Dietary Cottonseed Protein Substituting Fish Meal Induces Hepatic Ferroptosis Through SIRT1-YAP-TRFC Axis in Micropterus salmoides: Implications for Inflammatory Regulation and Liver Health
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Experimental Diets and Feeding Management
2.3. Sample Collection and Indicator Measurements
2.4. Proximate Composition Analysis
2.5. Liver Haematological and Homogenate Parameters
2.6. Hematoxylin and Eosin Staining
2.7. Fe2+ Content Detection
2.8. Molecular Docking
2.9. Transmission Electron Microscope
2.10. Mitochondrial Membrane Potential (MMP)
2.11. Reactive Oxygen Species (ROS) Detection
2.12. Real-Time Quantitative PCR
2.13. Western Blotting
2.14. Immunohistochemistry
2.15. Immunofluorescence Staining
2.16. Statistical Analysis
3. Results
3.1. Growth Performance and Whole-Body Composition
3.2. Serum and Liver Biochemical Parameters
3.3. Liver Morphology and Inflammation-Related Genes
3.4. Oxidation Indicators and Fe2+ Content
3.5. Hepatic Ferroptosis-Related Genes
3.6. SIRT1-YAP-TRFC Pathway
3.7. Gossypol and SIRT1 with Molecular Docking
4. Discussion
4.1. Effects of Partial Substitution of FM with CP on Growth Performance Indices of M. salmoides
4.2. Effects of CP Replacement of FM on the Nutrient Deposition of M. salmoides
4.3. Effects of Substituting FM with CP on Hepato-Intestinal Development of M. salmoides
4.4. Effects of CP Replacement of FM on Liver Morphology, Biochemical Indices, and Inflammation-Related Genes of M. salmoides
4.5. Excess Substitution of CP for FM Caused Hepatic Fibrosis and Was Associated with Ferroptosis
4.6. Replacement of FM by Excess CP Caused Ferroptosis Through SIRT1-AP-TRFC Signaling Pathway
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
References
- Liu, H.; Dong, X.; Tan, B.; Du, T.; Zhang, S.; Yang, Y.; Chi, S.; Yang, Q.; Liu, H. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forsskal). Aquacult Nutr. 2020, 26, 1724–1735. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Iii, D.M.G.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Wurtele, E. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar]
- Cheng, H.N.; He, Z.; Ford, C.; Wyckoff, W.; Wu, Q. A review of cottonseed protein chemistry and non-food applications. Sustain. Chem. 2020, 1, 256–274. [Google Scholar] [CrossRef]
- Khan, M.A.; Wahid, A.; Ahmad, M.; Tahir, M.T.; Ahmed, M.; Ahmad, S.; Hasanuzzaman, M. World cotton production and consumption: An overview. In Cotton Production and Uses; Springer: Singapore, 2020. [Google Scholar]
- Luo, L.; Xue, M.; Wu, X.; Cai, X.; Cao, H.; Liang, Y. Partial or total replacement of fishmeal by solvent-extracted cottonseed meal in diets for juvenile rainbow trout (Oncorhynchus mykiss). Aquacult Nutr. 2006, 12, 418–424. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Niu, J. Growth performance, intestinal histomorphology, body composition, hematological and antioxidant parameters of Oncorhynchus mykiss were not detrimentally affected by replacement of fish meal with concentrated dephenolization cottonseed protein. Aquac. Rep. 2021, 19, 100557. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Y.; Zhang, Z.; Zheng, J.; He, Y.; Wang, Z.; Mai, K.; Ai, Q. Replacement of dietary fishmeal protein with degossypolized cottonseed protein on growth performance, nonspecific immune response, antioxidant capacity, and target of rapamycin pathway of juvenile large yellow croaker (Larimichthys crocea). Aquacult Nutr. 2022, 2022, 12. [Google Scholar] [CrossRef]
