Next Article in Journal
The Regulatory Role of EvfG Through Coordinated Control of Flagellar Biosynthesis and Energy Metabolism in Porcine Extraintestinal Pathogenic Escherichia coli (ExPEC)
Previous Article in Journal
Effects of Bacillus subtilis and Rhodotorula Yeast Culture on the Growth Performance, Meat Quality, Antioxidant Capacity, and Serum Metabolites in Yellow-Feathered Broilers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Comparison of Environmental DNA Metabarcoding and Underwater Visual Census for Assessing Macrobenthic Diversity

1
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
3
University of Chinese Academy of Sciences, Beijing 100049, China
4
Nanji Islands National Marine Nature Reserve Administration, Wenzhou 325400, China
5
Institutes of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
*
Author to whom correspondence should be addressed.
Biology 2025, 14(7), 821; https://doi.org/10.3390/biology14070821
Submission received: 2 May 2025 / Revised: 25 June 2025 / Accepted: 4 July 2025 / Published: 6 July 2025

Simple Summary

This study evaluates the efficacy of environmental DNA (eDNA) metabarcoding and underwater visual census (UVC) in assessing the diversity of subtidal macrobenthic communities. We compared water eDNA, sediment eDNA, and traditional UVC methods in the Nanji Islands, China. Sediment eDNA demonstrated superior performance in detecting key benthic phyla such as Annelida and Arthropoda, whereas UVC was more effective for large and active organisms. Integrating these methods provides a more comprehensive biodiversity assessment, highlighting the importance of combining molecular and traditional techniques for effective conservation and management strategies in marine ecosystems.

Abstract

The rapid advancement of environmental DNA (eDNA) technology has transformed ecological research, particularly in aquatic ecosystems. However, the optimal sampling matrix (e.g., water or sediment) and the potential for eDNA to replace or complement traditional underwater visual census (UVC) remain unclear. Here, we integrate water eDNA, sediment eDNA, and UVC approaches to systematically compare the diversity of benthic macrofauna in the subtidal zones of the Nanji Islands, China. Our results show that sediment eDNA samples exhibited the highest species richness, while UVC had the lowest. Each method revealed distinct species profiles, with relatively few shared taxa at the order level and below. Environmental eDNA showed significant advantages in detecting key phyla such as Annelida and Arthropoda. In contrast, traditional UVC was crucial for identifying certain taxa, such as Bryozoa, which were undetectable by eDNA methods. The low overlap in species detected by these methods underscores their complementary nature, highlighting the necessity of integrating multiple approaches to achieve a more comprehensive and accurate biodiversity assessment. Future research should focus on refining eDNA techniques, such as developing more universal primers, to further enhance their applicability in biodiversity monitoring.

1. Introduction

The subtidal zone, a critical interface between intertidal zones and shallow sea, usually harbors a rich diversity of benthic fauna, yet it is one of the areas most severely affected by human activities [1]. Traditional in situ observations through underwater visual census (UVC)—where trained SCUBA divers survey species richness and community assemblages in the field—have long been the predominant method for studying marine organisms [2]. However, this approach is limited by the need for specialized skills, suitable field conditions, and significant resources [3]. Moreover, the complex currents and topography of subtidal zones often pose substantial challenges for UVC surveys, restricting the comprehensive biomonitoring of these habitats [4].
Recent advancements in environmental DNA (eDNA) technology have revolutionized biodiversity assessments in aquatic ecosystems [5]. eDNA metabarcoding allows for the non-invasive detection of species through the analysis of genetic material present in environmental samples such as water and sediment [6]. This approach has been successfully applied to monitor fish and invertebrate communities in various aquatic habitats, including rivers, lakes, and marine environments [5,6,7,8]. However, the optimal sampling matrix (water vs. sediment) and the potential for eDNA to replace or complement the traditional UVC method to access the macrobenthos diversity remain uncertain.
The Nanji Islands, located in the eastern sea area of Zhejiang Province, China, is a biosphere reserve of the United Nations Educational, Scientific and Cultural Organization (UNESCO). This subtropical marine protected area is characterized by complex subtidal zones with high biodiversity [9]. The seabed terrain in this area slopes downwards from northwest to southeast, with a water depth generally between 15 and 25 m. There are two deep-water channels on the northeast and southwest sides of Nanji Island, with a depth of over 30 m and a maximum depth of 45 m. The subtidal areas here include several distinct habitat types, such as steep rocky cliffs, platforms, boulder fields, small area beaches, and sediments mainly composed of silty clay. Due to the fact that the subtidal zone with a depth less than 20 m is mainly composed of rocks, bottom trawl survey is impossible, and box-type mud collection is also limited. While the underwater visual census (UVC) is the remaining available traditional method, a systematic biodiversity survey is still lacking.
Generally, the Nanji Islands provide an ideal setting for comparing the effectiveness of different biodiversity assessment methods. In this study, we integrate water eDNA, sediment eDNA, and UVC methods to systematically compare their efficiency in detecting benthic macrofaunal diversity in the subtidal zone with a depth < 20 m of the Nanji Islands. Our objectives are to quantify the differences in species detection efficiency among the three methods, and explore the complementary nature of these methods across different taxonomic levels.

2. Materials and Methods

2.1. Study Area and Sample Location

The Nanji Islands (27°27′43″ N–27°46′48″ N, 120°02′55″ E–121°07′58″ E) are located in the eastern sea area of Wenzhou City, Zhejiang Province, China. This subtropical marine protected area is characterized by mainly rocky inter- and sub-tidal zones with high biodiversity. Ten subtidal sites representing the broader subtidal environment were selected for this study based on accessibility by boat on 8–10 May 2024 (Figure 1).

2.2. Underwater Visual Census (UVC) and Photo Analysis

UVC survey conducted during high-tide period. The basic unit of UVC was a 50 m long transect line, with macrobenthos surveyed in two 1 m wide by 2 m high bands on either side of the transect line [10]. The proportions of the area examined in relation to the rocky subtidal area of each site ranged from approximately 10% to 30%. Digital photo-quadrats were taken at 2.5 m intervals along the transect line (i.e., 20 per 50 m transect). Due to the extremely low transparency of seawater (<1 m), the SMA, DSJ, HJS, and DLS sites were not suitable for diving. Consequently, the UVC units of only six stations with a depth range of 5–15 m were completely investigated (Figure 1, marked by green color). Two taxonomists (W. Huo and W. Chen) estimated the number of species from the visual data together, without prior knowledge of the eDNA outcomes. Due to the generally low transparency of seawater, many photo-quadrats were not very clear, and only 30 species could be identified to species level (Table A1).

2.3. Environmental DNA Sampling

Water and sediment samples were collected from ten stations in the subtidal zones of the Nanji Islands. Considering that the larvae of benthic organisms may float in surface water layers, 1 L of seawater was collected from both surface and bottom layers by divers to gather as much macrobenthos eDNA as possible. The samples were mixed thoroughly, and 1.5 L seawater was filtered [11] through a 0.22 µm mixed cellulose ester (MCE) membrane, and the filter paper was immediately transferred to a 1.5 mL cryopreservation tube and stored at −20 °C.
Sediment samples were collected using a grab sampler near the water sampling sites. At the sites XMA and XCY, however, the sediment could not be collected by the grab sampler due to the thin sediment layer. Instead, divers collected sediment using 50 mL centrifuge tubes in those sites. Approximately 20 g of surface sediment was placed into a sterile, enzyme-free sampling bag and stored at −20 °C until further analysis.

2.4. DNA Extraction and Sequencing

Environmental DNA was extracted from water sample filters using the DNeasy Power Water Kit (Qiagen, Hilden, Germany) and from sediment samples using the QIAamp PowerFecal Pro DNA Kit (Qiagen, Hilden, Germany), following standardized protocols to ensure high extraction efficiency and purity. The COI gene fragments were targeted and amplified using universal primers mlCOIintF (5′-GGWACWGGWTGAACWGTWTAYCCYCC-3′) [12] and jgHCO2198 (5′-TAIACYTCIGGRTGICCRAARAAYCA-3′) [13]. The PCR conditions were as follows: initial denaturation at 94 °C for 3 min, followed by 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 2 min, with a final extension at 72 °C for 5 min. Negative controls (DNA-free samples) were processed in parallel to ensure the reliability of the PCR. Sequence libraries were prepared using the TruSeq® DNA PCR-Free Kit (Illumina, San Diego, CA, USA) and quantified by Qubit and Q-PCR. The libraries were sequenced as 250 bp paired-end reads on a NovaSeq 6000 platform.

