J.; Ahearn, I.M.; Chen, W.-C.; Zhou, M.; Court, H.; Shi, J.; Mendoza, S.L.; Morten, M.J.; et al. KRAS4A Directly Regulates Hexokinase 1. Nature 2019, 576, 482–486. [Google Scholar] [CrossRef]
- Kerr, E.M.; Gaude, E.; Turrell, F.K.; Frezza, C.; Martins, C.P. Mutant Kras Copy Number Defines Metabolic Reprogramming and Therapeutic Susceptibilities. Nature 2016, 531, 110–113. [Google Scholar] [CrossRef]
- Yun, J.; Rago, C.; Cheong, I.; Pagliarini, R.; Angenendt, P.; Rajagopalan, H.; Schmidt, K.; Willson, J.K.V.; Markowitz, S.; Zhou, S.; et al. Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells. Science (1979) 2009, 325, 1555–1559. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, Y.; Ye, Y.; Hu, D.; Zhang, H.; He, Z.; Zhao, H.; Yang, H.; Mao, Y. Randomized Controlled Trial for Time-Restricted Eating in Healthy Volunteers without Obesity. Nat. Commun. 2022, 13, 1003. [Google Scholar] [CrossRef] [PubMed]
- Najumudeen, A.K.; Fey, S.K.; Millett, L.M.; Ford, C.A.; Gilroy, K.; Gunduz, N.; Ridgway, R.A.; Anderson, E.; Strathdee, D.; Clark, W.; et al. KRAS Allelic Imbalance Drives Tumour Initiation yet Suppresses Metastasis in Colorectal Cancer in Vivo. Nat. Commun. 2024, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Palm, W. Metabolic Plasticity Allows Cancer Cells to Thrive under Nutrient Starvation. Proc. Natl. Acad. Sci. USA 2021, 118, e2102057118. [Google Scholar] [CrossRef]
- Tsai, P.-Y.; Lee, M.-S.; Jadhav, U.; Naqvi, I.; Madha, S.; Adler, A.; Mistry, M.; Naumenko, S.; Lewis, C.A.; Hitchcock, D.S.; et al. Adaptation of Pancreatic Cancer Cells to Nutrient Deprivation Is Reversible and Requires Glutamine Synthetase Stabilization by MTORC1. Proc. Natl. Acad. Sci. USA 2021, 118, e2003014118. [Google Scholar] [CrossRef]
- Janmaat, V.T.; Nesteruk, K.; Spaander, M.C.W.; Verhaar, A.P.; Yu, B.; Silva, R.A.; Phillips, W.A.; Magierowski, M.; van de Winkel, A.; Stadler, H.S.; et al. HOXA13 in Etiology and Oncogenic Potential of Barrett’s Esophagus. Nat. Commun. 2021, 12, 3354. [Google Scholar] [CrossRef]
- Korbut, E.; Janmaat, V.T.; Wierdak, M.; Hankus, J.; Wójcik, D.; Surmiak, M.; Magierowska, K.; Brzozowski, T.; Peppelenbosch, M.P.; Magierowski, M. Molecular Profile of Barrett’s Esophagus and Gastroesophageal Reflux Disease in the Development of Translational Physiological and Pharmacological Studies. Int. J. Mol. Sci. 2020, 21, 6436. [Google Scholar] [CrossRef]
- Guo, X.; Schreurs, M.W.J.; Marijnissen, F.E.; Mommersteeg, M.C.; Nieuwenburg, S.A.V.; Doukas, M.; Erler, N.S.; Capelle, L.G.; Bruno, M.J.; Peppelenbosch, M.P.; et al. Increased Prevalence of Autoimmune Gastritis in Patients with a Gastric Precancerous Lesion. J. Clin. Med. 2023, 12, 6152. [Google Scholar] [CrossRef] [PubMed]
- Mommersteeg, M.C.; Yu, J.; Peppelenbosch, M.P.; Fuhler, G.M. Genetic Host Factors in Helicobacter Pylori -Induced Carcinogenesis: Emerging New Paradigms. Biochim. Et Biophys. Acta (BBA)—Rev. Cancer 2018, 1869, 42–52. [Google Scholar] [CrossRef]
