Linking Ecological Stoichiometry to Biomass Allocation in Plants Under Cadmium and Petroleum Stress in the Yellow River Delta
Simple Summary
Abstract
1. Introduction
2. Results
2.1. Effects of Cd and Petroleum Stress on Soil Physicochemical Properties
2.2. Effects of Cd and Petroleum Stress on the Plant Biomass Allocation Ratio
2.3. Effects of Cd and Petroleum Stress on the Stoichiometry of Suaeda salsa
2.4. Effects of Cd and Petroleum Stress on Soil Stoichiometry
2.5. Correlation Between Biomass Allocation and Chemical Properties in Plant–Soil Systems
3. Discussion
3.1. Effects of Cd and Petroleum Stress on Soil Stoichiometry
3.2. Effects of Cadmium and Petroleum Stress on the Biomass Allocation and Elemental Stoichiometry of Suaeda salsa
3.3. Relationships Between Plant–Soil C, N, and P Concentrations and Stoichiometry and Their Responses to Plant Biomass
3.4. Future Prospects
4. Materials and Methods
4.1. Soil and Plants
4.2. Pot Experiment
4.3. Determination of Plant Physiological Characteristics
4.4. Determination of Soil Index
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
S. salsa | Suaeda salsa |
Cd | Cadmium |
TC | Total carbon |
TN | Total nitrogen |
TP | Total phosphorus |
SOC | Soil organic carbon |
AP | Available phosphorus |
TB | Total biomass |
AGBP | Aboveground biomass proportion |
BGBP | Belowground biomass proportion |
References
- Sardans, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. Recent advances and future research in ecological stoichiometry. Perspect. Plant Ecol. Evol. Syst. 2021, 50, 125611. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, Y.; Zhang, Q.; Li, Z. Soil ecological stoichiometry synchronously regulates stream nitrogen and phosphorus concentrations and ratios. Catena 2023, 231, 107357. [Google Scholar] [CrossRef]
- Augusto, L.; Achat, D.L.; Jonard, M.; Vidal, D.; Ringeval, B. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 2017, 23, 3808–3824. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, Y.; Xie, Y.; Cui, B.; Ning, Z.H.; Zhang, S.Y.; Bi, Z.G.; Fu, S.Q.; Che, C.G. Effects of ecological restoration on soil biogenic elements and their ecological stoichiometry in the Yellow River Delta, China. Front. Mar. Sci. 2022, 9, 993202. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, T.; Peñuelas, J.; Sardans, J.; Tan, W.; Wei, X.; Cui, Y.; Cui, Q.; Wu, C.; Liu, L.; et al. Crop residue return sustains global soil ecological stoichiometry balance. Glob. Change Biol. 2023, 29, 2203–2226. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Terrer, C.; Jackson, R.B.; Prentice, I.C.; Keenan, T.F.; Kaiser, C.; Vicca, S.; Fisher, J.B.; Reich, P.B.; Stocker, B.D. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 2019, 9, 684–689. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, X.; Liu, S.; Lu, X.; Chen, H.Y.H.; Ruan, H. Phosphorus additions imbalance terrestrial ecosystem C: N: P stoichiometry. Glob. Change Biol. 2022, 28, 7353–7365. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, A.J.; Enquist, B.J.; Elser, J.J.; Fagan, W.F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 2005, 14, 585–598. [Google Scholar] [CrossRef]
- Wang, L.; Lin, G.; Li, Y.; Qu, W.; Wang, Y.; Lin, Y.; Huang, Y.; Li, J.; Qian, C.; Yang, G.; et al. Phenotype, Biomass, Carbon and Nitrogen Assimilation, and Antioxidant Response of Rapeseed under Salt Stress. Plants 2024, 13, 1488. [Google Scholar] [CrossRef]
- Li, T.; Sun, J.; Fu, Z. Halophytes Differ in Their Adaptation to Soil Environment in the Yellow River Delta: Effects of Water Source, Soil Depth, and Nutrient Stoichiometry. Front. Plant Sci. 2021, 12, 675921. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.J.; Shin, M.N.; Son, J.K.; Song, J.D.; Cho, K.H.; Lee, S.H.; Ryu, J.H.; Cho, J.Y. Evaluation of soil pore-water salinity using a Decagon GS3 sensor in saline-alkali reclaimed tidal lands. Comput. Electron. Agric. 2017, 132, 49–55. [Google Scholar] [CrossRef]