2.5. Bioinformatics Analysis

Raw sequencing data were processed using DADA2 (version 2.15.2) to remove primer sequences and low-quality reads [14]. Amplicon sequence variants (ASVs) were clustered at 97% similarity using VSEARCH, and ASVs with less than 0.01% abundance across all samples were filtered out [15,16]. Taxonomic annotations were performed against the NCBI database, focusing on eukaryotic groups. Non-marine groups (e.g., Arachnida, Insecta, and terrestrial Craniata) were manually excluded from the ASV table [17].

2.6. Statistical Analyses

To comprehensively assess the species diversity based on the three methods, species richness, Shannon–Wiener diversity, and Pielou’s evenness indices were employed. Species richness and the relative ratio of species number at class, order, and family level were compared among UVC, sediment eDNA, and water eDNA methods. Venn diagrams were generated to assess overlapping taxa detected by the different methods. As the species diversity data from sediment and water eDNA did not meet the normal distribution assumption (Shapiro–Wilk test, p < 0.05) or the homogeneity of variance assumption (Bartlett test, p < 0.05), a nonparametric Kruskal–Wallis test was used to analyze intergroup differences in species diversity. Post hoc Dunn tests with Holm–Bonferroni correction for p-values were further conducted to evaluate species diversity differences across different methods.
In the analysis of the community structure, Jaccard distances were calculated based on species composition matrices, and non-metric multidimensional scaling (NMDS) was used to visualize community differences among the three methods. The reliability of the ordination was evaluated by the stress value (the closer the value is to zero, the higher the degree of fit). The clustering of samples was observed in the NMDS plot, and the significance of community structure differences among groups was verified by ANOSIM tests (based on Jaccard distances). All statistical analyses and figures were performed using R version 4.0.3, with plots created using the ggplot2 package (version 3.3.3) [18].

3. Results

3.1. Sequencing and UVC Results

Only eight of ten water and sediment eDNA samples were successfully amplified even after repeating the PCR experiments several times, respectively (Figure 1, successful amplification stations marked by yellow and blue colors, respectively). A total of 657,161 and 752,136 raw reads were obtained from water and sediment eDNA samples, respectively. After bioinformatics processing, 1879 and 7487 amplicon sequence variants (ASVs) were identified for water and sediment eDNA, respectively. The majority of ASVs (79.30% for water eDNA and 64.90% for sediment eDNA) were either taxonomically unassigned or belonged to non-marine groups. The remaining ASVs represented a diverse range of marine taxa, including 11 phyla, 22 classes, 47 orders, 72 families, 72 genera, and 94 species for water eDNA; and 14 phyla, 28 classes, 64 orders, 114 families, 125 genera, and 166 species for sediment eDNA. In contrast, UVC identified a total of nine phyla, 16 classes, 18 orders, 29 families, 29 genera, and 39 species based on photo-quadrat analysis. Overall, the three methods collectively identified 15 phyla, 38 classes, 89 orders, 179 families, 206 genera, and 284 species (Table 1 and Table A1).

3.2. Comparison of the Taxonomic Compositions Among the Three Methods

Taxonomic compositions were compared among the three methods at five common stations (Figure 2). Sediment eDNA detected the highest number of phyla (13), classes (27), and species (131), followed by water eDNA (10 phyla, 21 classes, 72 species) and UVC (seven phyla, 14 classes, 15 orders, 32 species). At the phylum level, sediment and water eDNA showed similar compositions, with Mollusca, Arthropoda, and Cnidaria being dominant (Table 1). In contrast, UVC identified Mollusca, Cnidaria, and Bryozoa as the most dominant group, and the Bryozoa was undetectable by eDNA methods (Figure 2a). At the class level, sediment eDNA was dominated by Gastropoda, followed by Malacostraca and Hydrozoa, while water eDNA showed a similar pattern with Gastropoda, Hydrozoa, and Demospongiae as dominant classes. UVC identified Gastropoda, Anthozoa, and Demospongiae as the dominant classes (Figure 2b). At the order level, sediment eDNA showed Anthomedusae, Decapoda, and Stylommatophora as dominant orders, while water eDNA was dominated by Leptothecata, Anthoathecata, and Stylommatophora. UVC identified Neogastropoda, Nudibranchia, and Demospongiae as dominant orders (Figure 2c).
Venn diagrams revealed relatively high taxon overlaps at the phylum and class levels, and low overlaps at the order level and below among the taxonomic compositions from the three methods (Figure 3). Sediment eDNA detected the highest number of species overall, while traditional UVC methods detected fewer but unique species. No common species was found among the three methods. Only 18 common species were found between sediment and water eDNA samples, and only 1 common species was found between traditional UVC and sediment/water eDNA samples.

3.3. Alpha and Beta Diversity Among the Three Methods

Species richness was highest in sediment eDNA samples across all stations except LCJ, with UVC showing the lowest species richness (Figure 4a). Overall, sediment eDNA samples exhibited the highest average species richness, while UVC had the lowest (Figure 4b). The Kruskal–Wallis test and post hoc Dunn test indicated significant differences in species richness between sediment eDNA and UVC methods (Figure 4c). Sediment eDNA also consistently showed higher Shannon and Pielou’s evenness indices compared to water eDNA, indicating superior performance in both species abundance and community evenness (Figure 4d,e).
Non-metric multidimensional scaling (NMDS) ordination plots showed distinct clustering of samples from sediment eDNA, water eDNA, and UVC methods, with no overlap among the groups (Figure 4f). The stress value of zero and an ANOSIM test p-value of 0.001 confirmed the high reliability of the ordination results, indicating significant differences in community structure captured by the three methods. This suggests that each method provides unique insights into the biodiversity of the subtidal zone, highlighting the importance of integrating multiple approaches for comprehensive biodiversity assessment.

4. Discussion

4.1. Environmental DNA Is Essential for Biodiversity Assessment of Rocky Subtidal Zone

Traditional bottom trawling and grab sampling are unsuitable for biodiversity assessments in rocky subtidal zones. Underwater visual census (UVC) is often used for macrobenthic surveys, but its effectiveness is limited by low seawater transparency, as seen in this study. Compared to UVC, the present study demonstrates that eDNA is more effective for assessing benthic macrofaunal diversity, particularly for key phyla such as Annelida and Arthropoda (Table 1; Figure 3). The sediment eDNA detected a significantly higher species richness compared to the UVC method (Figure 4). Generally, both the sediment and water eDNA methods can uncover those relatively smaller benthos (e.g., Chaetognatha, Gastrotricha, Nemertea, Platyhelminthes, and most of Annelida and Arthropoda) that were missed by the UVC survey (Table 1 and Table A1). Furthermore, eDNA showed significant differences in community structure with the UVC (Figure 4f).
In terms of total number, the sediment eDNA detected more species than the water eDNA (166 vs. 94; Table 1). For all the phyla except Cnidaria and Chaetognatha, the sediment eDNA detected no less species than the water eDNA (Table 1). Notably, sediment eDNA failed to detect Octocorallia species, which were uncovered by water eDNA. Most octocorals prefer to live on hard substrates such as rocks, rather than sediments. Consequently, the octocoral eDNA in the sediment is too rare to amplify. In contrast, the eDNA concentration in water samples increases after filtration and concentration, which may contain more octocoral eDNA. For the planktonic Chaetognatha, it is not surprising that the water eDNA detected more species than the sediment eDNA (Table A1).
For the macrobenthos, the superior detection efficiency of sediment eDNA is likely due to the higher concentration and longer persistence of DNA in sediments compared to water samples, which allows for retrospective genetic monitoring and extends the seasonal window for species assessment [19,20,21,22,23,24,25]. For example, the decay rate of fish eDNA in sediment is significantly lower than that in water (0.033%/h vs. 1.9%/h), and eDNA is 8–1800 times more concentrated in sediment than in water. This suggests that sediment eDNA can capture a broader range of species, including those that may be temporarily absent or less active in the water column.