- Azizi, N.; Zangiabadian, M.; Seifi, G.; Davari, A.; Yekekhani, E.; Safavi-Naini, S.A.A.; Berger, N.A.; Nasiri, M.J.; Sohrabi, M.-R. Gastric Cancer Risk in Association with Underweight, Overweight, and Obesity: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 2778. [Google Scholar] [CrossRef]
- Nieuwenburg, S.A.V.; Mommersteeg, M.C.; Eikenboom, E.L.; Yu, B.; den Hollander, W.J.; Holster, I.L.; den Hoed, C.M.; Capelle, L.G.; Tang, T.J.; Anten, M.-P.; et al. Factors Associated with the Progression of Gastric Intestinal Metaplasia: A Multicenter, Prospective Cohort Study. Endosc. Int. Open 2021, 09, E297–E305. [Google Scholar] [CrossRef]
- Wang, J.; Yang, D.-L.; Chen, Z.-Z.; Gou, B.-F. Associations of Body Mass Index with Cancer Incidence among Populations, Genders, and Menopausal Status: A Systematic Review and Meta-Analysis. Cancer Epidemiol. 2016, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Paragomi, P.; Zhang, Z.; Abe, S.K.; Islam, M.R.; Rahman, M.S.; Saito, E.; Shu, X.-O.; Dabo, B.; Pham, Y.T.-H.; Chen, Y.; et al. Body Mass Index and Risk of Colorectal Cancer Incidence and Mortality in Asia. JAMA Netw. Open 2024, 7, e2429494. [Google Scholar] [CrossRef]
- Hardwick, J.C.H.; Van Den Brink, G.R.; Offerhaus, G.J.; Van Deventer, S.J.H.; Peppelenbosch, M.P. Leptin Is a Growth Factor for Colonic Epithelial Cells. Gastroenterology 2001, 121, 79–90. [Google Scholar] [CrossRef]
- Kazeminasab, F.; Behzadnejad, N.; Cerqueira, H.S.; Santos, H.O.; Rosenkranz, S.K. Effects of Intermittent Fasting Combined with Exercise on Serum Leptin and Adiponectin in Adults with or without Obesity: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Nutr. 2024, 11, 1362731. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.T.; Tinsley, G.M.; Alesi, M.G.; Hester, G.M.; Olmos, A.A.; Serafini, P.R.; Modjeski, A.S.; Mangine, G.T.; King, K.; Savage, S.N.; et al. Four Weeks of Time-Restricted Feeding Combined with Resistance Training Does Not Differentially Influence Measures of Body Composition, Muscle Performance, Resting Energy Expenditure, and Blood Biomarkers. Nutrients 2020, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Phillips, S.A.; Norkeviciute, E.; Varady, K.A. Alternate Day Fasting with or without Exercise: Effects on Endothelial Function and Adipokines in Obese Humans. ESPEN J. 2013, 8, e205–e209. [Google Scholar] [CrossRef]
- Ezpeleta, M.; Cienfuegos, S.; Lin, S.; Pavlou, V.; Gabel, K.; Tussing-Humphreys, L.; Varady, K.A. Time-Restricted Eating: Watching the Clock to Treat Obesity. Cell Metab. 2024, 36, 301–314. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Wang, H.; Ma, Z.; Liu, D.; Guan, X.; Liu, Y.; Fu, Y.; Cui, M.; Dong, J. Intermittent Fasting versus Continuous Calorie Restriction: Which Is Better for Weight Loss? Nutrients 2022, 14, 1781. [Google Scholar] [CrossRef]
- Horne, B.D.; Grajower, M.M.; Anderson, J.L. Limited Evidence for the Health Effects and Safety of Intermittent Fasting Among Patients With Type 2 Diabetes. JAMA 2020, 324, 341. [Google Scholar] [CrossRef]
- Seidler, A.L.; Hunter, K.E.; Cheyne, S.; Berlin, J.A.; Ghersi, D.; Askie, L.M. Prospective Meta-Analyses and Cochrane’s Role in Embracing next-Generation Methodologies. Cochrane Database Syst. Rev. 2020, 2020, ED000145. [Google Scholar] [CrossRef]