- Nie, M.; Zhang, X.; Wang, J.Q.; Jiang, L.F.; Yang, J.; Quan, Z.X.; Cui, X.H.; Fang, C.M.; Li, B. Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol. Biochem. 2009, 41, 2535–2542. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, K.; Liu, X. Distribution and pollution risk assessment of heavy metals in the surface sediment of the intertidal zones of the Yellow River Estuary, China. Mar. Pollut. Bull. 2022, 174, 113286. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61, 4449–4459. [Google Scholar] [CrossRef]
- Zuffo, A.M.; Aguilera, J.G.; Silva, F.C.D.S.; Mezzomo, R.; Barrozo, L.M.; Steiner, F.; Oliveira, B.R.; Soto, C.A.M. Multivariate Adaptability of Tropical Wheat Cultivars to Drought and Salinity Stresses. Plants 2025, 14, 1021. [Google Scholar] [CrossRef]
- Lu, L.; Wu, X.; Tang, Y.; Zhu, L.; Hao, Z.; Zhang, J.; Li, X.; Shi, J.; Chen, J.; Cheng, T. Halophyte Nitraria billardieri CIPK25 promotes photosynthesis in Arabidopsis under salt stress. Front. Plant Sci. 2022, 13, 1052463. [Google Scholar] [CrossRef]
- Yuan, L.; Gao, Y.; Cheng, F.; Du, J.; Hu, Z.; Yang, X.; Wang, H.; Kong, X. The influence of oil exploitation on the degradation of vegetation: A case study in the Yellow River Delta Nature Reserve, China. Environ. Technol. Innov. 2022, 28, 102579. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, A.; Wang, P.; Huang, Q.; Zhao, T.; Yan, C.; Yang, L.; Wang, W. Spatial distribution, sources, air-soil exchange, and health risks of parent PAHs and derivative-alkylated PAHs in different functional areas of an Oilfield Area in the Yellow River Delta, North China. Toxics 2023, 11, 540. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Luc, N.T.; Yu, Q.; Liu, X.; Liang, X. Impacts of soil petroleum contamination on nutrient release during litter decomposition of Hippophae rhamnoides. Environ. Sci. Process. Impacts 2016, 18, 398–405. [Google Scholar] [CrossRef]
- Haghollahi, A.; Fazaelipoor, M.H.; Schaffie, M. The effect of soil type on the bioremediation of petroleum contaminated soils. J. Environ. Manag. 2016, 180, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wu, Y.; Fan, Q.; Li, P.; Liang, J.; Liu, Y.; Ma, R.; Li, R.; Shi, L. Remediating petroleum hydrocarbons in highly saline–alkali soils using three native plant species. J. Environ. Manag. 2023, 339, 117928. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Prasad, S.M. Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: Mechanism of toxicity amelioration by kinetin. Sci. Hortic. 2014, 176, 1–10. [Google Scholar] [CrossRef]
- Liu, S.; Yang, C.; Xie, W.; Xia, C.; Fan, P. The effects of cadmium on germination and seedling growth of Suaeda salsa. Procedia Environ. Sci. 2012, 16, 293–298. [Google Scholar] [CrossRef]
- Xiong, J.; Shao, X.; Li, N.; Yuan, H.; Liu, E.; Wu, M. Effects of land-use on soil C, N, and P stocks and stoichiometry in coastal wetlands dependent on soil depth and latitude. Catena 2024, 240, 107999. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, T.; Gao, Z.; Wang, T.; Lu, X.; Yang, L.; Shen, L.; Zhang, Q.; Hu, J.; Ren, D.; et al. Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport. Rice Sci. 2024, 31, 587–602. [Google Scholar] [CrossRef]
- Xiao, Z.; Duan, C.; Li, S.; Chen, J.; Peng, C.; Che, R.; Liu, C.; Huang, Y.; Mei, R.; Xu, L.; et al. The microbial mechanisms by which long-term heavy metal contamination affects soil organic carbon levels. Chemosphere 2023, 340, 139770. [Google Scholar] [CrossRef]
- Feng, L.; Xia, J.B.; Liu, J.T.; Song, A.Y.; Chen, Y.P.; Zhao, X.M. Effects of mosaic biological soil crusts on vascular plant establishment in a coastal saline land of the Yellow River Delta, China. J. Plant Ecol. 2021, 14, 781–792. [Google Scholar] [CrossRef]
- Moghaieb, R.E.A.; Saneoka, H.; Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Sci. 2004, 166, 1345–1349. [Google Scholar] [CrossRef]