4.2. Limitations of Traditional UVC and eDNA Methods

While the traditional UVC method is effective for detecting large and highly active organisms, they have limited capacity for detecting small or cryptic species [2,26]. In the present study, this limitation is partly due to the difficulty in capturing and identifying relatively small organisms such as polychaetes (belonging to the phylum Annelida), Chaetognatha, Gastrotricha, Nemertea, Platyhelminthes, and Arthropoda, which often require further taxonomic examination under a microscope. Additionally, environmental factors such as water turbidity in the subtidal zones can further reduce the effectiveness of the UVC method. However, traditional UVC remains valuable for certain taxa that may not be well-represented in eDNA samples, such as Bryozoa, which was undetectable by eDNA in our study but was identified through the UVC method.
The missed detection of Bryozoa highlights the need for further refinement of eDNA techniques. The COI primers used in this study failed to detect Bryozoa, indicating potential limitations in primer universality or suboptimal annealing temperature for PCR reactions. Additionally, the incomplete nature of current DNA sequence databases limits the accuracy of species-level identifications. Future research should focus on developing more universal primers and optimal PCR reactions, and expanding reference databases to improve the reliability and resolution of eDNA-based biodiversity assessments.

4.3. Complementary Nature of the Methods and Implications for Biodiversity Monitoring

In general, taxonomic compositions from the three methods shared relatively few taxa at the order level and below, and no common species was found among these methods (Figure 2c and Figure 3). The low overlap in species detected by the three methods underscores their complementary nature. Sediment eDNA provided the most comprehensive species inventory, detecting a significantly higher number of species compared to water eDNA and traditional UVC methods. However, the unique detection of certain taxa by the UVC method highlights the importance of integrating both eDNA and UVC approaches for a more complete assessment of biodiversity. This integration can help overcome the limitations of each method, such as primer bias in eDNA techniques and the challenges of species identification in traditional methods. Future biodiversity monitoring efforts should consider the complementary nature of these methods and the potential for further technological advancements to enhance the accuracy and efficiency of biodiversity assessments. This integrated approach will be crucial for informing effective conservation and management strategies in complex aquatic environments.

5. Conclusions

The present study provides a comprehensive evaluation of environmental DNA (eDNA) metabarcoding of COI and traditional underwater visual census (UVC) methods for assessing benthic macrofaunal diversity in subtidal zones. While taxonomic compositions from the three methods show similar patterns at the phylum level, they share relatively few taxa at the order level and below. Sediment eDNA emerged as a highly effective tool, particularly for detecting key benthic phyla such as Annelida and Arthropoda, due to its enhanced preservation and detection capabilities. However, traditional UVC remains crucial for identifying certain taxa, such as Bryozoa, which were undetectable by eDNA methods. The low overlap in species detected by these methods underscores their complementary nature, highlighting the necessity of integrating multiple approaches to achieve a more comprehensive and accurate biodiversity assessment. Future research should focus on refining eDNA techniques, such as developing more universal primers and expanding reference databases, to further enhance their applicability in biodiversity monitoring.

Author Contributions

Conceptualization, Z.Z., Y.L., and K.X.; methodology, W.H., S.X., W.C., and X.L.; software, W.H. and Z.Z.; validation, Z.Z. and K.X.; formal analysis, W.H., S.X., Z.Z., and W.C.; investigation, X.L., Z.Z., S.X., and W.C.; writing—review and editing, Z.Z. and K.X.; visualization, W.H. and Z.Z.; supervision, Z.Z.; project administration, K.X.; funding acquisition, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Key R&D Program of China, grant number 2022YFC2803800, the National Natural Science Foundation of China, grant number 42176128, the Strategic Priority Research Program of the Chinese Academy of Sciences, grant number XDB42000000, and Science and Technology Program of Nanji Islands National Marine Nature Reserve Administration, grant numbers and ZJYY-PYCG-2024092001 and JJZB-PYCG-2021112901. The APC was funded by No. 2022YFC2803800.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The raw sequence reads detected by eDNA are deposited in the NCBI Sequence Read Archive database with the BioProjects PRJNA1248872 and PRJNA1248901.