- Janmaat, V.T.; Steyerberg, E.W.; van der Gaast, A.; Mathijssen, R.H.; Bruno, M.J.; Peppelenbosch, M.P.; Kuipers, E.J.; Spaander, M.C. Palliative Chemotherapy and Targeted Therapies for Esophageal and Gastroesophageal Junction Cancer. Cochrane Database Syst. Rev. 2017, 2017, CD004063. [Google Scholar] [CrossRef] [PubMed]
- Allaf, M.; Elghazaly, H.; Mohamed, O.G.; Fareen, M.F.K.; Zaman, S.; Salmasi, A.-M.; Tsilidis, K.; Dehghan, A. Intermittent Fasting for the Prevention of Cardiovascular Disease. Cochrane Database Syst. Rev. 2021, 2021, CD013496. [Google Scholar] [CrossRef]
- Carter, S.; Clifton, P.M.; Keogh, J.B. Effect of Intermittent Compared With Continuous Energy Restricted Diet on Glycemic Control in Patients With Type 2 Diabetes. JAMA Netw. Open 2018, 1, e180756. [Google Scholar] [CrossRef]
- Chowdhury, T.A. Severe Hypoglycemia in a Muslim Patient Fasting during Ramadan. Diabet. Hypoglycemia 2011, 4, 11–13. [Google Scholar]
- Jeong, S.; Davis, C.K.; Vemuganti, R. Mechanisms of Time-Restricted Feeding-Induced Neuroprotection and Neuronal Plasticity in Ischemic Stroke as a Function of Circadian Rhythm. Exp. Neurol. 2025, 383, 115045. [Google Scholar] [CrossRef]
- Acosta-Rodríguez, V.A.; Rijo-Ferreira, F.; van Rosmalen, L.; Izumo, M.; Park, N.; Joseph, C.; Hepler, C.; Thorne, A.K.; Stubblefield, J.; Bass, J.; et al. Misaligned Feeding Uncouples Daily Rhythms within Brown Adipose Tissue and between Peripheral Clocks. Cell Rep. 2024, 43, 114523. [Google Scholar] [CrossRef]
- Wang, H.; van Spyk, E.; Liu, Q.; Geyfman, M.; Salmans, M.L.; Kumar, V.; Ihler, A.; Li, N.; Takahashi, J.S.; Andersen, B. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Rep. 2017, 20, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Rodríguez, V.A.; de Groot, M.H.M.; Rijo-Ferreira, F.; Green, C.B.; Takahashi, J.S. Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metab. 2017, 26, 267–277.e2. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, K.; Shang, Z.; Bao, D.; Zhou, J. The Effects of Time-Restricted Eating on Fat Loss in Adults with Overweight and Obese Depend upon the Eating Window and Intervention Strategies: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 3390. [Google Scholar] [CrossRef]
- Tae, J.; Park, J.; Cho, H.; Shin, D.W. Association of Types of Meal Skipping with Cardio-Metabolic Risk Factors in Korean Adults: The 7th Korea National Health and Nutrition Examination Survey (2016–2018). Korean J. Fam. Med. 2024, 45, 290–298. [Google Scholar] [CrossRef]
- Vuik, F.; Dicksved, J.; Lam, S.; Fuhler, G.; van der Laan, L.; van de Winkel, A.; Konstantinov, S.; Spaander, M.; Peppelenbosch, M.; Engstrand, L.; et al. Composition of the Mucosa-associated Microbiota along the Entire Gastrointestinal Tract of Human Individuals. United Eur. Gastroenterol. J. 2019, 7, 897–907. [Google Scholar] [CrossRef]
- de Santa Barbara, P.; van den Brink, G.R.; Roberts, D.J. Development and Differentiation of the Intestinal Epithelium. Cell Mol. Life Sci. 2003, 60, 1322–1332. [Google Scholar] [CrossRef]