- Xie, T.; Liu, X.; Sun, T. The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecol. Model. 2011, 222, 241–252. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Liu, J.; Sun, J.; Zhang, P. Ecological stoichiometry, salt ions and homeostasis characteristics of different types of halophytes and soils. Front. Plant Sci. 2022, 13, 990246. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Wang, L.; Tian, C.; Song, J. Heavy metal tolerance and potential for remediation of heavy metal-contaminated saline soils for the euhalophyte Suaeda salsa. Plant Signal. Behav. 2020, 15, 1805902. [Google Scholar] [CrossRef]
- Mohammed, H.A. The Valuable Impacts of Halophytic Genus Suaeda; Nutritional, Chemical, and Biological Values. Med. Chem. 2020, 16, 1044–1057. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Meng, L.; Xia, J.; Huang, H.; Zhan, C.; Li, Y. Soil phosphorus fractions and distributions in estuarine wetlands with different climax vegetation covers in the Yellow River Delta. Ecol. Indic. 2021, 125, 107497. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Fan, X.; Wang, Q.; Liu, Y.; Wei, H.; He, J. Phytoremediation of crude oil-contaminated sediment using Suaeda heteroptera enhanced by Nereis succinea and oil-degrading bacteria. Int. J. Phytoremediation 2023, 25, 322–328. [Google Scholar] [CrossRef]
- Yi, L.P.; Wang, Z.W. Effects of different types of halophytes on the concentration of cadmium in coastal saline soil. Acta Ecol. Sin. 2017, 37, 4656–4662. [Google Scholar]
- Meng, L.; Qu, F.; Bi, X.; Xia, J.; Li, Y.; Wang, X.; Yu, J. Elemental stoichiometry (C, N, P) of soil in the Yellow River Delta nature reserve: Understanding N and P status of soil in the coastal estuary. Sci. Total Environ. 2021, 751, 141737. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, X.Y.; Cao, K.K.; Zhang, M.; Hu, X.X.; Wang, Z.J. Interaction and Mechanism Between Conditioning Agents and Two Elements in the Soil Enriched with Phosphorus and Cadmium. Huan Jing Ke Xue 2021, 42, 3028–3036. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Zhang, Y.; Liu, J.; Huang, Y.; Li, J. Seasonal Effects of Constructed Wetlands on Water Quality Characteristics in Jinshan Lake: A Gate Dam Lake (Zhenjiang City, China). Biology 2024, 13, 593. [Google Scholar] [CrossRef]
- Lerdau, M.; Coley, P.D. Benefits of the carbon-nutrient balance hypothesis. Oikos 2002, 98, 534–536. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol. 2012, 160, 1741–1761. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Su, B.; Mao, S.; Shangguan, Z. Leaf C: N: P stoichiometric homeostasis of a Robinia pseudoacacia plantation on the Loess Plateau. J. For. Res. 2023, 34, 929–937. [Google Scholar] [CrossRef]
- Li, Y.; Rahman, S.U.; Qiu, Z.; Shahzad, S.M.; Nawaz, M.F.; Huang, J.; Naveed, S.; Li, L.; Wang, X.; Cheng, H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environ. Pollut. 2023, 325, 121433. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Xu, M.; Deng, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 2019, 337, 280–289. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, F.; Rengel, Z.; Shen, J. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Res. 2012, 133, 176–185. [Google Scholar] [CrossRef]
- Qu, F.; Shao, H.; Meng, L.; Yu, J.; Xia, J.; Sun, J.; Li, Y. Forms and vertical distributions of soil phosphorus in newly formed coastal wetlands in the Yellow River Delta estuary. Land Degrad. Dev. 2018, 29, 4219–4226. [Google Scholar] [CrossRef]
- Brinch, U.C.; Ekelund, F.; Jacobsen, C.S. Method for spiking soil samples with organic compounds. Appl. Environ. Microbiol. 2002, 68, 1808–1816. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Wang, Y.; Yu, J.; Xiao, M.; Jiang, L.; Yang, J.; Fang, C.; Chen, J.; Li, B. Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS ONE 2011, 6, e17961. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of China; State Administration for Market Regulation of China. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land; NSEQSC, GB15618; Ministry of Ecology and Environment of China, and State Administration for Market Regulation of China: Beijing, China, 2018.
- Ministry of Environmental Protection. Technical Guidelines for Risk Assessment of Contaminated Sites; HJ 25.3-2014; Ministry of Environmental Protection: Beijing, China, 2014.