Acknowledgments

We thank Xiaoyu Zheng for help with photo collection.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Table A1. Species composition based on the sediment and water eDNA and UVC methods.
Table A1. Species composition based on the sediment and water eDNA and UVC methods.
Species IDSedimentWaterUVCPhylumClassOrderFamilyGenusSpecies
OTU_1958110AnnelidaPolychaeta Polychaeta sp. NB-Po509
OTU_1601100AnnelidaClitellataEnchytraeidaEnchytraeidaeEnchytroniaEnchytronia christenseni
OTU_4793100AnnelidaPolychaetaTerebellidaFlabelligeridaeTreadwelliusTreadwellius bifidus
OTU_16546100AnnelidaPolychaeta MaldanidaeAsychisAsychis chilensis
OTU_17049100AnnelidaClitellataCrassiclitellataMegascolecidaePerionyxPerionyx rufulus
OTU_5756100AnnelidaPolychaetaPhyllodocidaNereididaeNeanthesNeanthes sp. RP2011-N
OTU_7431100AnnelidaPolychaetaPhyllodocidaNereididaeNeanthesNeanthes sp. 1
OTU_4848100AnnelidaPolychaeta OrbiniidaeScoloplosScoloplos acmeceps
OTU_2403100Annelida PhascolosomatiformesPhascolosomatidaePhascolosomaPhascolosoma esculenta
OTU_13606100AnnelidaPolychaetaSabellidaSerpulidaeSerpulaSerpula vermicularis
OTU_14440100AnnelidaPolychaetaSabellidaSerpulidaePileolariaPileolaria sp. 11BIOAK-0893
OTU_3016100AnnelidaPolychaetaSabellidaSerpulidaeCrucigeraCrucigera sp. CMC01
OTU_331100AnnelidaPolychaetaSabellidaSerpulidaeSerpulaSerpula columbiana
OTU_7545100AnnelidaClitellataLumbriculidaSparganophilidaeSparganophilusSparganophilus sp. MAC_SRS_S115
OTU_14076100AnnelidaPolychaetaSpionidaSpionidaePolydoraPolydora cornuta
OTU_2533100AnnelidaPolychaetaSpionidaSpionidaeParaprionospioParaprionospio patiens
OTU_16980100AnnelidaPolychaetaTerebellidaTerebellidaeThelepusThelepus sp. CMC01
OTU_2402100AnnelidaPolychaetaTerebellidaTerebellidaeLysillaLysilla pacifica
OTU_15614100AnnelidaPolychaetaTerebellidaTrichobranchidaeTerebellidesTerebellides stroemii
OTU_17438100AnnelidaPolychaetaXenopneustaUrechidaeUrechisUrechis unicinctus
OTU_13481100AnnelidaPolychaeta Polychaeta sp. EBS61o-Po36
OTU_3837100AnnelidaPolychaeta Polychaeta sp. OPC-2015
OTU_12617010AnnelidaPolychaetaSabellidaSerpulidaeProtolaeospiraProtolaeospira eximia
OTU_1436010AnnelidaClitellataRhynchobdellidaGlossiphoniidaeTorixTorix tukubana
OTU_1486010AnnelidaClitellataCrassiclitellataMegascolecidaeAmynthasAmynthas exiguus
OTU_2537010AnnelidaPolychaetaTerebellidaTerebellidaeLoimiaLoimia arborea
OTU_3294010AnnelidaPolychaetaSabellidaSerpulidaeSerpulaSerpula vermicularis
OTU_518010AnnelidaPolychaetaSpionidaTrochochaetidaeTrochochaetaTrochochaeta multisetosa
OTU_6200010AnnelidaPolychaetaPhyllodocidaNereididaeNereisNereis sp. CMC01
UVC_01001Annelida Polychaeta sabellidaSabellidae Sabellidae sp.
UVC_02001ArthropodaMalacostracaDecapodaPaguridae PagurusPagurus hedleyi
OTU_2085110ArthropodaCollembolaEntomobryomorphaEntomobryidaeEntomobryaEntomobrya unostrigata
OTU_13808100ArthropodaHexanaupliaHarpacticoidaAegisthidae Aegisthidae sp. DZMB479
OTU_8881100ArthropodaHexanaupliaHarpacticoidaAegisthidae Aegisthidae sp. 1
OTU_14428100ArthropodaMalacostracaDecapodaAeglidaeAeglaAegla longirostri complex sp. UFSM SG15
OTU_7458100ArthropodaHexanaupliaSessiliaArchaeobalanidaeConopeaConopea basicuneata
OTU_11323100ArthropodaIchthyostracaArguloidaArgulidaeArgulusArgulus japonicus
OTU_13718100ArthropodaMalacostracaIsopodaArmadillidaeSpherilloSpherillo sp. Kanzaki
OTU_5774100ArthropodaBranchiopodaAnostracaBranchipodidaeParartemiaParartemia serventyi
OTU_8686100ArthropodaBranchiopodaAnostracaBranchipodidaeParartemiaParartemia sp. 1
OTU_6592100ArthropodaMalacostracaDecapodaCambaridaeFaxoniusFaxonius validus
OTU_14411100ArthropodaMalacostracaAmphipodaChiltoniidae Chiltoniidae sp. CU1
OTU_5711100ArthropodaHexanaupliaSessiliaChthamalidaeChthamalusChthamalus panamensis
OTU_13431100ArthropodaOstracodaPodocopidaCyprididaeStrandesiaStrandesia velhoi
OTU_14178100ArthropodaOstracodaPodocopidaCyprididaeCyprideisCyprideis torosa
OTU_9379100ArthropodaOstracodaPodocopidaDarwinulidaeDarwinulaDarwinula stevensoni
OTU_14387100ArthropodaHexanaupliaCalanoidaDiaptomidaeHesperodiaptomusHesperodiaptomus arcticus
OTU_4874100ArthropodaCollembolaSymphypleonaDicyrtomidae Dicyrtomidae sp. BIOUG21696-E03
OTU_14442100ArthropodaCollembolaEntomobryomorphaEntomobryidaeEntomobryaEntomobrya decemfasciata
OTU_5455100ArthropodaCollembolaEntomobryomorphaEntomobryidaeLepidocyrtusLepidocyrtus sp. COLNO287-09
OTU_8097100ArthropodaCollembolaEntomobryomorphaEntomobryidaeEntomobryaEntomobrya sp. HB0852_3
OTU_4780100ArthropodaMalacostracaAmphipodaEusiridae Eusiridae sp. 06 MK-2021
OTU_4668100ArthropodaMalacostracaDecapodaGrapsidaeGrapsusGrapsus albolineatus
OTU_2814100ArthropodaMalacostracaIsopodaHaploniscidaeMastigoniscusMastigoniscus sp. NB-Iso41
OTU_14314100ArthropodaCollembolaPoduromorphaHypogastruridae Hypogastruridae sp. BIOUG23106-B05
OTU_7317100ArthropodaMalacostracaIsopodaIschnomesidaeIschnomesusIschnomesus sp. lineage 7d JB-2020
OTU_7631100ArthropodaOstracodaPodocopidaLoxoconchidaeMicroloxoconchaMicroloxoconcha ikeyai
OTU_13364100ArthropodaMalacostracaAmphipodaLysianassidaeEurythenesEurythenes gryllus
OTU_4425100ArthropodaMalacostracaAmphipodaLysianassidaeEurythenesEurythenes sp. 1
OTU_4697100ArthropodaMalacostracaAmphipodaLysianassidaeEurythenesEurythenes sp. 2A2 HR-2015
OTU_17634100ArthropodaHexanaupliaHarpacticoidaMiraciidaePsammotopaPsammotopa sp. n. SR-2019
OTU_6939100ArthropodaMalacostracaMysidaMysidaeParamesopodopsisParamesopodopsis rufa
OTU_1240100ArthropodaCollembolaPoduromorphaNeanuridaeMorulinaMorulina mackenziana
OTU_2412100ArthropodaMalacostracaDecapodaOregoniidaePleistacanthaPleistacantha kannu
OTU_1556100ArthropodaMalacostracaDecapodaPalaemonidaeMacrobrachiumMacrobrachium naiyanetri
OTU_5707100ArthropodaMalacostracaDecapodaPandalidaePlesionikaPlesionika semilaevis
OTU_9864100ArthropodaMalacostracaDecapodaPandalidaePandalusPandalus montagui