- Muncan, V.; Heijmans, J.; Krasinski, S.D.; Büller, N.V.; Wildenberg, M.E.; Meisner, S.; Radonjic, M.; Stapleton, K.A.; Lamers, W.H.; Biemond, I.; et al. Blimp1 Regulates the Transition of Neonatal to Adult Intestinal Epithelium. Nat. Commun. 2011, 2, 452. [Google Scholar] [CrossRef] [PubMed]
- Kaiko, G.E.; Ryu, S.H.; Koues, O.I.; Collins, P.L.; Solnica-Krezel, L.; Pearce, E.J.; Pearce, E.L.; Oltz, E.M.; Stappenbeck, T.S. The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell 2016, 165, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- van den Brink, G.R.; Bleuming, S.A.; Hardwick, J.C.H.; Schepman, B.L.; Offerhaus, G.J.; Keller, J.J.; Nielsen, C.; Gaffield, W.; van Deventer, S.J.H.; Roberts, D.J.; et al. Indian Hedgehog Is an Antagonist of Wnt Signaling in Colonic Epithelial Cell Differentiation. Nat. Genet. 2004, 36, 277–282. [Google Scholar] [CrossRef] [PubMed]
- van der Giessen, J.; Binyamin, D.; Belogolovski, A.; Frishman, S.; Tenenbaum-Gavish, K.; Hadar, E.; Louzoun, Y.; Peppelenbosch, M.P.; van der Woude, C.J.; Koren, O.; et al. Modulation of Cytokine Patterns and Microbiome during Pregnancy in IBD. Gut 2020, 69, 473–486. [Google Scholar] [CrossRef]
- Konstantinov, S.R.; van der Woude, C.J.; Peppelenbosch, M.P. Do Pregnancy-Related Changes in the Microbiome Stimulate Innate Immunity? Trends Mol. Med. 2013, 19, 454–459. [Google Scholar] [CrossRef]
- Li, S.; Peppelenbosch, M.P.; Smits, R. Bacterial Biofilms as a Potential Contributor to Mucinous Colorectal Cancer Formation. Biochim. Et Biophys. Acta (BBA)—Rev. Cancer 2019, 1872, 74–79. [Google Scholar] [CrossRef]
- Berkhout, M.D.; Ioannou, A.; de Ram, C.; Boeren, S.; Plugge, C.M.; Belzer, C. Mucin-Driven Ecological Interactions in an in Vitro Synthetic Community of Human Gut Microbes. Glycobiology 2024, 34, cwae085. [Google Scholar] [CrossRef]
- Su, J.; Wang, Y.; Zhang, X.; Ma, M.; Xie, Z.; Pan, Q.; Ma, Z.; Peppelenbosch, M.P. Remodeling of the Gut Microbiome during Ramadan-Associated Intermittent Fasting. Am. J. Clin. Nutr. 2021, 113, 1332–1342. [Google Scholar] [CrossRef]
- Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological Effects of Propionic Acid in Humans; Metabolism, Potential Applications and Underlying Mechanisms. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2010, 1801, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Braat, H.; Peppelenbosch, M.P. Gut Microbiota-Derived Propionate Production May Explain Beneficial Effects of Intermittent Fasting in Experimental Colitis. J. Crohns Colitis 2021, 15, 1081–1082. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R. Evolutionary Perspectives on the Obesity Epidemic: Adaptive, Maladaptive, and Neutral Viewpoints. Annu. Rev. Nutr. 2013, 33, 289–317. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, L.; Li, M.; Lam, S.M.; Wang, G.; Wu, Y.; Zhang, H.; Niu, C.; Zhang, X.; Liu, X.; et al. Microbiota Depletion Impairs Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue. Cell Rep. 2019, 26, 2720–2737.e5. [Google Scholar] [CrossRef]
Characteristic | Mediterranean Diet | Western Diet | Traditional Eastern Diet |
---|---|---|---|