- Yu, W.; Wu, W.; Zhang, N.; Wang, L.; Wang, Y.; Wang, B.; Lan, Q.; Wang, Y. Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. Biology 2022, 11, 1273. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, L.; Jiang, W.; Qin, J.; Lee, H.S. Research on the effects of soil petroleum pollution concentration on the diversity of natural plant communities along the coastline of Jiaozhou bay. Environ. Res. 2021, 197, 111127. [Google Scholar] [CrossRef]
- Chigbo, C.; Batty, L. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: Comparing freshly spiked soil with aged soil. J. Environ. Manag. 2013, 129, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Shidan, B. Soil Agrochemical Analysis; China Agricultural Publishing House: Beijing, China, 2000; Volume 42, pp. 76–79. [Google Scholar]
Treatment | Soil TC (g kg−1) | Soil AP (mg kg−1) | Soil NH4+ (mg kg−1) | Soil NO3− (mg kg−1) | Soil Cd Content (mg kg−1) | Soil Petroleum Content (mg kg−1) |
---|---|---|---|---|---|---|
Cd0P0 | 10.57 ± 0.10 Ca | 1.64 ± 0.02 Aa | 5.26 ± 0.26 Aa | 2.57 ± 0.18 Aab | - | - |
Cd0P1 | 12.2 ± 0.61 Ba | 1.38 ± 0.2 Ba | 5.14 ± 0.13 Aa | 1.61 ± 0.11 Ba | - | 464.3 ± 148.3 Ba |
Cd0P2 | 14.23 ± 0.78 Aa | 1.22 ± 0.05 Ba | 4.66 ± 0.07 Ba | 1.08 ± 0.08 Ca | - | 787 ± 111.2A b |
Cd1P0 | 10.8 ± 0.18 Ca | 1.32 ± 0.07 Ab | 5.05 ± 0.12Aa | 3.17 ± 0.51 Aa | 4.77 ± 0.64 Ab | - |
Cd1P1 | 12.02 ± 0.18 Ba | 1.5 ± 0.12 Aa | 5.27 ± 0.43 Aa | 1.69 ± 0.06 Ba | 3.60 ± 0.64 Aa | 524.6 ± 50.52 Ba |
Cd1P2 | 14.69 ± 0.26 Aa | 1.32 ± 0.16 Aa | 5.19 ± 1.05 Aa | 0.94 ± 0.04 Cb | 3.77 ± 0.59 Ab | 996.3 ± 55.16 Aa |
Cd2P0 | 10.03 ± 0.34 Bb | 1.6 ± 0.2 Aa | 5.06 ± 0.11 Aa | 1.99 ± 0.34 Ab | 5.66 ± 0.21 Ba | - |
Cd2P1 | 13.3 ± 0.92 Aa | 1.35 ± 0.21 Aa | 5.24 ± 0.33 Aa | 1.53 ± 0.07 Ba | 2.02 ± 0.56 Cb | 493.3 ± 61.37 Ba |
Cd2P2 | 14.61 ± 1.78 Aa | 1.33 ± 0.24 Aa | 5.01 ± 0.41 Aa | 0.92 ± 0.02 Cb | 8.32 ± 0.62 Aa | 1031 ± 90.35 Aa |
Cd | ns | ns | ns | ** | ||
P | ** | ** | ns | ** | ||
Cd × P | ns | * | ns | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xu, H.; Ye, H.; Chang, C.; Zhao, J.; Xia, J. Linking Ecological Stoichiometry to Biomass Allocation in Plants Under Cadmium and Petroleum Stress in the Yellow River Delta. Biology 2025, 14, 673. https://doi.org/10.3390/biology14060673
Li S, Xu H, Ye H, Chang C, Zhao J, Xia J. Linking Ecological Stoichiometry to Biomass Allocation in Plants Under Cadmium and Petroleum Stress in the Yellow River Delta. Biology. 2025; 14(6):673. https://doi.org/10.3390/biology14060673
Chicago/Turabian StyleLi, Shuo, Haidong Xu, Hui Ye, Cheng Chang, Jinxiang Zhao, and Jiangbao Xia. 2025. "Linking Ecological Stoichiometry to Biomass Allocation in Plants Under Cadmium and Petroleum Stress in the Yellow River Delta" Biology 14, no. 6: 673. https://doi.org/10.3390/biology14060673
APA StyleLi, S., Xu, H., Ye, H., Chang, C., Zhao, J., & Xia, J. (2025). Linking Ecological Stoichiometry to Biomass Allocation in Plants Under Cadmium and Petroleum Stress in the Yellow River Delta. Biology, 14(6), 673. https://doi.org/10.3390/biology14060673