OTU_13528100ArthropodaDiplopodaPolyxenidaPolyxenidae Polyxenidae sp. Biologic-POLX001
OTU_12157100ArthropodaMalacostracaDecapodaPorcellanidaePetrolisthesPetrolisthes rufescens
OTU_13725100ArthropodaMalacostracaDecapodaPortunidaePortunusPortunus ventralis
OTU_1312100ArthropodaCollembolaEntomobryomorphaTomoceridaeTomocerusTomocerus ocreatus
OTU_1352100ArthropodaMalacostracaIsopodaTylidaeTylosTylos ponticus
OTU_17543100ArthropodaMalacostracaAmphipodaTyphlogammaridaeTyphlogammarusTyphlogammarus sp. ZH-2014
OTU_14472100ArthropodaHexanaupliaSessiliaVerrucidaeMetaverrucaMetaverruca recta
OTU_13506100ArthropodaMalacostracaAmphipoda Amphipoda sp. LPdivOTU157
OTU_17242100ArthropodaHexanaupliaCopepoda Copepoda environmental sample
OTU_2669100ArthropodaHexanaupliaCopepoda Copepoda sp. RR-2014
OTU_6511100Arthropoda Arthropoda environmental sample
OTU_7414100ArthropodaHexanaupliaHarpacticoida Harpacticoida sp. 10BIOBC-00681
OTU_11071010ArthropodaHexanaupliaCalanoidaDiaptomidaeAllodiaptomusAllodiaptomus mirabilipes
OTU_11156010ArthropodaOstracodaPodocopidaCyprididaeCyprettaCypretta campechensis
OTU_15398010Arthropoda Arthropoda sp. NZAC 03011539
OTU_15775010ArthropodaOstracodaPodocopidaCandonidaePseudocandonaPseudocandona hartwigi
OTU_17132010ArthropodaMalacostracaEuphausiaceaEuphausiidaePseudeuphausiaPseudeuphausia sinica
OTU_1993010ArthropodaCollembolaSymphypleonaBourletiellidaeHeterosminthurusHeterosminthurus sp. 2 JRD-2015
OTU_4032010ArthropodaMalacostracaAmphipodaStenothoidaeMetopaMetopa boeckii
OTU_4984010ArthropodaHexanaupliaSiphonostomatoida Siphonostomatoida sp. DZMB115
OTU_6169010ArthropodaBranchiopodaDiplostracaLimnadiidaeLimnadopsisLimnadopsis cf. parvispinus
OTU_6178010ArthropodaOstracodaPodocopidaCyprididaeNgarawaNgarawa sp. 950.5
OTU_6301010ArthropodaMalacostracaIsopodaDesmosomatidae Desmosomatidae sp. NB-Iso234
OTU_8282010ArthropodaMalacostracaIsopodaLigiidaeLigiaLigia baudiniana
OTU_8283010ArthropodaMalacostracaAmphipodaNiphargidaeNiphargusNiphargus parenzani
UVC_03001BryozoaGymnolaemata CheilostomatidaMembraniporidae BiflustraBiflustra grandicella
UVC_04001Bryozoa Bryozoa sp.
UVC_05001BryozoaGymnolaemata CheilostomatidaBitectiporidae entaporaentapora fascialis
UVC_31001BryozoaStenolaemata CyclostomatidaCrisiidae CrisiaCrisia elongata
UVC_33001BryozoaCheilostomatida CandidaeCabereaCaberea lata
OTU_10240110ChaetognathaSagittoideaAphragmophoraSagittidaeSagittaSagitta sp. ZP304
OTU_36010ChaetognathaSagittoideaAphragmophoraSagittidaeZonosagittaZonosagitta nagae
OTU_93010Chaetognatha Chaetognatha environmental sample
OTU_971010Chaetognatha Chaetognatha environmental sample
OTU_14459100ChordataAscidiaceaAplousobranchiaDidemnidaeDidemnumDidemnum candidum
OTU_13738100ChordataThaliaceaPyrosomataPyrosomatidaePyrostremmaPyrostremma spinosum
OTU_13999100ChordataThaliaceaSalpidaSalpidaeCyclosalpaCyclosalpa sp. USNM IZ 1449879
OTU_13033100ChordataAscidiaceaStolidobranchiaStyelidaeCnemidocarpaCnemidocarpa verrucosa
OTU_2807100ChordataAscidiaceaStolidobranchiaStyelidaeCnemidocarpaCnemidocarpa verrucosa
OTU_121010ChordataAscidiaceaStolidobranchiaStyelidaeCnemidocarpaCnemidocarpa sp. 1
UVC_06001Chordata Ascidiacea Ascidiacea sp.
UVC_30000Chordata AscidiaceaStolidobranchiaStyelidaestyelastyela canopus
OTU_8074110CnidariaHydrozoaLeptothecataAequoreidaeAequoreaAequorea sp. USNM IZ 1450497
OTU_17794110CnidariaHydrozoaAnthoathecataCandelabridaeCandelabrumCandelabrum cocksii
OTU_1173110CnidariaHydrozoaLeptothecataClytiidaeClytiaClytia paulensis
OTU_1784110CnidariaHydrozoaLeptothecataClytiidaeClytiaClytia gracilis
OTU_16831110CnidariaHydrozoaAnthoathecataCorynidaeCoryneCoryne sp. JRH-2014
OTU_17154100CnidariaAnthozoaScleractiniaAcroporidaeAcroporaAcropora sp. IP0357
OTU_17856100CnidariaHydrozoaAnthoathecataBougainvilliidaeBougainvilliaBougainvillia muscus
OTU_2568100CnidariaAnthozoaScleractiniaCaryophylliidaeDasmosmiliaDasmosmilia cf. lymani MVK-2010
OTU_2663100CnidariaAnthozoaScleractiniaCaryophylliidaeRhizosmiliaRhizosmilia robusta
OTU_9057100CnidariaScyphozoaRhizostomeaeCassiopeidaeCassiopeaCassiopea sp. AUQLCBC
OTU_3574100CnidariaHydrozoaAnthoathecataCorynidaeStauridiosarsiaStauridiosarsia cliffordi
OTU_13582100CnidariaStaurozoaStauromedusaeCraterolophidaeCraterolophusCraterolophus convolvulus
OTU_3839100CnidariaHydrozoaAnthoathecataEudendriidaeEudendriumEudendrium carneum
OTU_5607100CnidariaHydrozoaLeptothecataLafoeidaeLafoeaLafoea dumosa
OTU_10300100CnidariaHydrozoaLeptothecataLaodiceidaeLaodiceaLaodicea undulata
OTU_13976100CnidariaStaurozoaStauromedusaeLucernariidaeLucernariaLucernaria quadricornis
OTU_17088100CnidariaStaurozoaStauromedusaeLucernariidae Lucernariidae sp. CCSMA208-10
OTU_10965100CnidariaHydrozoaLeptothecataObeliidaeObeliaObelia dichotoma
OTU_13515100CnidariaHydrozoaLeptothecataObeliidaeObeliaObelia sp. DNZ116
OTU_3127100CnidariaHydrozoaAnthoathecataOceaniidaeTurritopsisTurritopsis lata
OTU_14409100CnidariaHydrozoaAnthoathecataPandeidaeLeuckartiaraLeuckartiara sp. PS-2018
OTU_13700100CnidariaHydrozoaSiphonophoraeRhodaliidaeDendrogrammaDendrogramma enigmatica
OTU_4766100CnidariaHydrozoaLeptothecataSertulariidaeFraseroscyphusFraseroscyphus hozawai
OTU_3775100CnidariaAnthozoaScleractiniaSiderastreidaePsammocoraPsammocora profundacella
OTU_11341100CnidariaScyphozoaSemaeostomeaeUlmaridaeAureliaAurelia sp. IDPAJGB
OTU_8311100CnidariaHydrozoaAnthoathecataZancleidaeZancleaZanclea sango
OTU_10172010CnidariaHydrozoaLeptothecataEirenidaeHelgicirrhaHelgicirrha malayensis
OTU_104010CnidariaHydrozoaLeptothecataClytiidaeClytiaClytia hemisphaerica
OTU_10944010CnidariaHydrozoaAnthoathecataCorymorphidaeEuphysaEuphysa aurata
OTU_11207010CnidariaAnthozoaActiniariaPhymanthidaePhymanthusPhymanthus sp. IP0414
OTU_117010CnidariaAnthozoaAlcyonaceaPlexauridaeEuplexauraEuplexaura sp. A CSM-2013
OTU_15386010CnidariaStaurozoaStauromedusaeHaliclystidaeHaliclystusHaliclystus inabai