Dominant Components | Fruits, vegetables, whole grains, legumes, olive oil, fish | Red/processed meats, refined grains, processed foods, sugary drinks | Rice, vegetables, soy products, fish, seaweed, tea |
Plant-to-Animal Ratio | Highly plant-based, moderate animal intake | Highly animal-based, low plant diversity | Predominantly plant-based, low-to-moderate animal intake |
Main Fat Source | Unsaturated fats (olive oil, nuts) | Saturated and trans fats (animal fats, processed oils) | Plant oils, fish-based fats |
Fiber and Micronutrient Density | High | Low | High |
Portion Sizes/Energy Load | Moderate, nutrient-dense | Large, energy-dense | Moderate, energy-controlled |
Impact on Inflammation and Insulin Sensitivity | Anti-inflammatory, improves insulin sensitivity | Pro-inflammatory, promotes insulin resistance | Context-dependent; traditionally protective |
Synergy with Intermittent Fasting | High; supports metabolic benefits of fasting | Low; may blunt or counteract fasting effects | Moderate to high; benefits may vary with degree of Westernization |
Associated Health Outcomes | Reduced cardiovascular and metabolic disease risk | Increased risk of obesity, diabetes, and CVD | Traditionally associated with longevity and low chronic disease rates |
Aspect | Key Findings | Ancestry/Genetic Focus | Reference |
---|---|---|---|
AMPK/mTOR in Breast Cancer | AMPK pathway enrichment correlates with OS differently in AA vs. EA patients | Yes (AA vs. EA) | [90] |
mTOR Variants and Cancer Risk | mTOR pathway polymorphisms linked to breast cancer risk in African American women | Yes (AA) | [89] |
Fasting Response (Lean vs. Obese) | Fasting reduces AMPK activity in lean but not obese individuals; upstream regulation differs | Indirect (obesity as genetic/epigenetic proxy) | [91] |
Macrophage Inflammation | AMPK activity modulates inflammatory responses; genetic variation in subunits matters | Yes (subunit variation) | [93] |
IF/CR and Genotype in Mice | Dietary intervention effects on physiology depend on genotype; gene–diet interactions mapped | Yes (outbred population) | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambuzzi, W.F.; Ferreira, M.R.; Wang, Z.; Peppelenbosch, M.P. A Biochemical View on Intermittent Fasting’s Effects on Human Physiology—Not Always a Beneficial Strategy. Biology 2025, 14, 669. https://doi.org/10.3390/biology14060669
Zambuzzi WF, Ferreira MR, Wang Z, Peppelenbosch MP. A Biochemical View on Intermittent Fasting’s Effects on Human Physiology—Not Always a Beneficial Strategy. Biology. 2025; 14(6):669. https://doi.org/10.3390/biology14060669
Chicago/Turabian StyleZambuzzi, Willian F., Marcel Rodrigues Ferreira, Zifan Wang, and Maikel P. Peppelenbosch. 2025. "A Biochemical View on Intermittent Fasting’s Effects on Human Physiology—Not Always a Beneficial Strategy" Biology 14, no. 6: 669. https://doi.org/10.3390/biology14060669
APA StyleZambuzzi, W. F., Ferreira, M. R., Wang, Z., & Peppelenbosch, M. P. (2025). A Biochemical View on Intermittent Fasting’s Effects on Human Physiology—Not Always a Beneficial Strategy. Biology, 14(6), 669. https://doi.org/10.3390/biology14060669