- Alama, M.S.; Watanabea, W.O.; Carrolla, P.; Gabela, J.; Coruma, M.; Seatona, P.; Wedegaertnerb, T.C.; Rathorec, K.S.; Dowdd, M.K. Evaluation of genetically-improved (glandless) and genetically-modi fi ed low-gossypol cottonseed meal as alternative protein sources in the diet of juvenile southern fl ounder Paralichthys lethostigma reared in a recirculating aquaculture system. Aquaculture 2018, 489, 36–45. [Google Scholar] [CrossRef]
- He, Y.; Guo, X.; Tan, B.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S.; Chi, S. Replacing fishmeal with cottonseed protein concentrate in feed for pearl gentian groupers (Epinephelus fuscoguttatus♀ × E. lanceolatus♂): Effects on growth and expressions of key genes involved in appetite and hepatic glucose and lipid metabolism. Aquac. Rep. 2021, 20, 100710. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Z.; Zhou, F.; Yang, Q.; Jiang, S. Study on partial replacement of fish meal with concentrated dephenolized cottonseed protein in feed of Penaeus monodon. Aquac. Res. 2021, 52, 3871–3881. [Google Scholar] [CrossRef]
- Rezaei, S.; Mohammadiazarm, H.; Keyvanshokooh, S.; Pasha-Zanoosi, H.; Sharif-Kanani, H. Nutritional nano-selenium inclusion in fishmeal-free plant-based diets enhances stress resistance and post-stress recovery of common carp (Cyprinus carpio). Aquac. Rep. 2024, 38, 102298. [Google Scholar] [CrossRef]
- Sharif-Kanani, H.; Keyvanshokooh, S.; Mohammadiazarm, H.; Pasha-Zanoosi, H.; Rezaei, S. Nano-selenium (nano-Se) removes the detrimental impacts of plant-based diets on the production performance and well-being of common carp (Cyprinus carpio). Aquac. Rep. 2024, 36, 102107. [Google Scholar] [CrossRef]
- He, G.; Zhang, T.; Zhou, X.; Liu, X.; Sun, H.; Chen, Y.; Tan, B.; Lin, S. Effects of cottonseed protein concentrate on growth performance, hepatic function and intestinal health in juvenile largemouth bass, Micropterus salmoides. Aquac. Rep. 2022, 23, 101052. [Google Scholar] [CrossRef]
- Crielaard, B.J.; Lammers, T.; Rivella, S. Targeting iron metabolism in drug discovery and delivery. Nat. Rev. Drug Discov. 2017, 16, 400–423. [Google Scholar]
- Wang, R.; Lv, Y.; Ni, Z.Y.; Feng, W.; Fan, P.; Wang, Y.; Lin, Y.; Chen, X. Intermittent hypoxia exacerbates metabolic dysfunction-associated fatty liver disease by aggravating hepatic copper deficiency-induced ferroptosis. FASEB J. 2024, 38, e23788. [Google Scholar] [CrossRef]
- Chen, X.; Comish, P.B.; Tang, D.; Kang, R. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol. 2021, 9, 637162. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wu, C.; Cui, Y.; Zhu, H.; Zhao, B. The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell. Oncotarget 2017, 8, 100128–100140. [Google Scholar] [CrossRef]
- Yuan, P.; Hu, Q.; He, X.; Long, Y.; Zhou, X. Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death Dis. 2020, 11, 141. [Google Scholar] [CrossRef]
- Wu, Q.J.; Zhang, T.N.; Chen, H.H.; Yu, X.F.; Lv, J.L.; Liu, Y.Y.; Liu, Y.S.; Zheng, G.; Zhao, J.Q.; Wei, Y.F. The sirtuin family in health and disease. Signal Transduct. Target. Ther. 2023, 8, 146–219. [Google Scholar]
- Wu, J.; Minikes, A.M.; Gao, M.; Bian, H.; Jiang, X. Publisher Correction: Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 2019, 572, E20. [Google Scholar] [CrossRef]
- Dias, C.T.D.S.; Cyrino, J.E.P.; Dairiki, J.K. Lysine requirements of largemouth bass, Micropterus salmoides: A comparison of methods of analysis of dose-response trials data. J. Appl. Aquac. 2007, 19, 1–27. [Google Scholar]
- Zhao, Y.; Yang, C.; Zhu, X.; Feng, L.; Liu, Y.; Jiang, W.; Wu, P.; Huang, X.; Chen, D.; Yang, S.; et al. Dietary methionine hydroxy analogue supplementation benefits on growth, intestinal antioxidant status and microbiota in juvenile largemouth bass Micropterus salmoides. Aquaculture 2022, 556, 738279. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2005. [Google Scholar]
- Yao, X.-H.; Sun, H.; Lou, B.; Wang, X.; Wu, Y.-F. Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquaculture 2015, 446, 30–36. [Google Scholar]
- Wilson, R.P.; Robinson, E.H.; Poe, W.E. Apparent and true availability of amino acids from common feed ingredients for channel catfish. J. Nutr. 1981, 111, 923. [Google Scholar] [CrossRef] [PubMed]
- Fombad, R.B.; Bryant, M.J. Effects of cottonseed cake-based diets supplemented with blood meal, alone or with lysine, on the growth of pigs. Trop. Anim. Health Prod. 2004, 36, 385–395. [Google Scholar] [CrossRef]
- Jiang, H.B.; Chen, L.Q.; Qin, J.G.; Gao, L.J.; Jiang, X.Q. Partial or complete substitution of fish meal with soybean meal and cottonseed meal in Chinese mitten crab Eriocheir sinensis diets. Aquacult Int. 2013, 21, 617–628. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.; El Basuini, M.F.; El-Hais, A.M.; Olivier, A. Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture 2018, 490, 228–235. [Google Scholar] [CrossRef]
- Anderson, A.D.; Alam, M.S.; Watanabe, W.O.; Carroll, P.M.; Wedegaertner, T.C.; Dowd, M.K. Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata. Aquaculture 2016, 464, 618–628. [Google Scholar] [CrossRef]
- Boshra, H.; Li, J.; Sunyer, J.O. Recent advances on the complement system of teleost fish. Fish. Shellfish. Immun. 2006, 20, 239–262. [Google Scholar] [CrossRef]
- Chatzifotis, S.; Panagiotidou, M.; Papaioannou, N.; Pavlidis, M.; Nengas, I.; Mylonas, C.C. Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture 2010, 307, 65–70. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Sharawy, Z.; Li, Y.; Ma, J.; Lou, Y. Effects of dietary lipid and protein levels on growth and physiological metabolism of Pelteobagrus fulvidraco larvae under recirculating aquaculture system (RAS). Aquaculture 2018, 495, 458–464. [Google Scholar] [CrossRef]
- Arnold, P.K.; Finley, L.W.S. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef] [PubMed]
- Nyblom, H. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol. Alcohol. 2004, 39, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Nyblom, H.; Björnsson, E.; Simrén, M.; Aldenborg, F.; Almer, S.; Olsson, R. The AST/ALT ratio as an indicator of cirrhosis in patients with PBC. Liver Int. 2010, 26, 840–845. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, X.Q.; Leng, X.J.; Shan, L.L.; Zhao, J.X.; Wang, Y.T. Effects of dietary cottonseed meal level on the growth, hematological indices, liver and gonad histology of juvenile common carp (Cyprinus carpio). Aquaculture 2014, 428–429, 79–87. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, D.; Lai, W.; Chen, K.; Xu, S.; Yu, R.; Li, L.; Zhang, L.; Lu, L.; Xu, Y.; et al. Condensed tannin improves growth and alleviates intestinal inflammation of juvenile largemouth bass (Micropterus salmoides) fed with high cottonseed protein concentrate diet. Int. J. Biol. Macromol. 2024, 280, 135874. [Google Scholar] [CrossRef] [PubMed]
- Balta, C.; Herman, H.; Boldura, O.M.; Gasca, I.; Rosu, M.; Ardelean, A.; Hermenean, A. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem-Biol. Interact. 2015, 240, 94–101. [Google Scholar] [CrossRef]
- Bolarin, D.M.; Azinge, E.C. Biochemical markers, extracellular components in liver fibrosis and cirrhosis. Niger. Q. J. Hosp. Med. 2007, 17, 42–52. [Google Scholar] [CrossRef]
- Pihlajaniemi, T.; Myllylä, R.; Kivirikko, K.I. Prolyl 4-hydroxylase and its role in collagen synthesis. J. Hepatol. 1991, 13, S2–S7. [Google Scholar] [CrossRef]
- Mu, Y.; Sun, J.; Li, Z.; Zhang, W.; Liu, Z.; Li, C.; Peng, C.; Cui, G.; Shao, H.; Du, Z. Activation of pyroptosis and ferroptosis is involved in the hepatotoxicity induced by polystyrene microplastics in mice. Chemosphere 2022, 291, 132944. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Lei, X.; Xu, Q.; Ju, Y.; Xu, D.; Mao, L.; Li, J.; Zheng, Y.; Sun, N.; Zhang, X.; et al. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol. Toxicol. 2022, 38, 505–530. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Q.; Shi, C.; Jiao, F.; Gong, Z. Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol. Med. Rep. 2019, 20, 4081–4090. [Google Scholar] [CrossRef]
- Chen, S.; Che, S.; Li, S.; Wan, J.; Ruan, Z. High-fat diet exacerbated decabromodiphenyl ether-induced hepatocyte apoptosis via intensifying the transfer of Ca2+from endoplasmic reticulum to mitochondria. Environ. Pollut. 2022, 292, 118297. [Google Scholar] [CrossRef] [PubMed]
- Stulczewski, D.; Zgorzynska, E.; Dziedzic, B.; Wieczorek-Szukala, K.; Szafraniec, K.; Walczewska, A. EPA stronger than DHA increases the mitochondrial membrane potential and cardiolipin levels but does not change the ATP level in astrocytes. Exp. Cell Res. 2023, 424, 113491. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Wei, H.C.; Chen, P.; Liang, X.F.; Yu, H.H.; Wu, X.F.; Han, J.; Luo, L.; Gu, X.; Xue, M. Plant protein diet suppressed immune function by inhibiting spiral valve intestinal mucosal barrier integrity, anti-oxidation, apoptosis, autophagy and proliferation responses in amur sturgeon (Acipenser schrenckii). Fish Shellfish. Immun. 2019, 94, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, M.; Dong, X.; Tan, B.; Du, T.; Zhang, S.; Yang, Y.; Chi, S.; Yang, Q.; Liu, H. Liver immune parameters, complement pathway, inflammatory factor and TOR genes expression of silver sillago, Sillago sihama, fed with diets replacing fish meal with low-gossypol cottonseed meal. Aquacult Nutr. 2021, 27, 1934–1945. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2020, 31, 107–125. [Google Scholar] [CrossRef]
- Kilic, U.; Gok, O.; Bacaksiz, A.; Izmirli, M.; Elibol-Can, B.; Uysal, O. SIRT1 gene polymorphisms affect the protein expression in cardiovascular diseases. PLoS ONE 2014, 9, e90428. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; He, H.; Zuo, Z.; Xu, Z.; Deng, J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol. Biol. Lett. 2019, 24, 36. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Liu, J.; Han, F.; Shi, J.; Wu, G.; Wang, K.; Shen, K.; Zhao, M.; Gao, X.; et al. Adiponectin ameliorates hypertrophic scar by inhibiting Yes-associated protein transcription through SIRT1-mediated deacetylation of C/EBPβ and histone H3. iScience 2022, 25, 105236. [Google Scholar] [CrossRef]
- Ma, S.; Sun, L.; Wu, W.; Wu, J.; Sun, Z.; Ren, J. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front. Physiol. 2020, 11, 551318. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Fu, Y.; Liu, W.; Mu, Y.; Zhang, H.; Chen, J.; Liu, P. Ferroptosis in chronic liver diseases: Opportunities and challenges. Front. Mol. Biosci. 2022, 9, 928321. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Murshed, A.; Li, H.; Ma, J.; Pan, Q. O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer. Cell Death Discov. 2021, 7, 83. [Google Scholar] [CrossRef] [PubMed]
Ingredients | FM | CP12 | CP24 | CP36 | CP48 | CP60 |
---|---|---|---|---|---|---|
Soya bean oil 1 | 40.2 | 44.0 | 47.8 | 51.6 | 55.4 | 59.2 |
Bentonite | 84.8 | 69.0 | 52.6 | 34.4 | 17.2 | 0.0 |
Fish meal | 520.0 | 458.8 | 397.6 | 336.4 | 275.2 | 214.0 |
Chicken meal | 160.0 | 160.0 | 160.0 | 160.0 | 160.0 | 160.0 |
Wheat gluten | 70.0 | 70.0 | 70.0 | 70.0 | 70.0 | 70.0 |
Cottonseed protein | 0.0 | 70.0 | 140.0 | 210.0 | 280.0 | 350.0 |
Wheat flour | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |
Tapioca | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 |
Lysine | 0.0 | 0.5 | 1.6 | 4.3 | 6.2 | 8.2 |
DL-methionine | 2.0 | 2.7 | 3.4 | 4.3 | 5.0 | 5.6 |
CaH2PO4 | 10.0 | 12.0 | 14.0 | 16.0 | 18.0 | 20.0 |
Choline chloride | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Mineral element premix 2 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Vitamin premix 3 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Nutrients content 4 | ||||||
Crude protein | 518.5 | 521.2 | 521.0 | 522.3 | 521.2 | 520.3 |
Crude lipid | 78.8 | 80.8 | 81.2 | 80.3 | 80.7 | 79.4 |
Moisture | 49.8 | 48.8 | 49.7 | 50.0 | 50.2 | 48.5 |
Item 1 | Sequence | Tm (°C) 2 | GenBank ID |
---|---|---|---|
IL-1β-QF | CATGTTGGATCGTTACGGCAT | 61 | XM_038733429.1 |
IL-1β-QR | CCCATCTTCACGTTTTAGGCAC | ||
TNF-α-QF | AGCAAGGAAGCAGACAACGG | 59 | XM_038723994.1 |
TNF-α-QR | ATTTGCCTCAATGTGTGACGAT | ||
IL-10-QF | AGCCAGCAGCATCATTACCA | 59 | XM_038696252.1 |
IL-10-QR | AGAACCAGGACGGACAGGAG | ||
TGF-β2-QF | ACACTTTGCTGAAACTGGGGA | 64 | XM_038710299.1 |
TGF-β2-QR | GAACACGGACGACACACAGGT | ||
Sirt1-QF | TACCAGAACAGCCACCAAGT | 64.0 | XM 038736812 |
Sirt1-QR | CATTATTACCAGCAGTCTCCGT | ||
Yap-QF | GCTTGTAAGGCCAACCTCCT | 61.4 | XM_038693048.1 |
Yap-QR | GATTTGGGGACCCTTGCGTA | ||
Trf-QF | GGGCAACAATCCCCAAACT | 61.4 | XM 038718037 |
Trf-QR | TCATCCACCAGACACTGAAAGG | ||
Trfc-QF | CTTCCTGTCGCCCTATGAGTC | 64.5 | XM 038718573 |
Trfc-QR | GTCTGCCTTAGGGTTGTTGGT | ||
Gpx4-QF | GTTTACGCATCCTTGCCTTCC | 59.0 | XM 038716292 |
Gpx4-QR | GCTCTTTCAGCCACTTCCACAA | ||
Acsl4-QF | GATCTGCACTCACCCCGACA | 61.4 | XM 038699899 |
Acsl4-QR | GCTCTGGACTCAAATGCACCT | ||
Lpcat3-QF | CAGCCCTTCTGGTATCGTTG | 63.3 | XM 038711111 |
Lpcat3-QR | ATACACCCTCCGCTATAACCC | ||
Ptgs2-QF | GCCTCGTCTGTAATAATGTCCG | 64.5 | XM 038715374 |
Ptgs2-QR | CTGAATGGGATGTGCTTGAGTT | ||
β-actin-QF | CCCCATCCACCATGAAGA | 55.7 | AF 253319.1 |
β-actin-QR | CCTGCTTGCTGATCCACAT | ||
18S-QF | TGAATACCGCAGCTAGGAATAATG | 59.0 | MH 018569.1 |
18S-QR | CCTCCGACTTTCGTTCTTGATT |
Parameter 1 | Diets | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
FM | CP12 | CP24 | CP36 | CP48 | CP60 | ANOVA | Linear | Quadratic | ||
Initial body weight (g/fish) | 39.40 | 39.37 | 39.27 | 39.47 | 39.40 | 39.27 | 0.093 | 0.609 | 0.476 | 0.509 |
Final body weight (g/fish) | 99.77 a | 97.97 a | 99.37 a | 94.03 b | 92.21 bc | 89.79 c | 1.462 | <0.001 | 0.000 | 0.193 |
Percent weight gain (%) | 153.21 a | 148.87 a | 153.07 a | 138.25 b | 134.04 bc | 128.68 c | 4.732 | <0.001 | 0.000 | 0.251 |
Specific growth rate (%) | 1.47 a | 1.45 a | 1.47 a | 1.38 b | 1.35 bc | 1.31 c | 0.023 | <0.001 | 0.000 | 0.224 |
Feed intake (g/fish) | 63.51 a | 63.72 a | 61.28 ab | 60.94 ab | 58.37 b | 58.81 ab | 1.932 | 0.119 | 0.001 | 0.831 |
Feed efficiency (%) | 95.03 ab | 92.11 ab | 98.25 a | 89.65 bc | 90.46 bc | 86.00 c | 3.287 | 0.061 | 0.027 | 0.383 |
Relative gut length (%) | 78.03 | 77.56 | 78.42 | 77.69 | 77.67 | 76.32 | 1.673 | 0.738 | 0.256 | 0.342 |
Intestosomatic index (%) | 0.84 a | 0.81 ab | 0.81 ab | 0.76 bc | 0.74 cd | 0.69 d | 0.037 | 0.001 | <0.001 | 0.263 |
Viscerosomatic index (%) | 8.48 a | 8.31 ab | 8.53 a | 7.94 b | 7.93 b | 7.46 c | 0.182 | <0.001 | <0.001 | 0.027 |
Hepatosomatic index (%) | 2.33 a | 2.21 ab | 2.41 a | 2.08 bc | 1.95 c | 1.89 c | 0.126 | <0.001 | <0.001 | 0.104 |
Parameters 1 | Diets | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
FM | CP12 | CP24 | CP36 | CP48 | CP60 | AVOVA | Linear | Quadratic | ||
Moisture | 70.95 c | 70.73 bc | 69.83 a | 70.01 a | 70.92 c | 70.50 ab | 0.015 | 0.039 | 0.596 | 0.025 |
Crude protein | 18.50 | 18.67 | 19.00 | 19.00 | 18.83 | 19.00 | <0.001 | 0.432 | 0.587 | 0.016 |
Crude lipid | 7.09 | 7.17 | 7.25 | 7.15 | 7.00 | 7.06 | <0.001 | 0.448 | 0.805 | 0.298 |
Ash | 3.76 | 3.71 | 3.81 | 3.78 | 3.72 | 3.84 | 0.010 | 0.446 | 0.801 | 0.322 |
Protein production value | 0.73 | 0.83 | 0.81 | 0.81 | 0.77 | 0.81 | 0.050 | 0.340 | 0.213 | 0.547 |
Lipid production value | 2.30 | 2.50 | 2.45 | 2.44 | 2.23 | 2.48 | 0.110 | 0.273 | 0.306 | 0.926 |
Parameters 1 | Diets | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
FM | CP12 | CP24 | CP36 | CP48 | CP60 | ANOVA | Linear | Quadratic | ||
Serum | ||||||||||
Triglyceride (mmol/L) | 9.19 a | 8.46 a | 14.99 c | 17.75 d | 17.78 d | 12.30 b | 3.462 | <0.001 | 0.000 | 0.000 |
Total cholesterol (mmol/L) | 11.41 ab | 10.78 a | 12.03 b | 13.07 c | 13.19 c | 12.82 c | 0.353 | <0.001 | 0.000 | 0.092 |
Alkalinephosphatase (King /g prot) | 7.70 b | 7.74 b | 7.66 b | 9.52 c | 7.36 ab | 6.39 a | 0.493 | <0.001 | 0.067 | 0.001 |
L-Hydroxyproline (ug/mL) | 5.90 a | 9.12 b | 8.88 b | 9.37 bc | 13.32 d | 11.26 c | 0.996 | <0.001 | 0.000 | 0.133 |
Liver | ||||||||||
Aspartate aminotransferase (U/g prot) | 39.05 b | 36.43 b | 35.87 ab | 32.41 a | 39.65 b | 53.19 c | 1.983 | <0.001 | 0.000 | 0.000 |
Alanine aminotransferase (U/g prot) | 160.04 b | 163.35 b | 161.71 b | 141.58 a | 168.07 b | 195.69 c | 8.372 | <0.001 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Zhao, J.; Zhang, X.; Ribas, L.; Liu, H.; Jiang, J. Dietary Cottonseed Protein Substituting Fish Meal Induces Hepatic Ferroptosis Through SIRT1-YAP-TRFC Axis in Micropterus salmoides: Implications for Inflammatory Regulation and Liver Health. Biology 2025, 14, 748. https://doi.org/10.3390/biology14070748
Cao Q, Zhao J, Zhang X, Ribas L, Liu H, Jiang J. Dietary Cottonseed Protein Substituting Fish Meal Induces Hepatic Ferroptosis Through SIRT1-YAP-TRFC Axis in Micropterus salmoides: Implications for Inflammatory Regulation and Liver Health. Biology. 2025; 14(7):748. https://doi.org/10.3390/biology14070748
Chicago/Turabian StyleCao, Quanquan, Ju Zhao, Xuefei Zhang, Laia Ribas, Haifeng Liu, and Jun Jiang. 2025. "Dietary Cottonseed Protein Substituting Fish Meal Induces Hepatic Ferroptosis Through SIRT1-YAP-TRFC Axis in Micropterus salmoides: Implications for Inflammatory Regulation and Liver Health" Biology 14, no. 7: 748. https://doi.org/10.3390/biology14070748
APA StyleCao, Q., Zhao, J., Zhang, X., Ribas, L., Liu, H., & Jiang, J. (2025). Dietary Cottonseed Protein Substituting Fish Meal Induces Hepatic Ferroptosis Through SIRT1-YAP-TRFC Axis in Micropterus salmoides: Implications for Inflammatory Regulation and Liver Health. Biology, 14(7), 748. https://doi.org/10.3390/biology14070748