OTU_15496010CnidariaHydrozoaAnthoathecataCorynidae Corynidae sp. BCnid2010-002
OTU_15730010CnidariaHydrozoaAnthoathecataAsyncorinidaeAsyncoryneAsyncoryne ryniensis
OTU_15819010CnidariaHydrozoaSiphonophoraePrayidaePrayaPraya reticulata
OTU_15894010CnidariaScyphozoaRhizostomeaeRhizostomatidaeRhopilemaRhopilema hispidum
OTU_15897010CnidariaHydrozoaAnthoathecataPandeidaeAmphinemaAmphinema sp. JRH-2012
OTU_16864010CnidariaHydrozoaLeptothecataPlumulariidaePlumulariaPlumularia virginiae
OTU_16960010CnidariaHydrozoaAnthoathecataBougainvilliidaeBougainvilliaBougainvillia muscus
OTU_17210010CnidariaHydrozoaSiphonophoraeAgalmatidaeMarrusMarrus sp. BO-2021
OTU_17266010CnidariaHydrozoaAnthoathecataCorynidaeCoryneCoryne sp. JRH-2014
OTU_1954010CnidariaHydrozoaLeptothecataAglaopheniidaeAglaopheniaAglaophenia tubulifera
OTU_1962010CnidariaHydrozoaLeptothecataObeliidaeObeliaObelia sp. BFHL 2016
OTU_2471010CnidariaHydrozoaAnthoathecataPandeidaeAmphinemaAmphinema sp. PS-2017
OTU_2502010CnidariaHydrozoaAnthoathecataZancleidaeZancleaZanclea giancarloi
OTU_3269010CnidariaScyphozoaSemaeostomeaeCyaneidaeCyaneaCyanea sp. RUNNPEC
OTU_473010CnidariaHydrozoaAnthoathecataCorynidaeCoryneCoryne sp. JRH-2014
OTU_5038010CnidariaHydrozoaLeptothecataObeliidaeObeliaObelia bidentata
OTU_8072010CnidariaAnthozoaAlcyonaceaVictorgorgiidaeVictorgorgiaVictorgorgia sp. 2 KMM-2015
OTU_8128010CnidariaAnthozoaScleractiniaAcroporidaeAstreoporaAstreopora myriophthalma
OTU_8132010CnidariaScyphozoaSemaeostomeaePelagiidaeChrysaoraChrysaora lactea
OTU_8177010CnidariaScyphozoaCoronataeNausithoidaeNausithoeNausithoe sp. NHM_353
OTU_969010CnidariaHydrozoaLeptothecataObeliidaeObeliaObelia sp. MZUSP 3356
UVC_36001Cnidaria HexacoralliaActiniariaActiniidaeParacondylactisParacondylactis sinensis
UVC_07001Cnidaria OctocoralliaMalacalcyonaceaMelithaeidaeMelithaeaMelithaea formosa
UVC_08001Cnidaria Hexacorallia CerianthariaCerianthidae Cerianthidae sp.
UVC_09001Cnidaria Octocorallia malacalcyonaceaIsididaeHicksonellaHicksonella guishanensis
UVC_10001Cnidaria Octocorallia Octocorallia sp.
UVC_11001Cnidaria Hexacorallia ActiniariaActiniidaeAnthopleuraAnthopleura japonica
UVC_12001Cnidaria HexacoralliaActiniariaActiniidaeAnthopleuraAnthopleura inornata
OTU_13644101CtenophoraNudaBeroidaBeroidaeBeroeBeroe ovata
OTU_14325100CtenophoraNudaBeroidaBeroidaeBeroeBeroe sp. 2
UVC_34001EchinodermataHolothuroideaDendrochirotidaCucumariidaeActiniaActinia equina
OTU_8133001EchinodermataAsteroideaForcipulatidaAsteriidaeStichasterStichaster striatus
UVC_13001EchinodermataEchinoideaCamarodontaEchinometridaeAnthocidarisAnthocidaris crassispina
UVC_14001EchinodermataEchinoideaCamarodontaTemnopleuridaeTemnopleurusTemnopleurus hardwickii
OTU_4816100EchinodermataOphiuroideaEuryalidaGorgonocephalidaeAstrodendrumAstrodendrum sp. NSMT:E-6273
OTU_324100EchinodermataOphiuroideaAmphilepididaOphiactidaeOphiactisOphiactis perplexa
OTU_2974100EchinodermataOphiuroideaAmphilepididaOphiolepididaeOphiolepisOphiolepis irregularis
OTU_5418100EchinodermataOphiuroideaAmphilepididaOphiotrichidaeOphiothrixOphiothrix spiculata
OTU_14449100EchinodermataCrinoideaCyrtocrinidaSclerocrinidaeNeogymnocrinusNeogymnocrinus richeri
OTU_11136010EchinodermataCrinoideaComatulidaAntedonidaeAntedonAntedon loveni
OTU_16102010EchinodermataOphiuroideaEuryalidaGorgonocephalidaeAstrothrombusAstrothrombus chrysanthi
OTU_466010EchinodermataCrinoideaComatulidaAntedonidaeAntedonAntedon loveni
OTU_8133010EchinodermataAsteroideaForcipulatidaAsteriidaeStichasterStichaster striatus
OTU_17372100Gastrotricha ChaetonotidaChaetonotidaeChaetonotusChaetonotus aff. gelidus MK-2019
OTU_3701100Gastrotricha ChaetonotidaChaetonotidaeAspidiophorusAspidiophorus sp. n. MK-2019
OTU_4126100Gastrotricha ChaetonotidaChaetonotidaeAspidiophorusAspidiophorus sp. 1
OTU_4761100Gastrotricha ChaetonotidaChaetonotidaeChaetonotusChaetonotus sp. 2 MK-2019
OTU_6356100Gastrotricha ChaetonotidaChaetonotidaeChaetonotusChaetonotus sp. 1
OTU_7757100Gastrotricha ChaetonotidaChaetonotidaeAspidiophorusAspidiophorus sp. n. MK-2019
OTU_15575010Gastrotricha MacrodasyidaThaumastodermatidaeTetranchyrodermaTetranchyroderma sp. 3 TK-2011
OTU_1292110MolluscaGastropodaCycloneritidaNeritidaeNeritinaNeritina sp. Suji
OTU_1469110MolluscaGastropodaSystellommatophoraOnchidiidaeMelayonchisMelayonchis tillieri
OTU_3647110MolluscaGastropoda PachychilidaeSulcospiraSulcospira paludiformis
OTU_94110MolluscaGastropoda PlanorbidaeBiomphalariaBiomphalaria straminea
OTU_6172110MolluscaGastropodaNeogastropodaTerebridaeMyurellaMyurella affinis
OTU_10351100MolluscaGastropodaArchitaenioglossaAmpullariidaePomaceaPomacea catemacensis
OTU_14521100MolluscaGastropodaArchitaenioglossaAmpullariidaePomaceaPomacea canaliculata
OTU_7625100MolluscaGastropodaAplysiidaAplysiidaeAplysiaAplysia fasciata
OTU_13638100MolluscaGastropodaTrochidaCalliostomatidaeCalliostomaCalliostoma iridium
OTU_14338100MolluscaGastropodaStylommatophoraCamaenidaeXanthomelonXanthomelon interpositum
OTU_14515100MolluscaGastropodaStylommatophoraCamaenidaeSatsumaSatsuma jacobii
OTU_2134100MolluscaGastropodaStylommatophoraCamaenidaeSatsumaSatsuma hemihelvus
OTU_5901100MolluscaGastropodaStylommatophoraCamaenidaeSatsumaSatsuma sp. SPW-2007
OTU_9949100MolluscaGastropodaStylommatophoraClausiliidaeMontenegrinaMontenegrina helvola
OTU_736100MolluscaGastropodaNeogastropodaCostellariidaePusiaPusia savignyi
OTU_6464100MolluscaGastropodaNudibranchiaCuthonellidaeCuthonellaCuthonella punicea
OTU_4617100MolluscaGastropodaArchitaenioglossaDiplommatinidaeDiplommatinaDiplommatina sp. nov. AG MS-2010
OTU_6514100MolluscaGastropodaNudibranchiaDotidaeDotoDoto coronata
OTU_10095100MolluscaGastropodaEllobiidaEllobiidaeEllobiumEllobium scheepmakeri
OTU_3788100MolluscaGastropodaLepetellidaFissurellidaeFissurellaFissurella sp. SWA-2011
OTU_2686100MolluscaGastropodaStylommatophoraGeomitridaeXerocrassaXerocrassa ponsi
OTU_4632100MolluscaGastropodaLittorinimorphaHydrobiidaeMarstoniaMarstonia lustrica
OTU_14429100MolluscaGastropodaNeogastropodaMuricidaeConcholepasConcholepas concholepas
OTU_9579100MolluscaGastropodaNeogastropodaMuricidaeDrupaDrupa morum
OTU_14543100MolluscaGastropodaCycloneritidaNeritidaeNeritaNerita atramentosa
OTU_1864100MolluscaGastropodaCycloneritidaNeritidaeNeritinaNeritina dilatata
OTU_5511100MolluscaCephalopodaTeuthidaOmmastrephidaeDosidicusDosidicus gigas
OTU_10283100MolluscaGastropodaSystellommatophoraOnchidiidaeParomoionchisParomoionchis daemelii
OTU_13627100MolluscaGastropodaSystellommatophoraOnchidiidaeOnchidellaOnchidella marginata
OTU_14456100MolluscaGastropoda PachychilidaeSulcospiraSulcospira paludiformis
OTU_1546100MolluscaBivalviaUnionidaUnionidaeMiddendorffinaiaMiddendorffinaia mongolica
OTU_4294100MolluscaBivalviaUnionidaUnionidaePleuronaiaPleuronaia barnesiana
OTU_4892100MolluscaBivalviaUnionidaUnionidaeToxolasmaToxolasma lividus
OTU_7039100MolluscaBivalviaUnionidaUnionidaeAculamprotulaAculamprotula fibrosa
OTU_10224100MolluscaGastropodaLittorinimorphaVermetidaeDendropomaDendropoma gregarium
OTU_5629100MolluscaGastropodaLittorinimorphaVermetidaeDendropomaDendropoma platypus
OTU_14128100MolluscaBivalvia Bivalvia environmental sample
OTU_12851010MolluscaGastropodaStylommatophoraCamaenidaeSatsumaSatsuma hemihelvus
OTU_15803010MolluscaBivalviaGaleommatidaGaleommatidaeGaleommaGaleomma turtoni
OTU_1980010MolluscaGastropodaStylommatophoraGeomitridaeCandidulaCandidula sp. AR_BC7338
OTU_3248010MolluscaGastropodaNeogastropodaTerebridaeHastulaHastula matheroniana
OTU_3959010MolluscaGastropoda PhysidaePhysellaPhysella acuta
OTU_4408010MolluscaGastropodaStylommatophoraHelicidaeEobaniaEobania vermiculata
OTU_470010MolluscaGastropoda PlakobranchidaeThuridillaThuridilla vatae
OTU_6184010MolluscaGastropodaCycloneritidaPhenacolepadidaePlesiothyreusPlesiothyreus newtoni
OTU_6194010MolluscaBivalviaUnionidaUnionidaeHyriopsisHyriopsis bialatus complex sp. 2 PP-2017
OTU_6526010MolluscaGastropodaStylommatophoraClausiliidaeMontenegrinaMontenegrina umbilicata
OTU_7189010MolluscaGastropodaStylommatophoraCamaenidaeRhagadaRhagada angulata
OTU_8077010MolluscaGastropodaSiphonariidaSiphonariidaeSiphonariaSiphonaria lessonii
OTU_86010MolluscaGastropodaLittorinimorphaHydrobiidaeHauffeniaHauffenia subpiscinalis
OTU_965010MolluscaBivalviaGaleommatidaGaleommatidaeGaleommaGaleomma turtoni
UVC_37001Mollusca BivalviaMytilidaMytilidaePernaPerna viridis
UVC_38001Mollusca BivalviaMytilidaModiolidaeVignadulaVignadula atrata
UVC_15001Mollusca CephalopodaSepiidaSepiidae SepiellaSepiella maindroni de Rochebrune
UVC_16001Mollusca GastropodaTrochidaeCalliostomatidaeTristichotrochusTristichotrochus unicum
UVC_17001Mollusca GastropodaTrochidaeTrochidaeMonodontaMonodonta labio
UVC_18001Mollusca GastropodaLittorinimorphaOvulidae Ovulidae sp.
UVC_19001Mollusca GastropodaLittorinimorphaOvulidaeCuspivolvaCuspivolva formosa
UVC_20001Mollusca GastropodaNeogastropodaBuccinidaeCantharusCantharus cecillei
UVC_21001Mollusca GastropodaNeogastropodaCymatiidaeGyrineumGyrineum natator
UVC_22001Mollusca GastropodaNeogastropodaMuricidaeChicoreusChicoreus asianus
UVC_23001Mollusca GastropodaNeogastropodaMuricidaeReishiaReishia clavigera
UVC_24001Mollusca GastropodaNeogastropodaMuricidaeReishiaReishia luteostoma
UVC_25001Mollusca GastropodaNeogastropodaNassariidaeNassariusNassarius hepaticus
UVC_26001Mollusca GastropodaNudibranchia Nudibranchia sp.
UVC_27001Mollusca GastropodaNudibranchiaFacelinidaeSakuraeolisSakuraeolis sakuracea
UVC_28001Mollusca GastropodaNudibranchiaDendrodorididaeDoriopsillaDoriopsilla sp.
UVC_32001Mollusca Gastropoda PyramidellidaeOdostomiaOdostomia subangulata
OTU_7430100NematodaChromadoreaStrongylidaAncylostomatidaeAncylostomaAncylostoma ceylanicum
OTU_7275100NematodaChromadoreaDesmodoridaDesmodoridaeMetachromadoraMetachromadora sp. 2AMA
OTU_13801100NematodaChromadoreaRhabditidaRhabditidaeCaenorhabditisCaenorhabditis inopinata
OTU_8772100NemerteaPilidiophoraHeteronemerteaBaseodiscidaeBaseodiscusBaseodiscus sp. 2 SA-2011
OTU_2470100NemerteaPalaeonemertea TubulanidaeTubulanusTubulanus polymorphus
OTU_17313010NemerteaEnoplaMonostilifera Monostilifera sp. MCZ IZ 45646
OTU_502010NemerteaEnoplaMonostiliferaAmphiporidaeAmphiporusAmphiporus cruentatus
OTU_17155100Phoronida Phoroniformea sp. larval OTU P1
OTU_435110PlatyhelminthesTrematodaDiplostomidaDiplostomidaeCrassiphialaCrassiphiala sp. Lineage 2
OTU_16856010PlatyhelminthesRhabditophoraTricladidaGeoplanidaeMicroplanaMicroplana sp. MOTU37
OTU_897100PoriferaDemospongiaeBubaridaDictyonellidaeScopalinaScopalina lophyropoda
OTU_7359100PoriferaDemospongiaeSuberitidaHalichondriidaeCiocalyptaCiocalypta sp. DE-2012
OTU_8918100PoriferaDemospongiaeHaploscleridaNiphatidaeAmphimedonAmphimedon queenslandica
OTU_7393100PoriferaHomoscleromorphaHomosclerophoridaPlakinidaePlakinaPlakina coerulea
OTU_9873100PoriferaHomoscleromorphaHomosclerophoridaPlakinidaePlakinaPlakina sp. 1
OTU_7613100PoriferaDemospongiaeAxinellidaRaspailiidae Raspailiidae sp. Po.25592
OTU_9606100PoriferaDemospongiaeTetractinellidaTetillidaeCinachyrellaCinachyrella alloclada
OTU_10893010PoriferaDemospongiaeSuberitidaSuberitidaeAaptosAaptos nuda
OTU_15892010PoriferaDemospongiaeSuberitidaHalichondriidae Halichondriidae sp. UCMPWC1015
OTU_16058010PoriferaDemospongiaePoeciloscleridaMycalidaeMycaleMycale mirabilis
OTU_16093010Porifera Porifera sp. Sp08
OTU_17151010PoriferaDemospongiaeTetractinellidaTetillidaeCinachyrellaCinachyrella australiensis
OTU_2563010PoriferaDemospongiaeTethyidaHemiasterellidaeAdreusAdreus fascicularis
OTU_5032010PoriferaDemospongiaeHaploscleridaChalinidaeHaliclonaHaliclona sp. P2MK
UVC_35001Porifera Demospongiae TethyidaTethyidaeTethyaTethya aurantium
UVC_29001Porifera DemospongiaeTethyidaTethyidae TethyaTethya sp. 1

References

  1. Halpern, B.S.; Frazier, M.; Afflerbach, J.; Lowndes, J.S.; Micheli, F.; O’Hara, C.; Scarborough, C.; Selkoe, K.A. Recent Pace of Change in Human Impact on the World’s Ocean. Sci. Rep. 2019, 9, 11609. [Google Scholar] [CrossRef] [PubMed]
  2. Chung, A.; Kam, Y.C.; Shea, S.K.H.; Schunter, C. Detecting Fish Diversity in Urban-Impacted Ecosystems: A Comparative Approach of eDNA Metabarcoding and UVC. Environ. DNA 2024, 6, e70048. [Google Scholar] [CrossRef]
  3. Stat, M.; Huggett, M.J.; Bernasconi, R.; DiBattista, J.D.; Berry, T.E.; Newman, S.J.; Harvey, E.S.; Bunce, M. Ecosystem Biomonitoring with eDNA: Metabarcoding across the Tree of Life in a Tropical Marine Environment. Sci. Rep. 2017, 7, 12240. [Google Scholar] [CrossRef]
  4. Jardim, V.L.; Grall, J.; Barros-Barreto, M.B.; Bizien, A.; Benoit, T.; Braga, J.C.; Brodie, J.; Burel, T.; Cabrito, A.; Diaz-Pulido, G.; et al. Common Terminology to Unify Research and Conservation of Coralline Algae and the Habitats They Create. Aquat. Conserv. 2025, 35, e70121. [Google Scholar] [CrossRef]
  5. Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; De Vere, N.; et al. Environmental DNA Metabarcoding: Transforming How We Survey Animal and Plant Communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
  6. Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards Next-generation Biodiversity Assessment Using DNA Metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
  7. Djurhuus, A.; Closek, C.J.; Kelly, R.P.; Pitz, K.J.; Michisaki, R.P.; Starks, H.A.; Walz, K.R.; Andruszkiewicz, E.A.; Olesin, E.; Hubbard, K.; et al. Environmental DNA Reveals Seasonal Shifts and Potential Interactions in a Marine Community. Nat. Commun. 2020, 11, 254. [Google Scholar] [CrossRef]
  8. West, K.M.; Stat, M.; Harvey, E.S.; Skepper, C.L.; DiBattista, J.D.; Richards, Z.T.; Travers, M.J.; Newman, S.J.; Bunce, M. eDNA Metabarcoding Survey Reveals Fine-scale Coral Reef Community Variation across a Remote, Tropical Island Ecosystem. Mol. Ecol. 2020, 29, 1069–1086. [Google Scholar] [CrossRef]
  9. Cai, H. Brief Introduction to Nanji Islands National Marine Nature Reserve; China Ocean Press: Beijing, China, 2021; pp. 1–19. [Google Scholar]
  10. Jessop, S.A.; Saunders, B.J.; Goetze, J.S.; Harvey, E.S. A comparison of underwater visual census, baited, diver operated and remotely operated stereo-video for sampling shallow water reef fishes. Estuar. Coast. Shelf Sci. 2022, 276, 108017. [Google Scholar] [CrossRef]
  11. Suominen, S.; Provoost, P.; Principe, S.; Boulanger, E.; Burrows, M.T.; Campoy, A.N.; Costello, M.J.; Earl, C.; Gante, H.F.; Gillard, E.; et al. Engaging Communities to Safeguard Ocean Life: UNESCO Environmental DNA Expeditions; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2024; p. 9. [Google Scholar]
  12. Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A New Versatile Primer Set Targeting a Short Fragment of the Mitochondrial COI Region for Metabarcoding Metazoan Diversity: Application for Characterizing Coral Reef Fish Gut Contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef]
  13. Geller, J.; Meyer, C.; Parker, M.; Hawk, H. Redesign of PCR Primers for Mitochondrial Cytochrome c Oxidase Subunit I for Marine Invertebrates and Application in All-Taxa Biotic Surveys. Mol. Ecol. Resour. 2013, 13, 851–861. [Google Scholar] [CrossRef] [PubMed]
  14. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
  15. Beermann, A.J.; Zizka, V.M.A.; Elbrecht, V.; Baranov, V.; Leese, F. DNA Metabarcoding Reveals the Complex and Hidden Responses of Chironomids to Multiple Stressors. Environ. Sci. Eur. 2018, 30, 26. [Google Scholar] [CrossRef]
  16. Steinke, D.; Braukmann, T.W.; Manerus, L.; Woodhouse, A.; Elbrecht, V. Effects of Malaise Trap Spacing on Species Richness and Composition of Terrestrial Arthropod Bulk Samples. Metabarcoding Metagenom. 2021, 5, e59201. [Google Scholar] [CrossRef]
  17. Di Capua, I.; Piredda, R.; Mazzocchi, M.G.; Zingone, A. Metazoan Diversity and Seasonality through eDNA Metabarcoding at a Mediterranean Long-Term Ecological Research Site. ICES J. Mar. Sci. 2021, 78, 3303–3316. [Google Scholar] [CrossRef]
  18. Ginestet, C. Ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
  19. Turner, C.R.; Uy, K.L.; Everhart, R.C. Fish Environmental DNA Is More Concentrated in Aquatic Sediments than Surface Water. Biol. Conserv. 2015, 183, 93–102. [Google Scholar] [CrossRef]
  20. Buxton, A.S.; Groombridge, J.J.; Griffiths, R.A. Seasonal Variation in Environmental DNA Detection in Sediment and Water Samples. PLoS ONE 2018, 13, e0191737. [Google Scholar] [CrossRef]
  21. Collins, R.A.; Wangensteen, O.S.; O’Gorman, E.J.; Mariani, S.; Sims, D.W.; Genner, M.J. Persistence of Environmental DNA in Marine Systems. Commun. Biol. 2018, 1, 185. [Google Scholar] [CrossRef]
  22. Nevers, M.B.; Przybyla-Kelly, K.; Shively, D.; Morris, C.C.; Dickey, J.; Byappanahalli, M.N. Influence of Sediment and Stream Transport on Detecting a Source of Environmental DNA. PLoS ONE 2020, 15, e0244086. [Google Scholar] [CrossRef]
  23. Brandt, M.I.; Pradillon, F.; Trouche, B.; Henry, N.; Liautard-Haag, C.; Cambon-Bonavita, M.-A.; Cueff-Gauchard, V.; Wincker, P.; Belser, C.; Poulain, J.; et al. Evaluating Sediment and Water Sampling Methods for the Estimation of Deep-Sea Biodiversity Using Environmental DNA. Sci. Rep. 2021, 11, 7856. [Google Scholar] [CrossRef] [PubMed]
  24. Ogata, M.; Masuda, R.; Harino, H.; Sakata, M.K.; Hatakeyama, M.; Yokoyama, K.; Yamashita, Y.; Minamoto, T. Environmental DNA Preserved in Marine Sediment for Detecting Jellyfish Blooms after a Tsunami. Sci. Rep. 2021, 11, 16830. [Google Scholar] [CrossRef] [PubMed]
  25. Suzzi, A.L.; Huggett, M.J.; Gaston, T.F.; MacFarlane, G.R.; Alam, M.R.; Gibb, J.; Stat, M. eDNA Metabarcoding Reveals Shifts in Sediment Eukaryote Communities in a Metal Contaminated Estuary. Mar. Pollut. Bull. 2023, 191, 114896. [Google Scholar] [CrossRef] [PubMed]
  26. Roblet, S.; Priouzeau, F.; Gambini, G.; Cottalorda, J.-M.; Gastaldi, J.M.; Pey, A.; Raybaud, V.; Suarez, G.R.; Serre, C.; Sabourault, C.; et al. From Sight to Sequence: Underwater Visual Census vs Environmental DNA Metabarcoding for the Monitoring of Taxonomic and Functional Fish Diversity. Sci. Total Environ. 2024, 956, 177250. [Google Scholar] [CrossRef]
Figure 1. Sampling sites in the subtidal zone of the Nanji Islands (The capitalized names in the right-side figure are abbreviations for each sub-island. “SMA” stands for “Shangmaan”, “XMA” for “Xiamaan”, “PY” for “Poyu”, “JY” for “Jianyu”, “XCY” for “Xiaochaiyu”, “LCJ” for “Longchuanjiao”, “DSJ” for “Dashanjiao”, “SPW” for “Sanpanwei”, “HJS” for “Houjishan”, and “DLS” for “Daleishan”).
Figure 1. Sampling sites in the subtidal zone of the Nanji Islands (The capitalized names in the right-side figure are abbreviations for each sub-island. “SMA” stands for “Shangmaan”, “XMA” for “Xiamaan”, “PY” for “Poyu”, “JY” for “Jianyu”, “XCY” for “Xiaochaiyu”, “LCJ” for “Longchuanjiao”, “DSJ” for “Dashanjiao”, “SPW” for “Sanpanwei”, “HJS” for “Houjishan”, and “DLS” for “Daleishan”).
Biology 14 00821 g001
Figure 2. Stacked bar charts showing the percentage of species richness at the phylum (a), class (b), and order (c) levels for underwater visual census (UVC) and sediment (Sed) and water eDNA methods.
Figure 2. Stacked bar charts showing the percentage of species richness at the phylum (a), class (b), and order (c) levels for underwater visual census (UVC) and sediment (Sed) and water eDNA methods.
Biology 14 00821 g002
Figure 3. Venn diagrams showing the species overlaps at the different taxonomic ranks detected by underwater visual census (UVC) and sediment (Sed) and water eDNA methods at the common stations.
Figure 3. Venn diagrams showing the species overlaps at the different taxonomic ranks detected by underwater visual census (UVC) and sediment (Sed) and water eDNA methods at the common stations.
Biology 14 00821 g003
Figure 4. Alpha and beta diversity analyses based on sediment eDNA, water eDNA, and underwater visual census (UVC) methods. (a) Species richness based on the sediment eDNA, water eDNA, and UVC at the common sampling stations (JY, LCJ, PY, XCY, XMA). (b) The total species richness based on the three methods from all the common stations. (c) Significant richness differences among the three methods conducted by post hoc Dunn tests. *, indicating significant differences. (d) The total Shannon index based on the three methods from all the common stations. (e) The total Pielou’s evenness index based on the three methods from all the common stations. (f) The clustering of samples with non-metric multidimensional scaling (NMDS) plot.
Figure 4. Alpha and beta diversity analyses based on sediment eDNA, water eDNA, and underwater visual census (UVC) methods. (a) Species richness based on the sediment eDNA, water eDNA, and UVC at the common sampling stations (JY, LCJ, PY, XCY, XMA). (b) The total species richness based on the three methods from all the common stations. (c) Significant richness differences among the three methods conducted by post hoc Dunn tests. *, indicating significant differences. (d) The total Shannon index based on the three methods from all the common stations. (e) The total Pielou’s evenness index based on the three methods from all the common stations. (f) The clustering of samples with non-metric multidimensional scaling (NMDS) plot.
Biology 14 00821 g004
Table 1. Species number of phyla using sediment and water eDNA and UVC methods.
Table 1. Species number of phyla using sediment and water eDNA and UVC methods.
PhylumSedimentWaterUVC
Annelida2281
Arthropoda48141
Bryozoa005
Chaetognatha140
Chordata511
Cnidaria26327
Ctenophora201
Echinodermata544
Gastrotricha610
Mollusca371917
Nematoda300
Nemertea220
Phoronida100
Platyhelminthes120
Porifera772
total1669439
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhan, Z.; Huo, W.; Xie, S.; Chen, W.; Liu, X.; Xu, K.; Lei, Y. Comparison of Environmental DNA Metabarcoding and Underwater Visual Census for Assessing Macrobenthic Diversity. Biology 2025, 14, 821. https://doi.org/10.3390/biology14070821

AMA Style

Zhan Z, Huo W, Xie S, Chen W, Liu X, Xu K, Lei Y. Comparison of Environmental DNA Metabarcoding and Underwater Visual Census for Assessing Macrobenthic Diversity. Biology. 2025; 14(7):821. https://doi.org/10.3390/biology14070821

Chicago/Turabian Style

Zhan, Zifeng, Weiwei Huo, Shangwei Xie, Wandong Chen, Xinming Liu, Kuidong Xu, and Yanli Lei. 2025. "Comparison of Environmental DNA Metabarcoding and Underwater Visual Census for Assessing Macrobenthic Diversity" Biology 14, no. 7: 821. https://doi.org/10.3390/biology14070821

APA Style

Zhan, Z., Huo, W., Xie, S., Chen, W., Liu, X., Xu, K., & Lei, Y. (2025). Comparison of Environmental DNA Metabarcoding and Underwater Visual Census for Assessing Macrobenthic Diversity. Biology, 14(7), 821. https://doi.org/10.3390/biology14070821

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop