Salivaomic Biomarkers—An Innovative Approach to the Diagnosis, Treatment, and Prognosis of Oral Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Studies on the Diagnostic, Prognostic, and Therapeutic Potential of Salivaomic Biomarkers in Oral Cancer
3.1. Salivary Genomic Biomarkers for Oral Cancer
3.1.1. DNA Damage and Repair and Salivary DNA Biomarkers
3.1.2. Telomere Length and Telomerase Expression in DNA Samples: Microsatellie Instability (MSI) and Loss of Heterozygosity (LOH)
3.1.3. Methylation Changes in the CpG Island in Gene Promoters
3.2. Salivary Transcriptomic Biomarkers for Oral Cancer
3.2.1. Salivary mRNA
3.2.2. Salivary MicroRNA
3.3. The Salivary Proteomic Biomarkers for Oral Cancer
3.4. The Salivary Exosomes
3.4.1. Functions of Exosomes as Potential Biomarkers in Oral Cancer
3.4.2. Roles of Exosomes in Regulating Cancer Progression and Metastasis in Oral Cancer
3.5. The Salivary Metabolomic Biomarkers for Oral Cancer
3.6. The Salivary Metagenomic Biomarkers for Oral Cancer
4. Discussion
4.1. Current Challenges in the Use of Salivaomics in Oral Cancer
4.2. Future Directions in the Use of Salivaomics in Oral Cancer
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A2BP1 | Fox-1 homolog A; ataxin 2-binding protein 1 |
ALDH1A2 | Aldehyde dehydrogenase 1 family, member A2 |
ATM | Serine/threonine kinase |
ANK1 | Ankyrin 1 |
ACSS3 | Acyl-CoA synthetase short-chain family member 3 |
ATR | Serine/threonine-protein kinase |
CA3 | Carbonic anhydrase 3 |
CDKN2A | Cyclin-dependent kinase inhibitor 2A |
ctDNA | Circulating tumor DNA |
DAPK1 | Death-associated protein kinase 1 |
ECAD | Epithelial cadherin |
HS3ST1 | Heparan sulfate glucosamine 3-O-sulfotransferase 1 |
FHIT | Bis 5′-adenosyl-triphosphatase |
GABRB3 | Gamma-aminobutyric acid receptor subunit beta-3 |
GPX7 | Glutathione peroxidase 7 |
GFRA1 | GDNF family receptor alpha-1 |
HNSCC | Head and neck squamous cell carcinoma |
HPV | Human papillomavirus |
8-OHdG | 8-hydroxydeoxyguanosine |
ILs | Interleukins |
IRF8 | Interferon regulatory factor 8 |
KIF1α | Kinesin family member 1A |
LDH | Lactate dehydrogenase |
LOH | Loss of heterozygosity |
LC-MS | Liquid chromatography—mass spectrometry |
Maspin | Mammary serine protease inhibitor |
MiRNA | Micro ribonucleic acid |
MSI | Microsatellite instability |
MMP | Matrix metalloproteinases |
MMR | DNA mismatch repair genes |
MAPK | Mitogen-activated protein kinase |
MGMT | Methylated-DNA-protein-cysteine methyltransferase |
MVBs | Multivesicular bodies |
OLK | Oral leukoplakia |
OLP | Oral lichen planus |
OPDM | Oral potentially malignant disorder |
OSMF | Oral submucous fibrosis |
OSCC | Oral squamous cell carcinoma |
OTSCC | Tongue squamous cell carcinoma |
PCQAP | PC2 glutamine/Q rich-associated protein |
PDE4B | cAMP-specific 3′,5′-cyclic phosphodiesterase 4B |
PMOD | Premalignant oral disorder |
POT1 | Protection of telomeres 1 |
RASSF | Ras association domain-containing protein |
RAP1 | Repressor activator protein 1 |
RARβ | Retinoic acid receptor beta |
RT-QMSP | Real-time quantitative methylation-specific PCR |
TRF | Telomeric repeat-binding factor |
TMEFF2 | Transmembrane protein with an EGF-like and two follistatin-like domains 2 |
TNF | Tumor necrosis factor |
TPP1 | POT1 interacting protein |
TTYH1 | Tweety family member 1 |
TIMP3 | Tissue inhibitor of metalloproteinases 3 |
References
- Charap, A.J.; Enokida, T.; Brody, R.; Sfakianos, J.; Miles, B.; Bhardwaj, N.; Horowitz, A. Landscape of natural killer cell activity in head and neck squamous cell carcinoma. J. Immunother. Cancer 2020, 8, e001523. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.K.; Chan, C.J.; Grandis, J.R.; Takata, T.; Slootweg, P.J. WHO Classification of Head and Neck Tumours, 4th ed.; IARC: Lyon, France, 2017; ISBN 9789283224389. [Google Scholar]
- Mountzios, G.; Rampias, T.; Psyrri, A. The mutational spectrum of squamous-cell carcinoma of the head and neck: Targetable genetic events and clinical impact. Ann. Oncol. 2014, 25, 1889–1900. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Gormley, M.; Creaney, G.; Schache, A.; Ingarfield, K.; Conway, D.I. Reviewing the epidemiology of head and neck cancer: Definitions, trends and risk factors. Br. Dent. J. 2022, 233, 780–786. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2023, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Day, A.; Epstein, J.; Goodman, J.; Graboyes, E.; Jalisi, S.; Kiess, A.P.; Ku, J.A.; Miller, M.C.; Panwar, A.; et al. Head and neck cancer survivorship consensus statement from the American Head and Neck Society. Laryngoscope Investig. Otolaryn. 2021, 7, 70–92. [Google Scholar] [CrossRef]
- Atashi, F.; Vahed, N.; Emamverdizadeh, P.; Fattahi, S.; Paya, L. Drug resistance against 5-fluorouracil and cisplatin in the treatment of head and neck squamous cell carcinoma: A systematic review. J. Dent. Res. Dent. Clin. Dent. Prospect. 2021, 15, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Sola, A.M.; Johnson, D.E.; Grandis, J.R. Investigational multitargeted kinase inhibitors in development for head and neck neoplasms. Expert Opin. Investig. Drugs 2019, 28, 351–363. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Head and Neck Cancer. 2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 31 April 2025).
- International Agency for Research on Cancer. List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. 2019, pp. 1–127. Available online: https://mongraphs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 31 April 2025).
- Gupta, B.; Johnson, N.W.; Kumar, N. Global Epidemiology of Head and Neck Cancers: A Continuing Challenge. Oncology 2016, 91, 13–23. [Google Scholar] [CrossRef]
- Ng, J.H.; Iyer, N.G.; Tan, M.-H.; Edgren, G. Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck 2017, 39, 297–304. [Google Scholar] [CrossRef]
- Du, E.; Mazul, A.L.; Farquhar, D.; Brennan, P.; Anantharaman, D.; Abedi-Ardekani, B.; Weissler, M.C.; Hayes, D.N.; Olshan, A.F.; Zevallos, J.P. Long-term Survival in Head and Neck Cancer: Impact of Site, Stage, Smoking, and Human Papillomavirus Status. Laryngoscope 2019, 129, 2506–2513. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, X.; Chen, Z.; Du, J.; Wu, Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int. J. Pept. Res. Ther. 2022, 28, 19. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Galvis, M.; Loveless, R.; Kowalski, L.P.; Teng, Y. Impacts of Environmental Factors on Head and Neck Cancer Pathogenesis and Progression. Cells 2021, 10, 389. [Google Scholar] [CrossRef]
- Saada-Bouzid, E.; Peyrade, F.; Guigay, J. Molecular genetics of head and neck squamous cell carcinoma. Curr. Opin. Oncol. 2019, 31, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Koneva, L.A.; Virani, S.; Arthur, A.E.; Virani, A.; Hall, P.B.; Warden, C.D.; Carey, T.E.; Chepeha, D.B.; Prince, M.E.; et al. Subtypes of HPV-Positive Head and Neck Cancers Are Associated with HPV Characteristics, Copy Number Alterations, PIK3CA Mutation, and Pathway Signatures. Clin. Cancer Res. 2016, 22, 4735–4745. [Google Scholar] [CrossRef] [PubMed]
- Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer 2018, 18, 662. [Google Scholar] [CrossRef]
- Chow, L.Q.M. Head and neck cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef]
- Dong, H.; Shu, X.; Xu, Q.; Zhu, C.; Kaufmann, A.M.; Zheng, Z.M.; Albers, A.E.; Qian, X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol. Sin. 2021, 36, 1284–1302. [Google Scholar] [CrossRef]
- Wittekindt, C.; Wagner, S.; Bushnak, A.; Prigge, E.S.; von Knebel Doeberitz, M.; Würdemann, N.; Bernhardt, K.; Pons-Kühnemann, J.; Maulbecker-Armstrong, C.; Klussmann, J.P. Increasing Incidence rates of Oropharyngeal Squamous Cell Carcinoma in Germany and Significance of Disease Burden Attributed to Human Papillomavirus. Cancer Prev. Res. 2019, 12, 375–382. [Google Scholar] [CrossRef]
- Zamani, M.; Grønhøj, C.; Jensen, D.H.; Carlander, A.F.; Agander, T.; Kiss, K.; Olsen, C.; Baandrup, L.; Nielsen, F.C.; Andersen, E.; et al. The current epidemic of HPV-associated oropharyngeal cancer: An 18-year Danish population-based study with 2169 patients. Eur. J. Cancer 2020, 134, 52–59. [Google Scholar] [CrossRef]
- de Freitas, A.C.; de Oliveira, T.H.A.; Barros, M.R.; Venuti, A. hrHPV E5 oncoprotein: Immune evasion and related immunotherapies. J. Exp. Clin. Cancer Res. 2017, 36, 71. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front. Microbiol. 2020, 10, 3116. [Google Scholar] [CrossRef]
- Canning, M.; Guo, G.; Yu, M.; Myint, C.; Groves, M.W.; Byrd, J.K.; Cui, Y. Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front. Cell Dev. Biol. 2019, 7, 52. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, T.Y.; Zuo, Z.X.; Keck, M.K.; Khattri, A.; Pedamallu, C.S.; Stricker, T.; Brown, C.; Pugh, T.J.; Stojanov, P.; Cho, J.; et al. Integrative and Comparative Genomic Analysis of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas. Clin. Cancer Res. 2015, 21, 632–641. [Google Scholar] [CrossRef]
- Rühle, A.; Grosu, A.L.; Nicolay, N.H. De-Escalation Strategies of (Chemo)Radiation for Head-and-Neck Squamous Cell Cancers-HPV and Beyond. Cancers 2021, 13, 2204. [Google Scholar] [CrossRef]
- Ventz, S.; Trippa, L.; Schoenfeld, J.D. Lessons Learned from Deescalation Trials in Favorable Risk HPV-Associated Squamous Cell Head and Neck Cancer-A Perspective on Future Trial Designs. Clin. Cancer Res. 2019, 25, 7281–7286. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Shibahara, T.; Nomura, T.; Katakura, A.; Takano, M. Non-Invasive Early Detection of Oral Cancers Using Fluorescence Visualization with Optical Instruments. Cancers 2020, 12, 2771. [Google Scholar] [CrossRef]
- Lingen, M.W.; Kalmar, J.R.; Karrison, T.; Speight, P.M. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008, 44, 10–22. [Google Scholar] [CrossRef]
- Jasim, H.; Olausson, P.; Hedenberg-Magnusson, B.; Ernberg, M.; Ghafouri, B. The proteomic profile of whole and glandular saliva in healthy pain-free subjects. Sci. Rep. 2016, 6, 39073. [Google Scholar] [CrossRef] [PubMed]
- Constantin, V.; Luchian, I.; Goriuc, A.; Budala, D.G.; Bida, F.C.; Cojocaru, C.; Butnaru, O.-M.; Virvescu, D.I. Salivary Biomarkers Identification: Advances in Standard and Emerging Technologies. Oral 2025, 5, 26. [Google Scholar] [CrossRef]
- Koneru, S.; Tanikonda, R. Salivaomics—A promising future in early diagnosis of dental diseases. Dent. Res. J. 2014, 11, 11–15. [Google Scholar]
- Shah, S. Salivaomics: The current scenario. J. Oral Maxill. Pathol. JOMFP 2018, 22, 375–381. [Google Scholar] [CrossRef]
- Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 11884–11894. [Google Scholar]
- Sankaranarayanan, R.; Ramadas, K.; Amarasinghe, H.; Subramanian, S.; Johnson, N. Oral Cancer: Prevention, Early Detection, and Treatment. In Cancer: Disease Control Priorities, 3rd ed.; Gelband, H., Ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015; Volume 3. [Google Scholar]
- Sindhu, S.; Jagannathan, N. Saliva: A cutting edge in diagnostic procedures. J. Oral Dis. 2014, 2014, 168584. [Google Scholar] [CrossRef]
- González-Hernández, J.M.; Franco, L.; Colomer-Poveda, D.; Martinez-Subiela, S.; Cugat, R.; Cerón, J.J.; Márquez, G.; Martínez-Aranda, L.M.; Jimenez-Reyes, P.; Tvarijonaviciute, A. Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva. Antioxidants 2019, 8, 389. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Kim, H.R.; Chae, H.J. Compliance with Saliva Collection Protocol in Healthy Volunteers: Strategies for Managing Risk and Errors. Int. J. Med. Sci. 2018, 15, 823–831. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sreelatha, S.V.; Shetty, S.; Karnaker, V.K.; Jacob, A.M.; Chowdhury, C.R. Assaying of p53 Autoantibodies in saliva for the detection of oral squamous cell carcinoma. A road not taken. Indian J. Cancer 2024, 61, 37–42. [Google Scholar] [CrossRef]
- Liao, P.H.; Chang, Y.C.; Huang, M.F.; Tai, K.W.; Chou, M.Y. Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas. Oral Oncol. 2000, 36, 272–276. [Google Scholar] [CrossRef]
- Mewara, A.; Gadbail, A.R.; Patil, S.; Chaudhary, M.; Chavhan, S.D. C-deletion mutation of the p53 gene at exon 4 of codon 63 in the saliva of oral squamous cell carcinoma in central India: A preliminary study. J. Investig. Clin. Dent. JICD 2010, 1, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, A.; Nataraj, P.; James, A.; Krishnan, R.; Mahesh, K.M. Estimation of Salivary 8-Hydroxydeoxyguanosine (8-OHdG) as a Potential Biomarker in Assessing Progression towards Malignancy: A Case-Control Study. Asian Pac. J. Cancer Prev. APJCP 2020, 21, 2325–2329. [Google Scholar] [CrossRef]
- Shpitzer, T.; Hamzany, Y.; Bahar, G.; Feinmesser, R.; Savulescu, D.; Borovoi, I.; Gavish, M.; Nagler, R.M. Salivary analysis of oral cancer biomarkers. Brit. J. Cancer 2009, 101, 1194–1198. [Google Scholar] [CrossRef]
- Moorthy, A.; Venugopal, D.C.; Shyamsundar, V.; Madhavan, Y.; Ravindran, S.; Kuppuloganathan, M.; Krishnamurthy, A.; Sankarapandian, S.; Ganapathy, V.; Ramshankar, V. Identification of EGFR as a Biomarker in Saliva and Buccal Cells from Oral Submucous Fibrosis Patients-A Baseline Study. Diagnostics 2022, 12, 1935. [Google Scholar] [CrossRef]
- Samadi, F.M.; Suhail, S.; Sonam, M.; Ahmad, M.K.; Kumar, V.; Chandra, S.; Mohammad, S. Comparing Length and Telomere Expression at Oral Precancerous and Cancerous Stages. Iran. J. Pathol. 2024, 19, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Samadi, F.M.; Suhail, S.; Sonam, M.; Ahmad, M.K.; Chandra, S.; Saleem, M. Telomerase in saliva: An assistant marker for oral squamous cell carcinoma. J. Oral Maxill. Pathol. JOMFP 2019, 23, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Benhamou, Y.; Picco, V.; Pagès, G. The telomere proteins in tumorigenesis and clinical outcomes of oral squamous cell carcinoma. Oral Oncol. 2016, 57, 46–53. [Google Scholar] [CrossRef]
- Kavitha, L.; Ranganathan, K. Loss of Heterozygosity in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma—A Scoping Review. Head Neck Pathol. 2025, 19, 49. [Google Scholar] [CrossRef]
- Arslan Bozdag, L.; Inan, S.; Elif Gultekin, S. Microsatellite Instability and Loss of Heterozygosity as Prognostic Markers in Oral Squamous Cell Carcinoma: Molecular Mechanisms, Detection Techniques, and Therapeutic Strategies. Genes Chromosomes Cancer 2024, 63, e70002. [Google Scholar] [CrossRef]
- El-Naggar, A.K.; Mao, L.; Staerkel, G.; Coombes, M.M.; Tucker, S.L.; Luna, M.A.; Clayman, G.L.; Lippman, S.; Goepfert, H. Genetic heterogeneity in saliva from patients with oral squamous carcinomas: Implications in molecular diagnosis and screening. J. Mol. Diag. JMD 2001, 3, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, N.M.; Clarkson, M.J.; Stuchbery, R.; Hovens, C.M. Molecular Pathways: Targeting DNA Repair Pathway Defects Enriched in Metastasis. Clin. Cancer Res. 2016, 22, 3132–3137. [Google Scholar] [CrossRef]
- Vats, R.; Yadav, P.; Bano, A.; Wadhwa, S.; Bhardwaj, R. Salivary biomarkers in non-invasive oral cancer diagnostics: A comprehensive review. J. Appl. Oral Sci. 2024, 32, e20240151. [Google Scholar] [PubMed]
- Adorno-Farias, D.; Morales-Pisón, S.; Gischkow-Rucatti, G.; Margarit, S.; Fernández-Ramires, R. Genetic and epigenetic landscape of early-onset oral squamous cell carcinoma: Insights of genomic underserved and underrepresented populations. Genet. Biol. Mol. 2024, 47 (Suppl. S1), e20240036. [Google Scholar] [CrossRef]
- Kolegova, E.S.; Patysheva, M.R.; Larionova, I.V.; Fedorova, I.K.; Kulbakin, D.E.; Choinzonov, E.L.; Denisov, E.V. Early-onset oral cancer as a clinical entity: Aetiology and pathogenesis. Int. J. Oral Maxill. Surg. 2022, 51, 1497–1509. [Google Scholar] [CrossRef]
- Nikitakis, N.G.; Pentenero, M.; Georgaki, M.; Poh, C.F.; Peterson, D.E.; Edwards, P.; Lingen, M.; Sauk, J.J. Molecular markers associated with development and progression of potentially premalignant oral epithelial lesions: Current knowledge and future implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 650–669. [Google Scholar] [CrossRef] [PubMed]
- Rapado-González, Ó.; Costa-Fraga, N.; Bao-Caamano, A.; López-Cedrún, J.L.; Álvarez-Rodríguez, R.; Crujeiras, A.B.; Muinelo-Romay, L.; López-López, R.; Díaz-Lagares, Á.; Suárez-Cunqueiro, M.M. Genome-wide DNA methylation profiling in tongue squamous cell carcinoma. Oral Dis. 2024, 30, 259–271. [Google Scholar] [CrossRef]
- D’Souza, W.; Sarannath, D. OMICS, oral cancer molecular landscapes, and clinical practice. OMICS 2017, 21, 689–703. [Google Scholar] [CrossRef]
- Inchanalkar, M.; Srivatsa, S.; Ambatipudi, S.; Bhosale, P.G.; Patil, A.; Schäffer, A.A.; Beerenwinkel, N.; Mahimkar, M.B. Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin. Epigen. 2023, 15, 93. [Google Scholar] [CrossRef]
- Satgunaseelan, L.; Porazinski, S.; Strbenac, D.; Istadi, A.; Willet, C.; Chew, T.; Sadsad, R.; Palme, C.E.; Lee, J.H.; Boyer, M.; et al. Oral Squamous Cell Carcinoma in Young Patients Show Higher Rates of EGFR Amplification: Implications for Novel Personalized Therapy. Front. Oncol. 2021, 11, 750852. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, K.C.; Chen, M.Y.; Huang, L.Y.; Su, A.Y.; Chiang, W.F.; Huang, W.T.; Huang, T.T. Epigenetic Deregulation of Protein Tyrosine Kinase 6 Promotes Carcinogenesis of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 4495. [Google Scholar] [CrossRef] [PubMed]
- Kaliyaperumal, S.; Sankarapandian, S. Evaluation of p16 hypermethylation in oral submucous fibrosis: A quantitative and comparative analysis in buccal cells and saliva using real-time methylation-specific polymerase chain reaction. South Asian J. Cancer 2016, 5, 73–79. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, L.V.; Isaza-Guzmán, D.M.; Arango-Pérez, E.A.; Tobón-Arroyave, S.I. Analysis of salivary detection of P16INK4A and RASSF1A promoter gene methylation and its association with oral squamous cell carcinoma in a Colombian population. J. Clin. Exp. Dent. 2020, 12, e452–e460. [Google Scholar] [CrossRef]
- Liyanage, C.; Wathupola, A.; Muraleetharan, S.; Perera, K.; Punyadeera, C.; Udagama, P. Promoter Hypermethylation of Tumor-Suppressor Genes p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 in Salivary DNA as a Quadruple Biomarker Panel for Early Detection of Oral and Oropharyngeal Cancers. Biomolecules 2019, 9, 148. [Google Scholar] [CrossRef]
- Demokan, S.; Chang, X.; Chuang, A.; Mydlarz, W.K.; Kaur, J.; Huang, P.; Khan, Z.; Khan, T.; Ostrow, K.L.; Brait, M.; et al. KIF1A and EDNRB are differentially methylated in primary HNSCC and salivary rinses. Int. J. Cancer 2010, 127, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, D.A.; Cooper, M.A.; Pandit, P.; Coman, W.B.; Cooper-White, J.J.; Keith, P.; Wolvetang, E.J.; Slowey, P.D.; Punyadeera, C. Tumor-suppressor Gene Promoter Hypermethylation in Saliva of Head and Neck Cancer Patients. Trans. Oncol. 2012, 5, 321–326. [Google Scholar] [CrossRef]
- Ovchinnikov, D.A.; Wan, Y.; Coman, W.B.; Pandit, P.; Cooper-White, J.J.; Herman, J.G.; Punyadeera, C. DNA Methylation at the Novel CpG Sites in the Promoter of MED15/PCQAP Gene as a Biomarker for Head and Neck Cancers. Biomark. Insights 2014, 9, 53–60. [Google Scholar] [CrossRef]
- Nagata, S.; Hamada, T.; Yamada, N.; Yokoyama, S.; Kitamoto, S.; Kanmura, Y.; Nomura, M.; Kamikawa, Y.; Yonezawa, S.; Sugihara, K. Aberrant DNA methylation of tumor-related genes in oral rinse: A noninvasive method for detection of oral squamous cell carcinoma. Cancer 2012, 118, 4298–4308. [Google Scholar] [CrossRef]
- Carvalho, A.L.; Henrique, R.; Jeronimo, C.; Nayak, C.S.; Reddy, A.N.; Hoque, M.O.; Chang, S.; Brait, M.; Jiang, W.W.; Kim, M.M.; et al. Detection of promoter hypermethylation in salivary rinses as a biomarker for head and neck squamous cell carcinoma surveillance. Clin. Cancer Res. 2011, 17, 4782–4789. [Google Scholar] [CrossRef]
- Don, K.R.; Ramani, P.; Ramshankar, V.; Sherlin, H.J.; Premkumar, P.; Natesan, A. Promoter hypermethylation patterns of P16, DAPK and MGMT in oral squamous cell carcinoma: A systematic review and meta-analysis. Indian J. Dent. Res. 2014, 25, 797–805. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Jordan, L.; Rees, T.; Chen, H.S.; Oxford, L.; Brinkmann, O.; Wong, D. Levels of potential oral cancer salivary mRNA biomarkers in oral cancer patients in remission and oral lichen planus patients. Clin. Oral Investig. 2014, 18, 985–993. [Google Scholar] [CrossRef]
- Michailidou, E.; Tzimagiorgis, G.; Chatzopoulou, F.; Vahtsevanos, K.; Antoniadis, K.; Kouidou, S.; Markopoulos, A.; Antoniades, D. Salivary mRNA markers having the potential to detect oral squamous cell carcinoma segregated from oral leukoplakia with dysplasia. Cancer Epidemiol. 2016, 43, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; St John, M.A.; Zhou, X.; Kim, Y.; Sinha, U.; Jordan, R.C.; Eisele, D.; Abemayor, E.; Elashoff, D.; Park, N.H.; et al. Salivary transcriptome diagnostics for oral cancer detection. Clin. Cancer Res. 2004, 10, 8442–8450. [Google Scholar] [CrossRef]
- Elashoff, D.; Zhou, H.; Reiss, J.; Wang, J.; Xiao, H.; Henson, B.; Hu, S.; Arellano, M.; Sinha, U.; Le, A.; et al. Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemil. Biomar. Prev. 2012, 21, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, O.; Kastratovic, D.A.; Dimitrijevic, M.V.; Konstantinovic, V.S.; Jelovac, D.B.; Antic, J.; Nesic, V.S.; Markovic, S.Z.; Martinovic, Z.R.; Akin, D.; et al. Oral squamous cell carcinoma detection by salivary biomarkers in a Serbian population. Oral Oncol. 2017, 47, 51–55. [Google Scholar] [CrossRef]
- Oh, S.Y.; Kang, S.M.; Kang, S.H.; Lee, H.J.; Kwon, T.G.; Kim, J.W.; Lee, S.T.; Choi, S.Y.; Hong, S.H. Potential Salivary mRNA Biomarkers for Early Detection of Oral Cancer. J. Clin. Med. 2020, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Hashimoto, K.; Miyabe, S.; Hasegawa, S.; Goto, M.; Shimizu, D.; Oh-Iwa, I.; Shimozato, K.; Nagao, T.; Nomoto, S. Salivary NUS1 and RCN1 Levels as Biomarkers for Oral Squamous Cell Carcinoma Diagnosis. In Vivo 2020, 34, 2353–2361. [Google Scholar] [CrossRef]
- Pickering, V.; Jordan, R.C.; Schmidt, B.L. Elevated salivary endothelin levels in oral cancer patients—A pilot study. Oral Oncol. 2007, 43, 37–41. [Google Scholar] [CrossRef]
- Bu, J.; Bu, X.; Liu, B.; Chen, F.; Chen, P. Increased Expression of Tissue/Salivary Transgelin mRNA Predicts Poor Prognosis in Patients with Oral Squamous Cell Carcinoma (OSCC). Med. Sci. Monit. 2015, 21, 2275–2281. [Google Scholar]
- Malhotra, R.; Urs, A.B.; Chakravarti, A.; Kumar, S.; Gupta, V.K.; Mahajan, B. Correlation of Cyfra 21-1 levels in saliva and serum with CK19 mRNA expression in oral squamous cell carcinoma. Tumour Biol. 2016, 37, 9263–9271. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawi, N.H.; Rizvi, Z.; Mkadmi, S.; Abu Kou, R.; Elmabrouk, N.; Alrashdan, M.S.; Koippallil Gopalakrishnan, A.R. Differential Expression Profile of Salivary oncomiRNAs among Smokeless Tobacco Users. Eur. J. Dent. 2023, 17, 1215–1220. [Google Scholar] [CrossRef]
- Momen-Heravi, F.; Trachtenberg, A.J.; Kuo, W.P.; Cheng, Y.S. Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer. J. Dent. Res. 2014, 93 (Suppl. S7), 86S–93S. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.X.; Yang, X.; Jiang, L.; Zhou, Z.J.; Zhu, Y.Q. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer 2013, 13, 129. [Google Scholar] [CrossRef]
- Zahran, F.; Ghalwash, D.; Shaker, O.; Al-Johani, K.; Scully, C. Salivary microRNAs in oral cancer. Oral Dis. 2015, 21, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, M.; Shahidi, M.; Manifar, S.; Jafari, S.; Mashhadi Abbas, F.; Barati, M.; Elmi Rankohi, Z. Diagnostic and prognostic relevance of salivary microRNA-21,-125a,-31 and-200a levels in patients with oral lichen planus-a short report. Cell. Oncol. 2018, 41, 329–334. [Google Scholar] [CrossRef]
- Shahidi, M.; Jafari, S.; Barati, M.; Mahdipour, M.; Gholami, M.S. Predictive value of salivary microRNA-320a, vascular endothelial growth factor receptor 2, CRP and IL-6 in Oral lichen planus progression. Inflammopharmacology 2017, 25, 577–583. [Google Scholar] [CrossRef]
- Uma Maheswari, T.N.; Nivedhitha, M.S.; Ramani, P. Expression profile of salivary micro RNA-21 and 31 in oral potentially malignant disorders. Braz. Oral Res. 2020, 34, e002. [Google Scholar] [CrossRef]
- Salazar, C.; Nagadia, R.; Pandit, P.; Cooper-White, J.; Banerjee, N.; Dimitrova, N.; Coman, W.B.; Punyadeera, C. A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 2014, 37, 331–338. [Google Scholar] [CrossRef]
- Fadhil, R.S.; Wei, M.Q.; Nikolarakos, D.; Good, D.; Nair, R.G. Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLoS ONE 2020, 15, e0221779. [Google Scholar] [CrossRef]
- Salazar-Ruales, C.; Arguello, J.V.; López-Cortés, A.; Cabrera-Andrade, A.; García-Cárdenas, J.M.; Guevara-Ramírez, P.; Peralta, P.; Leone, P.E.; Paz-Y-Miño, C. Salivary MicroRNAs for Early Detection of Head and Neck Squamous Cell Carcinoma: A Case-Control Study in the High Altitude Mestizo Ecuadorian Population. BioMed Res. Inter. 2018, 2018, 9792730. [Google Scholar] [CrossRef] [PubMed]
- Romani, C.; Salviato, E.; Paderno, A.; Zanotti, L.; Ravaggi, A.; Deganello, A.; Berretti, G.; Gualtieri, T.; Marchini, S.; D’Incalci, M.; et al. Genome-wide study of salivary miRNAs identifies miR-423-5p as promising diagnostic and prognostic biomarker in oral squamous cell carcinoma. Theranostics 2021, 11, 2987–2999. [Google Scholar] [CrossRef]
- Gissi, D.B.; Morandi, L.; Gabusi, A.; Tarsitano, A.; Marchetti, C.; Cura, F.; Palmieri, A.; Montebugnoli, L.; Asioli, S.; Foschini, M.P.; et al. A Noninvasive Test for MicroRNA Expression in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2018, 19, 1789. [Google Scholar] [CrossRef]
- Duz, M.B.; Karatas, O.F.; Guzel, E.; Turgut, N.F.; Yilmaz, M.; Creighton, C.J.; Ozen, M. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: A pilot study. Cell. Oncol. 2016, 39, 187–193. [Google Scholar] [CrossRef]
- Du, J.; Gao, R.; Wang, Y.; Nguyen, T.; Yang, F.; Shi, Y.; Liu, T.; Liao, W.; Li, R.; Zhang, F.; et al. MicroRNA-26a/b have protective roles in oral lichen planus. Cell Death Dis. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, K.; Karczmarek-Borowska, B.; Kwaśniak, K.; Czarnik-Kwaśniak, J.; Ludwin, A.; Lewandowski, B.; Tabarkiewicz, J. Salivary IL-17A, IL-17F, and TNF-α Are Associated with Disease Advancement in Patients with Oral and Oropharyngeal Cancer. J. Immunol. Res. 2020, 2020, 3928504. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Verma, J.K.; Singh, J.K. Validation of Salivary Markers, IL-1β, IL-8 and Lgals3bp for Detection of Oral Squamous Cell Carcinoma in an Indian Population. Sci. Rep. 2020, 10, 7365. [Google Scholar] [CrossRef]
- Deepthi, G.; Nandan, S.R.K.; Kulkarni, P.G. Salivary Tumour Necrosis Factor-α as a Biomarker in Oral Leukoplakia and Oral Squamous Cell Carcinoma. Asian Pacific J. Cancer Prev. APJCP 2019, 20, 2087–2093. [Google Scholar]
- Dikova, V.; Jantus-Lewintre, E.; Bagan, J. Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma. J. Clin. Med. 2021, 10, 1658. [Google Scholar] [CrossRef]
- Sami, S.M. Evaluation of cytokine expression tumor necrosis alpha and interleukin-6 in the saliva of oral maxillofacial benign fibro-osseous tumors and health control. Ann. Trop. Med. Public Health 2020, 23, SP231338. [Google Scholar] [CrossRef]
- Bhavana, V.S.; Madhura, M.G.; Kumar, B.V.; Suma, S.; Sarita, Y. Detection of salivary heat shock protein 27 by enzyme-linked immunosorbent assay and its correlation with histopathology of oral leukoplakia. J. Oral Maxill. Pathol. JOMFP 2018, 22, 307–313. [Google Scholar]
- Bhat, S.; Babu, G.S.; Kumari, N.S.; Madi, M.; Buch, S.; Ullal, H. Analysis and comparison of salivary L-Fucose and HSP 70 in oral potentially malignant disorders and oral cancer. Indian J. Public Health Res. Dev. 2020, 11, 29–33. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, E.; Prabhu, V.; Pai, V.R.; D’souza, J.M.; Harish, S.; Jose, M. Salivary L-fucose as a biomarker for oral potentially malignant disorders and oral cancer. J. Cancer Res. Ther. 2020, 16, 546–550. [Google Scholar] [CrossRef]
- Rathore, A.S.; Katyal, S.; Jain, A.; Shetty, D.C. Biochemical analysis of cytokeratin fragment 21-1 concentration and expression of cytokeratin 19 in oral potentially malignant disorders. J. Cancer Res. Ther. 2020, 16, 452–457. [Google Scholar] [CrossRef]
- Gulzar, R.A.; Ajitha, P.; Subbaiyan, H. Comparative evaluation on the levels of salivary Mucin MUC1 in precancerous and cancerous conditions. Int. J. Dent. Oral Sci. 2021, 8, 3734–3737. [Google Scholar] [CrossRef]
- Azeem, M.S.; Yesupatham, S.T.; Mohiyuddin, S.M.A.; Sumanth, V.; Ravishankar, S. Usefulness of salivary sialic acid as a tumor marker in tobacco chewers with oral cancer. J. Cancer Res. Ther. 2020, 16, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zheng, Z.; Bai, Z.; Ouyang, K.; Wu, Q.; Xu, S.; Huang, L.; Jiang, Y.; Wang, L.; Gao, J.; et al. Overexpression of angiogenic factors and matrix metalloproteinases in the saliva of oral squamous cell carcinoma patients: Potential non-invasive diagnostic and therapeutic biomarkers. BMC Cancer 2022, 22, 530. [Google Scholar] [CrossRef]
- Radulescu, R.; Greabu, M.; Totan, A.; Melescanu Imre, M.; Miricescu, D.; Didilescu, A. Diagnostic Role of Saliva in Oral Cancers. Rev. Chim. 2020, 71, 474–480. [Google Scholar] [CrossRef]
- Chang, Y.T.; Chu, L.J.; Liu, Y.C.; Chen, C.J.; Wu, S.F.; Chen, C.H.; Chang, I.Y.; Wang, J.S.; Wu, T.Y.; Dash, S.; et al. Verification of Saliva Matrix Metalloproteinase-1 as a Strong Diagnostic Marker of Oral Cavity Cancer. Cancers 2020, 12, 2273. [Google Scholar] [CrossRef]
- Smriti, K.; Ray, M.; Chatterjee, T.; Shenoy, R.P.; Gadicherla, S.; Pentapati, K.C.; Rustaqi, N. Salivary MMP-9 as a Biomarker for the Diagnosis of Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. APJCP 2020, 21, 233–238. [Google Scholar] [CrossRef]
- Gholizadeh, N.; Alipanahi Ramandi, M.; Motiee-Langroudi, M.; Jafari, M.; Sharouny, H.; Sheykhbahaei, N. Serum and salivary levels of lactate dehydrogenase in oral squamous cell carcinoma, oral lichen planus and oral lichenoid reaction. BMC Oral Health 2020, 20, 314. [Google Scholar] [CrossRef] [PubMed]
- Mantri, T.; Thete, S.G.; Male, V.; Yadav, R.; Grover, I.; Adsure, G.R.; Kulkarni, D. Study of the Role of Salivary Lactate Dehydrogenase in Habitual Tobacco Chewers, Oral Submucous Fibrosis and Oral Cancer as a Biomarker. J. Contemp. Dent. Pract. 2019, 20, 970–973. [Google Scholar] [CrossRef]
- Ko, H.H.; Peng, H.H.; Cheng, S.J.; Kuo, M.Y. Increased salivary AKR1B10 level: Association with progression and poor prognosis of oral squamous cell carcinoma. Head Neck 2018, 4, 2642–2647. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, Q.; Chen, J.; Yi, P.; Xu, X.; Fan, Y.; Cui, B.; Yu, Y.; Li, X.; Du, Y.; et al. Salivary protease spectrum biomarkers of oral cancer. Int. J. Oral Sci. 2019, 11, 7. [Google Scholar] [CrossRef]
- Avasthi, N. Role of salivary biomarkers in early detection of oral squamous cell carcinoma. Indian J. Pathol. Microbiol. 2017, 60, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Ridinger, J.; Rupp, A.K.; Janssen, J.W.; Altevogt, P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 2011, 9, 86. [Google Scholar] [CrossRef]
- Xiao, C.; Song, F.; Zheng, Y.L.; Lv, J.; Wang, Q.F.; Xu, N. Exosomes in Head and Neck Squamous Cell Carcinoma. Front. Oncol. 2019, 9, 894. [Google Scholar] [CrossRef]
- Adeola, H.A.; Holmes, H.; Temilola, D.O. Diagnostic potential of salivary exosomes in oral cancer. In Oral Cancer: Current Concepts and Future Perspectives; Sridharan, G., Ed.; IntechOpen: London, UK, 2022. [Google Scholar]
- Wang, Z.; Chen, J.Q.; Liu, J.L.; Tian, L. Exosomes in tumor microenvironment: Novel transporters and biomarkers. J. Transl. Med. 2016, 14, 297. [Google Scholar] [CrossRef]
- Zhang, H.G.; Grizzle, W.E. Exosomes: A novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am. J. Pathol. 2014, 184, 28–41. [Google Scholar] [CrossRef]
- Whiteside, T.L. The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev. Mol. Diagn. 2015, 15, 1293–1310. [Google Scholar] [CrossRef]
- Wortzel, I.; Dror, S.; Kenific, C.M.; Lyden, D. Exosome-mediated metastasis: Communication from a distance. Dev Cell. 2019, 49, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Gillespie, B.M.; Palanisamy, V.; Gimzewski, J.K. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 2011, 27, 14394–14400. [Google Scholar] [CrossRef]
- Kannan, A.; Hertweck, K.L.; Philley, J.V.; Wells, R.B.; Dasgupta, S. Genetic mutation and exosome signature of human papilloma virus associated oropharyngeal cancer. Sci. Rep. 2017, 7, 46102. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.; Sharma, P.; Theodoraki, M.N.; Pietrowska, M.; Yerneni, S.S.; Lang, S.; Ferrone, S.; Whiteside, T.L. Molecular and Functional Profiles of Exosomes From HPV(+) and HPV(-) Head and Neck Cancer Cell Lines. Front. Oncol. 2018, 8, 445. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, T.; Wong, D.T.W. Liquid Biopsy in Head and Neck Cancer: Promises and Challenges. J. Dent. Res. 2018, 97, 701–708. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Lu, J.; Sun, Y.; Xiao, H.; Liu, M.; Tian, L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol. 2014, 31, 148. [Google Scholar] [CrossRef]
- Qin, X.; Guo, H.; Wang, X.; Zhu, X.; Yan, M.; Wang, X.; Xu, Q.; Shi, J.; Lu, E.; Chen, W.; et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Gen. Biol. 2019, 20, 12. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, J.; Zheng, J.; Hsueh, C.; Guo, Y.; Zhou, L. Characterization of selective exosomal microRNA expression profile derived from laryngeal squamous cell carcinoma detected by next generation sequencing. Oncol. Rep. 2018, 40, 2584–2594. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, C.; Wang, S.; Wang, Z.; Jiang, J.; Wang, W.; Li, X.; Chen, J.; Liu, K.; Li, C.; et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res. 2016, 76, 1770–1780. [Google Scholar] [CrossRef]
- Li, Y.Y.; Tao, Y.W.; Gao, S.; Li, P.; Zheng, J.M.; Zhang, S.E.; Liang, J.; Zhang, Y. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine 2018, 36, 209–220. [Google Scholar] [CrossRef]
- Gai, C.; Camussi, F.; Broccoletti, R.; Gambino, A.; Cabras, M.; Molinaro, L.; Carossa, S.; Camussi, G.; Arduino, P.G. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Cancer 2018, 18, 439. [Google Scholar] [CrossRef]
- Sakha, S.; Muramatsu, T.; Ueda, K.; Inazawa, J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci. Rep. 2016, 6, 38750. [Google Scholar] [CrossRef] [PubMed]
- Winck, F.V.; Prado Ribeiro, A.C.; Ramos Domingues, R.; Ling, L.Y.; Riaño-Pachón, D.M.; Rivera, C.; Brandão, T.B.; Gouvea, A.F.; Santos-Silva, A.R.; Coletta, R.D.; et al. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci. Rep. 2015, 5, 16305. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, X.; Zhu, X.; Chen, W.; Zhang, J.; Chen, W. Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway. Oral Oncol. 2018, 76, 34–41. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, J.; Chen, W.; Chen, W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 143. [Google Scholar] [CrossRef] [PubMed]
- Sento, S.; Sasabe, E.; Yamamoto, T. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes. PLoS ONE 2016, 11, e0148454. [Google Scholar] [CrossRef]
- Raulf, N.; Lucarelli, P.; Thavaraj, S.; Brown, S.; Vicencio, J.M.; Sauter, T.; Tavassoli, M. Annexin A1 regulates EGFR activity and alters EGFR-containing tumour-derived exosomes in head and neck cancers. Eur. J. Cancer 2018, 102, 52–68. [Google Scholar] [CrossRef] [PubMed]
- van Dommelen, S.M.; van der Meel, R.; van Solinge, W.W.; Coimbra, M.; Vader, P.; Schiffelers, R.M. Cetuximab treatment alters the content of extracellular vesicles released from tumor cells. Nanomedicine 2016, 11, 881–890. [Google Scholar] [CrossRef]
- Syn, N.; Wang, L.; Sethi, G.; Thiery, J.P.; Goh, B.C. Exosome-Mediated Metastasis: From Epithelial-Mesenchymal Transition to Escape from Immunosurveillance. Trends Pharm. Sci. 2016, 37, 606–617. [Google Scholar] [CrossRef]
- Blackwell, R.H.; Foreman, K.E.; Gupta, G.N. The Role of Cancer-Derived Exosomes in Tumorigenicity & Epithelial-to-Mesenchymal Transition. Cancers 2017, 9, 105. [Google Scholar]
- Kawakubo-Yasukochi, T.; Morioka, M.; Hazekawa, M.; Yasukochi, A.; Nishinakagawa, T.; Ono, K.; Kawano, S.; Nakamura, S.; Nakashima, M. miR-200c-3p spreads invasive capacity in human oral squamous cell carcinoma microenvironment. Mol. Carcinog. 2018, 57, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Languino, L.R.; Singh, A.; Prisco, M.; Inman, G.J.; Luginbuhl, A.; Curry, J.M.; South, A.P. Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. Am. J. Transl. Res. 2016, 8, 2432–2437. [Google Scholar]
- Al-Nedawi, K.; Meehan, B.; Kerbel, R.S.; Allison, A.C.; Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA 2009, 106, 3794–3799. [Google Scholar] [CrossRef]
- Xiao, H.; Feng, Y.; Tao, Y.; Zhao, P.; Shang, W.; Song, K. Microvesicles releasing by oral cancer cells enhance endothelial cell angiogenesis via Shh/RhoA signaling pathway. Cancer Biol. Ther. 2017, 18, 783–791. [Google Scholar]
- Ludwig, N.; Yerneni, S.S.; Razzo, B.M.; Whiteside, T.L. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol. Cancer Res. 2018, 16, 1798–1808. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.H.; Tai, S.K.; Yang, M.H. Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering MiR-21-abundant exosomes. Neoplasia 2018, 20, 775–788. [Google Scholar] [CrossRef]
- Madeo, M.; Colbert, P.L.; Vermeer, D.W.; Lucido, C.T.; Cain, J.T.; Vichaya, E.G.; Grossberg, A.J.; Muirhead, D.; Rickel, A.P.; Hong, Z.; et al. Cancer exosomes induce tumor innervation. Nat. Commun. 2018, 9, 4284. [Google Scholar] [CrossRef]
- Mutschelknaus, L.; Azimzadeh, O.; Heider, T.; Winkler, K.; Vetter, M.; Kell, R.; Tapio, S.; Merl-Pham, J.; Huber, S.M.; Edalat, L.; et al. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017, 7, 12423. [Google Scholar] [CrossRef]
- Mikkonen, J.J.; Singh, S.P.; Herrala, M.; Lappalainen, R.; Myllymaa, S.; Kullaa, A.M. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J. Peridont. Res. 2016, 51, 431–437. [Google Scholar] [CrossRef]
- Bonne, N.J.; Wong, D.T. Salivary biomarker development using genomic, proteomic and metabolomic approaches. Gen. Med. 2012, 4, 82. [Google Scholar] [CrossRef]
- Wei, J.; Xie, G.; Zhou, Z.; Shi, P.; Qiu, Y.; Zheng, X.; Chen, T.; Su, M.; Zhao, A.; Jia, W. Salivary metabolite signatures of oral cancer and leukoplakia. Int. J. Cancer 2011, 129, 2207–2217. [Google Scholar] [CrossRef]
- Lohavanichbutr, P.; Zhang, Y.; Wang, P.; Gu, H.; Nagana Gowda, G.A.; Djukovic, D.; Buas, M.F.; Raftery, D.; Chen, C. Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS ONE 2018, 13, e0204249. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, P.; Wang, X.; Duan, Y. Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clin. Chim. Acta 2014, 427, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, P.; Wang, X.; Duan, Y. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci. Rep. 2014, 4, 6802. [Google Scholar] [CrossRef]
- Sridharan, G.; Ramani, P.; Patankar, S.; Vijayaraghavan, R. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma. J. Oral Pathol. Med. 2019, 48, 299–306. [Google Scholar] [CrossRef]
- McLean, J.S. Advancements toward a systems level understanding of the human oral mi-crobiome. Front. Cell. Inf. Microbiol. 2014, 4, 98. [Google Scholar] [CrossRef]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the human oral microbiome. Arch. Microbiol. 2018, 200, 525–540. [Google Scholar] [CrossRef]
- Lee, W.H.; Chen, H.M.; Yang, S.F.; Liang, C.; Peng, C.Y.; Lin, F.M.; Tsai, L.L.; Wu, B.C.; Hsin, C.H.; Chuang, C.Y.; et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017, 7, 16540. [Google Scholar] [CrossRef]
- Mager, D.L.; Haffajee, A.D.; Devlin, P.M.; Norris, C.M.; Posner, M.R.; Goodson, J.M. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of can-cer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 2005, 3, 27. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Seneviratne, C.J.; Jayasinghe, R.D.; Vo, P.T.; Bostanci, N.; Choi, Y. Bacteriome and mycobiome dysbiosis in oral mucosal dysplasia and oral cancer. Periodontology 2024, 96, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, D.; Kunnath Menon, R.; Chun Wie, C.; Banerjee, M.; Panda, S.; Mandal, D. Salivary bacterial shifts in oral leukoplakia resemble the dysbiotic oral cancer bacteriome. J. Oral Microbiol. 2020, 13, 1857998. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Yeh, Y.M.; Yu, H.Y.; Chin, C.Y.; Hsu, C.W.; Liu, H.; Huang, P.J.; Hu, S.N.; Liao, C.T.; Chang, K.P.; et al. Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging. Front. Microbiol. 2018, 9, 862. [Google Scholar] [CrossRef]
- Schmidt, B.L.; Kuczynski, J.; Bhattacharya, A.; Huey, B.; Corby, P.M.; Queiroz, E.L.; Nightingale, K.; Kerr, A.R.; DeLacure, M.D.; Veeramachaneni, R.; et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS ONE 2014, 9, e98741. [Google Scholar] [CrossRef]
- Thomas, A.M.; Gleber-Netto, F.O.; Fernandes, G.R.; Amorim, M.; Barbosa, L.F.; Francisco, A.L.; de Andrade, A.G.; Setubal, J.C.; Kowalski, L.P.; Nunes, D.N.; et al. Alcohol and tobacco consumption affects bacterial richness in oral cavity mucosa biofilms. BMC Microbiol. 2014, 14, 250. [Google Scholar] [CrossRef]
- Cristaldi, M.; Mauceri, R.; Di Fede, O.; Giuliana, G.; Campisi, G.; Panzarella, V. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: Current status and perspectives. Front. Physiol. 2019, 10, 1476. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Kerr, A.R. Oral cancer screening: Past, present, and future. J. Dent. Res. 2021, 100, 1313–1320. [Google Scholar] [CrossRef]
- Barros, O.; D’Agostino, V.G.; Santos, L.; Vitorino, R.; Ferreira, R. Shaping the future of oral cancer diagnosis: Advances in salivary proteomics. Expert Rev. Proteom. 2024, 21, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.T. Towards a simple, saliva-based test for the detection of oral cancer ‘oral fluid (saliva), which is the mirror of the body, is a perfect medium to be explored for health and disease surveillance’. Expert Rev. Mol. Diagn. 2006, 6, 267–272. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.M. Saliva sampling: Methods and devices an overview. Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Szabo, Y.Z.; Slavish, D.C. Measuring salivary markers of inflammation in health research: A review of methodological considerations and best practices. Psychoneuroendocrinology 2021, 124, 105069. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Tu, M.; Sugano, A.; Yamamori, I.; Iba, A.; Yusa, K.; Kaneko, M.; Ota, S.; et al. Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids 2017, 49, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Cohier, C.; Mégarbane, B.; Roussel, O. Illicit drugs in oral fluid: Evaluation of two collection devices. J. Anal. Toxicol. 2017, 41, 71–76. [Google Scholar] [CrossRef]
- Mortazavi, H.; Yousefi-Koma, A.A.; Yousefi-Koma, H. Extensive comparison of salivary collection, transportation, preparation, and storage methods: A systematic review. BMC Oral Health 2024, 24, 168. [Google Scholar] [CrossRef]
- Fey, J.M.; Bikker, F.J.; Hesse, D. Saliva collection methods among children and adolescents: A scoping review. Mol. Diagn. Ther. 2024, 28, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.M.; Benoit, N.; Saby, F.; Pradines, B.; Granjeaud, S.; Almeras, L. Optimization and standardization of human saliva collection for MALDI-TOF MS. Diagnostics 2021, 11, 1304. [Google Scholar] [CrossRef]
- Ornelas-González, A.; Ortiz-Martínez, M.; González-González, M.; Rito-Palomares, M. Enzymatic methods for salivary biomarkers detection: Overview and current challenges. Molecules 2021, 26, 7026. [Google Scholar] [CrossRef]
- Takagi, K.; Ishikura, Y.; Hiramatsu, M.; Nakamura, K.; Degawa, M. Development of a saliva collection device for use in the field. Clin. Chim. Acta Int. J. Clin. Chem. 2013, 425, 181–185. [Google Scholar] [CrossRef]
Author | DNA Damage and Repair. Telomere Length/Telomerase Expression. MSI/LOH Activity in OC | ||
---|---|---|---|
Biomarker | Study Design | Results | |
Sreelatha et al. [44] | p53 autoantibodies in saliva (p53-Aabs) | Saliva samples from patients with OSCC and from normal healthy individuals Enzyme-linked immunosorbent assay (ELISA) used | ↑ The median p53-AAb levels in OSCC vs. healthy controls (15% vs. 0) (p < 0.001) No significant correlation of p53-AAbs with patient age, sex, site, clinical staging (TNM), and pathologic grade ↑ The median p53-AAb levels ~ the node involvement and salivary p53-AAbs |
Mewara et al. [46] | The C-deletion mutation of the p53 tumor-suppressor gene at exon 4 of codon 63 in saliva | Saliva supernatant from 35 subjects: 30 OSCC cases and 5 healthy controls with no habit of betel nut and tobacco chewing Standard polymerase chain reaction (PCR) analysis |
|
Liao et al. [45] | Mutation of p53 gene codon 63 in saliva | Saliva supernatant from 37 subjects: 10 OSCC patients and 27 control subjects Amplifications of exon 4 and intron 6 within the p53 gene with polymerase chain reactions (PCRs) followed by DNA sequence analysis were carried out | 62.5% tumor saliva samples and 18. 5% healthy saliva samples included p53 exon 4 codon 63 mutations (p < 0.05) The main changes of the base substitutions were C-deletions Probable hot spots for the gene changes were identified at exon 4 codon 63; loss of p53 gene codon 63 (p < 0.05) was noted |
Nandakumar et al. [47] | Salivary activity of 8-Hydroxydeoxyguanosine (8-OHdG) a biomarker of oxidative stress | Unstimulated saliva supernatants from 90 subjects (30 healthy controls, 30 OSCC and 30 OSMF) Sandwich ELISA | The mean OHdG level in the controls was 6.59 ± 1.47 ng/dl; this was almost doubled in individuals of OSMF 13.89 ± 1.96 ng/dL and further raised in OSCC cases, 19.96 ± 2.11 ng/dL An association between these groups was statistically significant (p = 0.0001) |
Shpitzer et al. [48] | 8 salivary biomarkers of oxidative stress, DNA repair, carcinogenesis, metastasis and cellular proliferation and death | Saliva supernatant from 38 subjects: 18 healthy controls and 19 OSCC Immunoreactivity assay | Biomarkers increased in OSCC patients by 39–246%: carbonyls, lactate dehydrogenase, metalloproteinase-9 (MMP-9), Ki67, and cyclin D1 (CycD1) (all, p ≤ 0.01) Biomarkers decreased by 16–29%: 8-oxoguanine DNA glycosylase, phosphorylated Src (Phospho-Src), and mammary serine protease inhibitor (Maspin) (all, p ≤ 0.001) |
Moorthy et al. [49] | Identification of EGFR gene/protein expression | Saliva supernatant and exfoliated buccal cells of OPMD with dysplasia, OSCC, and healthy controls ELISA and immunoexpression polymerase chain reactions (PCR) | ↑ Higher immunoexpression of EGFR OSCC, OPMD with dysplasia, and OSMF vs. healthy controls (all, p <0.05) ↑ Higher EGFR protein expression in the clinical advancement of OSCC and in higher degree of dysplasia (all, p < 0.01) 18-fold increase in EGFR gene expression in OSCC and three-fold upregulation in OSMF vs. healthy controls (p < 0.05) |
Samadi et al. [50] | Telomere length and telomerase expression | Samples of saliva taken from individuals with oral precancerous (PCs) and cancerous lesions (OSCCs) Polymerase-chain-reaction-based telomeric repeat-amplification protocol (TRAP) assay was used | A significant difference in telomerase activity (TA) levels between OSCC and precancerous samples (p = 0.00001); ↑ TA in OSCC vs. PC |
Samadi et al. [51] | Telomerase, a reverse-transcriptase enzyme, activity | Samples of salivary rinse from 300 subjects: from healthy controls (HC), 100 premalignant oral disorders (PMODs), and 100 oral squamous cell carcinoma (OSSC) cell carcinoma TRAP assay used | ↑ Higher telomerase activity in the late stage of oral premalignancy and OSCC ↑ TA in OSCC (71%) vs. PMOD (50%) (p < 0.001) |
El-Naggar et al. [55] | Genetic heterogeneity and microsatellite analysis at chromosomal regions frequently altered in HNSCC related to genetic instability (D3S1234, D9S156, and D17S799) |
|
|
Methylation Changes in CpG Island at Gene Promoters | |||
Biomarker | Study Design | Results | |
Kaliyaperumal and Sankarapandian [66] | Salivary detection of tumor suppressor gene p16 hypermethylation | Saliva rinse specimens collected from 60 subjects: 30 patients histopathologically diagnosed with OSMF and 30 control subjects Real-time quantitative methylation-specific polymerase chain reaction (RT-QMSP) | The hypermethylation status of p16 in buccal cells was high (93.3%) vs. in salivary samples (50%) No hypermethylation was found in controls |
Rapado-González et al. [61] | Salivary DNA methylome | Genome-wide DNA methylation analysis in saliva in 6 patients with oral tongue squamous cell carcinoma (OTSCC) Infinium MethylationEPIC array | The six genes A2BP1, ANK1, ALDH1A2, GFRA1, TTYH1, and PDE4B were the most hypermethylated in saliva These six salivary methylated genes showed high diagnostic accuracy (≥ 0.800) for discriminating patients from controls |
González-Pérez et al. [67] | Salivary detection of P16INK4a/RASSF1A gene promoter methylation | Salivary rinse DNA obtained from whole saliva collected from 83 subjects: 40 healthy controls (HC) and 43 OSCC patients
| ↑ Higher proportions of promoter methylation of P16INK4a/RASSF1A genes in OSCC patients ~ HC volunteers (p < 0.001) ↑ Greater proportion of methylated P16INK4a and RASSF1A genes ~ clinical stage III/IV, poor differentiation, and severe cellular atypia
|
Liyanage et al. [68] | Promoter hypermethylation of tumor suppressor genes p16INK4a, RASSF1A, TIMP3 and PCQAP/MED15 | Saliva supernatant from 148 subjects: 60 healthy controls (HC), 54 oral squamous cell cancer (OSCC) and oropharyngeal cancer (OPC) The promoter methylation of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs in salivary DNA from OSCC and OPC individuals Quantitative methylation-specific PCR (MSP-PCR) coupled with densitometry analysis | ↑ RASSF1A, TIMP3, and PCQAP/MED15 hypermethylation in OSCC and OPC cases ~ healthy controls (p < 0.05 and p < 0.0001, respectively) ↑ Higher DNA methylation levels of TSGs ~ smoking, alcohol use, and betel quid chewing ↑ Quadruple-methylation marker panel demonstrated excellent diagnostic accuracy in the early detection of OSCC and OPC |
Demokan et al. [69] | Aberrant promoter hypermethylation of a panel of 10 genes of intracellular transport and regulation of cell cycle (KIF1A, EDNRB, CDH4, TERT, CD44, NISCH, PAK3, VGF, MAL, and FKBP4) in salivary rinses | Cohort of salivary rinses from 132 subjects: 61 healthy volunteers and 71 patients with HNSCC The methylation status of 2 selected genes (EDNRB and KIF1A) in 15 normal mucosa samples from a healthy group and 101 HNSCC tumors from HNSCC individuals were collected before therapy Bisulfite modification and quantitative methylation-specific PCR (Q-MSP) | KIF1A and EDNRB were methylated in 38% and 67.6% of salivary rinses from HNSCC patients, respectively, vs. in 2% and 6.6% of normal salivary rinses (p < 0.0001) ↑ Higher levels of methylated salivary rinse samples from HNSCC patients having stage I and II, but not for stage III and IV |
Ovchinnikov et al. [70] | Tumor-suppressor and cell cycle regulatory gene promoter hypermethylation (p16INK4a, RASSF1A and DAPK1) in salivary rinses | Cohort of salivary cell pellet from 174 subjects: 31 healthy volunteers and 143 head and neck cancers (HNSCCs) The promoter methylation levels of p16INK4a, RASSF1A, and DAPK1 in salivary DNA from 143 head-and-neck-cancer patients and 31 healthy non-smoker controls A sensitive methylation-specific polymerase chain reaction (MSP) assay; nested MSP | The detection of the tumor with an overall accuracy of 81% in DNA isolated from the saliva of patients with HNSCC compared to DNA isolated from the saliva of healthy non-smoking individuals (p < 0.0001) Promoter methylation of the RASSF1A, DAPK1, and p16 MSP panel may be a potentially useful method in detecting of the early stages of HNSCC |
Ovchinnikov et al. [71] | DNA methylation at the CpG sites in the promoter region of the mediator complex subunit 15 (MED15/PCQAP) transcription factor genes in saliva samples | Salivary supernatants from 184 subjects: 94 healthy controls and cohort of 90 HNSCC patients (who developed oropharynx and oral cavity larynx/pharynx cancer due to smoking or HPV infections) The methylation levels for the two identified CpG clusters (MED15/PCQAP) were assessed Methylation-specific polymerase chain reaction (PCR) analysis | The methylation statuses for the two identified CpG clusters were significantly different between the saliva samples collected from HNSCC individuals vs. healthy controls (p <0.01) |
Nagata et al. [72] | The methylation status of tumor-related genes (ECAD, MGMT, DAPK, RARβ, FHIT, p16, p15, TIMP3, APC, TMEFF2, and SPARC HIN-1 and WIF-1) | Oral rinse samples from 34 individuals with OSCC and from 24 healthy individuals Methylation-specific polymerase chain reaction (PCR) analysis and a microchip electrophoresis system | ↑ Higher levels of DNA methylation in 8/13 in samples from patients with OSCC vs. controls ↑ Higher methylation on ECAD, TMEFF2, RARβ, MGMT, FHIT, WIF-1, p16INK4a, and DAPK genes |
Carvalho et al. [73] | Hypermethylation gene pattern in pretreatment salivary rinses | Pretreatment saliva DNA samples from 61 HNSCC patients Tumor suppressor gene promoter regions of DAPK, DCC, MINT-31, TIMP-3, p16, MGMT, and CCNA1 genes Real-time quantitative methylation-specific PCR (Q-MSP) | ↑ Higher methylation of at least one of the selected genes in the saliva DNA from 54.1% HNSCC patients No significant association between hypermethylation pattern with tumor site and clinical stage Local tumor relapses and overall survival were significantly lower in patients presenting hypermethylation in saliva rinses (p = 0.01 and p = 0.015, respectively) |
Author | Upregulated mRNAs in OC | ||
---|---|---|---|
Biomarker | Study Design | Results | |
Ueda et al. [75] | Salivary NUS1 and RCN1 mRNA biomarker (regulators of protein modification and Ca2+ binding cell signaling) levels in saliva | Whole saliva samples from 51 subjects: 41 patients with OSCC and from 10 normal healthy individuals Candidate genes selected by microarrays Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) method | ↑ Higher expression of salivary NUS1 and RCN1 in OSCC patients vs. healthy volunteers ↓ Lower expression of NAB2 (p = 0.0023), CYP27A1 (p = 0.0016), NPIPB4 (p = 0.0059), MAOB (p = 0.0009), and SIAE (p = 0.037) for the OSCC vs. non-tumor group |
Michailidou et al. [76] | IL-1β, IL-8, OAZ and SAT mRNAs in the saliva | RNA isolated from saliva supernatant from 85 subjects: 34 patients with primary oral squamous cell carcinoma (OSSC) stage T1N0M0/T2N0M0, 20 patients with oral leukoplakia (OL) and dysplasia (D) (15 patients with mild dysplasia and 5 with severe dysplasia/in situ carcinoma), and 31 matched healthy-control subjects RNA isolated using sequence-specific primers and quantitative polymerase chain reaction (qPCR) | The combination of IL-1B, IL-8, OAZ, and SAT—good predictive factors (p = 0.002) for patients with OSCC but not patients suffering from OL with D The combination of SAT and IL-8—good discriminatory ability (p = 0.007) for patients with OSCC |
Li et al. [77] | Diagnostic value of transcriptomic biomarkers (IL8, IL-1β, DUSP1, H3F3A, OAZ1, S100P, and SAT) in saliva | Supernatant of unstimulated saliva collected from 64 subjects: 32 healthy volunteers (HC) and 32 OSCC patients Human genome U133A microarrays applied for profiling human salivary transcriptome qPCR used to validate the selected genes that showed significant difference by microarray | 1679 genes exhibited different expression levels in saliva between OSCC and controls (p < 0.05) ↑ Higher expression of seven cancer-related mRNA transcripts, i.e., IL8, IL-1β, DUSP1, H3F3A, OAZ1, S100P, and SAT in OSCC vs. HC—a 3.5-fold elevation in OSCC saliva (p < 0.01) |
Pickering et al. [82] | Salivary endothelin-1 (ET-1) level, a transcript of vasoactive peptide | Unstimulated saliva supernatants from 11 subjects (3 healthy controls, 8 OSCC) Real-time polymerase chain reaction (RT-PCR) | ET-1 mRNA was overexpressed in 80% of the OSCC specimens ↑ Higher expression of ET-1 mRNA vs. HC (p < 0.001) |
Elashoff et al. [78] | Salivary expression of the seven mRNAs (IL8, SAT1, IL-1β, OAZ1, H3F3A, DUSP1, S100P) | Saliva supernatants from 395 subjects: 266 healthy controls (HC) and 169 OSCC patients qPCR | ↑ Higher expression of all 7 mRNA in OSCC vs. HC Four markers (IL8, SAT, IL-1β, and OAZ1) achieved a cross-validation prediction accuracy rate of 81%, demonstrating their potential as biomarkers for OSCC detection ↑ Increase in IL-8 and SAT1 mRNA in OSCC vs. HC (both, p < 0.05) |
Cheng et al. [75] | Salivary expression of seven mRNAs (IL8, SAT1, IL-1β, OAZ1, H3F3A, DUSP1, S100P) | Saliva supernatant from 125 subjects: newly diagnosed OSCC, OSCC-in-remission (OSCC-R), disease-active oral leukoplakia (A-OLP), disease-inactive oral leukoplakia (I-OLP), and normal controls (HC) Real-time polymerase chain reaction (RT-PCR) | ↑ Higher salivary mRNAs levels of OAZ1, S100P, and DUSP1 mRNA in newly diagnosed OSCC patients vs. HC (p = 0.003, p = 0.003 and p < 0.001, respectively), OSCC-R (p < 0.001, p = 0.001 and p < 0.001, respectively), A-OLP (p < 0.001, p = 0.016, and p < 0.001, respectively) and I-OLP (p = 0.043, p < 0.001 and p < 0.001, respectively) No differences in the levels of salivary IL-8, IL-1β, H3F3A, and SAT1 mRNAs between newly diagnosed OSCC patients and HC (p = 0.093, 0.327, 0.764, and 0.560, respectively) |
Brinkmann et al. [79] | Salivary expression of six transcriptome (DUSP1, IL8, IL-1β, OAZ1, SAT1, and S100P) | Saliva biomarkers tested on 18 early and 17 late stage oral cancer (E-OSCC and L-OSCC) patients and 51 healthy controls (HC) Quantitative polymerase chain reaction (qPCR) | ↑ Elevated mRNAs for four transcriptome (IL8, IL-1β, SAT1, and S100P) (p < 0.05) in L-OSCC patients |
Bu et al. [83] | Transgelin a tumor suppression gene | Saliva samples from 78 OSCC patients and negative controls Real-time polymerase chain reaction (RT-PCR) | ↑ Higher expression level of salivary transgelin mRNA in patients with OSCC vs. normal controls (2.35 fold) (p < 0.01) Salivary transgelin mRNA ~ T stage (p = 0.030), N stage (p = 0.004), TNM stage (p < 0.0001), and differentiation (p = 0.014) Overexpression of salivary transgelin mRNA ~ poorer overall survival (p = 0.011) |
Malhotra et al. [84] | Cytokeratin-19 (CK19) mRNA | Salivary supernatant from 50 patients of OSCC and healthy controls RT-PCR for CK19 mRNA | There was a 2.75-fold increase in CK19 mRNA expression in OSCC cases vs. controls |
Downregulated mRNAs in OC | |||
Biomarker | Study design | Results | |
Oh et al. [80] | Salivary protein modification mRNA (NAB2, CYP27A1, NPIPB4, MAOB, SIAE, COL3A1) for the early diagnosis of OSCC | Saliva supernatant from 67 subjects: 34 non-tumor control volunteers and 33 OSCC patients Reverse-transcription polymerase chain reaction (RT-PCR) analysis | Lower expression of NAB2 (p = 0.0023), CYP27A1 (p = 0.0016), NPIPB4 (p = 0.0059), MAOB (p = 0.0009), and SIAE (p = 0.037) for the OSCC vs. non-tumor group The combination of two mRNAs (CYP27A1 + SIAE) and lower expression of MAOB-NAB2 mRNAs showed clinical value in the diagnosis of early stages of OSCC, especially in patients under 60 years of age |
Author | Upregulated microRNAs in OC | ||
Biomarker | Study design | Results | |
Momen-Heravi et al. [87] | miRNA-136 miRNA-147 miRNA-1250 miRNA-148a miRNA-632 miRNA-646, miRNA668 miRNA-877 miRNA-503 miRNA-220a miRNA-323-5p miRNA-24, miRNA-27b | Salivary supernatant from 34 subjects with 9 oral squamous cell carcinoma (OSCC), 8 patients with OSCC in remission (OSCC-R), 8 patients with oral lichen planus n (OLP), and 9 healthy controls (HC) A genome-wide high-throughput miRNA microarray and NanoString nCounter miRNA expression assay and qRT-PCR | ↑ MicroRNA overexpressed: miRNA-24 and miRNA-27b in OSCC (p < 0.05) ↑ MicroRNA-27b higher in OSCC patients vs. HCs, OSCC-R, and OLP (p < 0.05, for all) |
Yang et al. [88] | Tumor suppressor genes: miR-145-5p miR-99b-5p miR-708 miR-181c miR-660 miR-197-3p Oncogenes: miR-10b miR-30e | Whole saliva from 29 individuals: 7 oral lichen planus (OLP), 15 non-progressive and progressive leukoplakias with the low grade dysplasia (LGD) and 7 healthy controls MicroRNA microarray and qRT-PCR | ↑ MicroRNA upregulated in OLP: miR-145-5p, miR-99b-5p, miR-181c, and miR-197-3p (p = 0.034, p = 0.011, p = 0.028, and p = 0.057, respectively) ↑ MicroRNA miR-10b, miR-660, miR-708, and miR-30e demonstrated significant overexpression in progressive LGD leukoplakias Compared to non-progressive LGD leukoplakias, 12 miRNAs were upregulated in progressive LGD leukoplakias, among others: miR-708, miR-10b, miR-26a, and miR-30e |
Salazar et al. [93] | Tumor suppressor gane: mir-134 Oncogenes: miR-9 miR-127 miR-191 miR-222 | Salivary supernatant from 56 subjects with HNSCC and 56 individuals control (HC) MicroRNA microarray and qRT-PCR | ↑ MicroRNAs upregulated in HNSCC vs. HC: miR-127 (p = 0.07), miR-191 (p < 0.01) |
Zahran et al. [89] | Tumor suppressor gene: miRNA-145 Oncogenes: miRNA-184 miRNA-21 | Salivary supernatant from 100 subjects: 40 patients with oral potentially malignant disorders (OPMDs) (20 with dysplastic lesions and 20 without dysplasia), 20 with oral squamous cell carcinoma (OSCC) Quantitative reverse-transcription PCR (qRT-PCR) | ↑ MicroRNA upregulated: miRNA-21 and miRNA-184 in OSCC and OPMD (with and without dysplasia) vs. healthy controls (p < 0.001) |
Gissi et al. [97] | Tumor suppressor genes: miR-21 miR-375 miR-345 miR-181b miR-649 miR-518b Oncogenes: miR-191 miR-146a | Oral brushing 78 specimens from 14 OSCC patients, 14 OSCC patients with healthy distant mucosa in OSCC (hOSCC), 13 patients who had OSCC resection (OSCCr), 13 subjects with regenerative areas after OSCC resection and normal distant mucosa (hOSCCr), and 24 healthy donors (HC) Real-time polymerase chain reaction (RT-PCR) | Differential levels of expression among groups for three miRNAs: miR-21 (p < 0.001), miR-146a (p < 0.001), and miR-191 (p < 0.001) ↑ miR-191 and miR-146a upregulated No differences found concerning miR-345, miR-518b, and miR-649 |
Mehdipour et al. [90] | Tumor suppressor genes: miR-125a miR-200a Oncogenes: miR-21 miR-31 | Saliva samples from 60 subjects: 30 patients with oral lichen planus (OLP), 15 patients with OSCC, and 15 healthy donors Quantitative qRT-PCR method | ↑ The miR-21 increased in saliva samples derived from patients with OLP, dysplastic OLP and OSCC vs. healthy controls (p = 0.012, p = 0.0017 and p < 0.0001, respectively) ↑ Increases in miR-31 levels in samples derived from dysplastic OLP and OSCC patients, but not in those from nondysplastic OLP patients vs. healthy controls (p = 0.01 and p = 0.004, respectively) |
Romani et al. [96] | Oncogenes: miR-423-5p miR-106b-5p miR-193b-3p | Saliva supernatants from 147 subjects: 89 patients with newly diagnosed untreated primary OSCC and 58 healthy controls (HC) Microarray and quantitative qRT-PCR method | ↑ Increases in miR-106b-5p, miR-423-5p, and miR-193b-3p levels in saliva of OSCC patients vs. healthy volunteers High expression of miR-423-5p was an independent predictor of poor disease-free survival (DFS) |
Uma Maheswari et al. [92] | Oncogenes: miR-21 miR-31 | Salivary supernatants from 72 subjects: 36 patients who were newly diagnosed as OPMD having four different lesions including leukoplakia, oral sub mucous fibrosis (OSMF), oral lichen planus, and (OSMF) with leukoplakia and 36 healthy participants as controls qRT-PCR method | ↑ Increased salivary miR-21 (p = 0.02) and miR-31 (p = 0.01) were significantly upregulated in leukoplakia with severe dysplasia compared with control |
Author | Downregulated microRNAs in OC | ||
Biomarker | Study design | Results | |
Momen-Heravi et al. [87] | Tumor suppressor genes: miRNA-136 miRNA-147 miRNA-1250 miRNA-148a miRNA-632 miRNA-646, miRNA668 miRNA-877 miRNA-503 miRNA-220a miRNA-323-5p Oncogenes: miRNA-24, miRNA-27b | Salivary supernatant from 34 subjects with 9 oral squamous cell carcinoma (OSCC), 8 patients with OSCC in remission (OSCC-R), 8 patients with oral lichen planus n (OLP), and 9 healthy controls (HC) A genome-wide high-throughput miRNA microarray and NanoString nCounter miRNA expression assay and qRT-PCR | ↓ MicroRNAs underexpressed: cluster of miRNA-136, miRNA-147, miRNA-1250, miRNA-148a, miRNA-632, miRNA-646, miRNA668, miRNA-877, miRNA-503, miRNA-220a, and miRNA-323-5p in OSCC (p = 0.027) ↓ MicroRNA-136 underexpressed in both OSCC vs. HCs and OSCC vs. OSCC-R |
Yang et al. [88] | Tumor suppressor genes: miR-145-5p miR-99b-5p miR-708 miR-181c miR-660 miR-197-3p Oncogenes: miR-10b miR-30e | Whole saliva from 29 individuals: 7 oral lichen planus (OLP), 15 non-progressive and progressive leukoplakias with the low grade dysplasia (LGD) and 7 healthy controls MicroRNA microarray and RT-qPCR | ↓ MicroRNAs downregulated in OLP: miR-10b and miR-30e (p = 0.008 and p= 0.089, respectively) Compared to non-progressive LGD leukoplakias, 13 miRNAs were downregulated, among others: miR-99, miR-let-7, and miR-145 |
Salazar et al. [93] | Tumor suppressor gane: mir-134 Oncogenes: miR-9 miR-127 miR-191 miR-222 | Salivary supernatant from 56 subjects with HNSCC and 56 individuals control MicroRNA microarray and RT-qPCR | ↓ One microRNA downregulated in HNSCC vs. HC: miR-134 (p < 0.0001) |
Zahran et al. [89] | Tumor suppressor gene: miRNA-145 Oncogenes: miRNA-184 miRNA-21 | Salivary supernatant from 100 subjects: 40 patients with oral potentially malignant disorders (OPMDs) (20 with dysplastic lesions and 20 without dysplasia) and 20 with oral squamous cell carcinoma (OSCC) Quantitative reverse-transcription polymerase chain reaction method (RT-qPCR) | ↓ Decrease in miRNA-145 in OSCC and OPMD overall vs. control subjects (p < 0.001) |
Mehdipour et al. [90] | Tumor suppressor genes: miR-125a miR-200a Oncogenes: miR-21 miR-31 | Saliva samples from 60 subjects: 30 patients with oral lichen planus (OLP), 15 patients with OSCC, and 15 healthy donors Quantitative RT-PCR method | ↓ Decreases in miR-125a levels in the OLP, dysplastic OLP and OSCC samples vs. healthy controls (p < 0.0014, p < 0.0001 and p < 0.0001, respectively) |
Shahidi et al. [91] | miR-320a | Saliva supernatant from 62 subjects with 32 oral lichen planus (OLP) + dysplastic OLP and 15 oral squamous cell carcinoma (OSCC) and 15 healthy controls Quantitative RT-qPCR method and ELISA | ↓ Decreases in miR-320a in dysplastic OLP and OSCC but not in OLP without dysplasia was found (p = 0.004) |
Duz et al. [98] | Tumor suppressor gene miR-139-5p | Saliva supernatants from saliva samples from 25 tongue squamous cell carcinoma (TSCC) patients and 25 healthy control individuals Agilent miRNA microarray platform (V19) and quantitative reverse-transcription PCR (qRT-PCR) | ↓ Reduced level of miR-139-5p in the TSCC validation samples vs. the controls (p = 0.006) |
Fadhil et al. [94] | Tumor suppressor genes: miR-7703 miR- let-7a-5p miR- 345-5p miR- 3928 miR- 1470 | Whole saliva samples from 230 subjects: 150 HNSCC patients and 80 healthy controls Quantitative reverse-transcription PCR (qRT-PCR) | ↓ Salivary downregulated level of miR-let-7a-5p (p < 0.0001) and miR-3928 (p < 0.01) in HNSCC patients vs. healthy controls MiR-let-7a-5p and miR-3928) correlated with lymph node metastasis (p = 0.003, p = 0.049) and tumor size (p = 0.01, p = 0.02) |
Du et al. [99] | Tumor suppressor genes: miR-26a/b | Whole saliva from 28 individuals: 14 oral lichen planus (OLP) and 14 healthy volunteers Real-time PCR | ↓ Salivary downregulated level of both miR-26a and miR-26b (p < 0.001) in OLP patients vs. healthy controls |
Salazar-Ruales et al. [95] | Tumor suppressor genes: miR-122-5p miR-92a-3p miR-124-3p miR-205-5p miR-146a-5p | Whole saliva samples from 108 HNSCC patients and 108 healthy controls | ↓ Salivary miR-122-5p, miR-92a-3p, miR-124-3p, and miR-146a-5p in HNSCC vs. controls (p < 0.001, p < 0.001), p = 0.002, p = 0.008, respectively Differentiated expression of miR-122-5p between oral cancer and oropharynx cancer (p = 0.01), miR-124-3p between larynx and pharynx (p < 0.01) and miR-146a-5p between larynx, oropharynx, and oral cavity (p = 0.01) MiR-122-5p, miR-124-3p, miR-205-5p, and miR-146a-5p differentiated between HPV+ve and HPV−ve (p = 0.004) |
Author | Protein Biomarkers in OC | ||
---|---|---|---|
Biomarker | Study Design | Results | |
Zielińska et al. [100] | IL-17A, IL-17E/IL-25, IL-17F, and TNF-α | Salivary supernatant from 71 patients with oral and oropharyngeal carcinoma (OSCC + OPC) Cytokine concentrations in the saliva measured with ELISA and Luminex Multiplex Assays | ↑ Higher salivary levels of IL-17A (p < 0.001), IL-17F (p < 0.01), and TNF-α (p < 0.01) ~ more advanced disease (III + IV stage) ↑ Higher level of IL-17A, IL-17F, IL-17E/IL-25, and TNF-α in saliva samples in OSCC and OPC patients ~ disease stage, T, N, and M parameters separately (all, p < 0.05) |
Singh et al. [101] | IL-1β, IL-8 and LGALS3BP | Unstimulated saliva samples from 117 patients grouped into subcatergories of 31 early (TNM stage I-II)-stage and 27 late-stage OSCC (TNM stage III-IV), 30 oral potentially malignant disorders (PMODs), and 29 post-treatment patients, as well as 42 control subjects Enzyme-linked immunosorbent assay (ELISA) | ↑ Elevated concentration of IL-1β and IL-8 in OSCC patients vs. control subjects (p < 0.05) No differences in cytokine levels between PMOD patients and post-treatment subjects vs. controls IL-1β and IL-8 had increased levels in late stage OSCC (stage III-IV) (p < 0.006 and p < 0.001, respectively) LGALS3BP not found to be significantly elevated in late-stage OSCC patients LGALS3BP higher concentration in early-stage OSCC (stage I-II) (p = 0.0008). |
Dicova et al. [103] | IL-1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1, and PF-4 | Unstimulated saliva obtained from subjects with OSCC in early (n = 33) and advanced (n = 33) disease, OL with homogeneous (n = 33) and proliferative verrucous (n = 33) clinical presentations, and healthy controls (n = 25) Bead-based multiplex immunoassay | Mean levels of IL-6, IL-8, TNF-α, HCC-1, MCP-1, and PF-4 differed significantly between OSCC, OL, and control saliva (p < 0.05) (all, p ≤ 0.0001) ↑ Upregulated IL-6 and TNF-α in advanced vs. early OSCC stages (0.694, 95% CI: 0.595–0.802 and 0.684, 95% CI: 0.558–0.793, respectively) |
Deepthi et al. [102] | TNF- α | Salivary concentration of TNF- α in 30 OSCC and dysplasia grading in 30 oral leukoplakia or 30 hyperkeratosis and 30 healthy control ELISA | ↑ Higher levels of salivary TNF-α in individuals with OSCC ~ leukoplakia and healthy control subjects (p < 0.001) Increase in the salivary TNF-α levels with increase in the histological grade of differentiation in both OSCC as well as leukoplakia (p < 0.01) |
Sami et al. [104] | TNF-α and IL-6 | Salivary supernatant level of TNF-α and IL-6 in patients with 30 oral benign fibro-osseous tumors (OBFOL) and 30 healthy controls ELISA | ↑ Higher concentration of both TNF-α and IL-6 in OBFOL vs. controls (p = 0.039 and p < 0.0001, respectively) |
Bhavana et al. [105] | Heat shock proteins 27 (Hsps27) | Salivary supernatant from 45 subjects: 16 patients with oral leukoplakia and 29 healthy volunteers ELISA | ↑ Elevated expression of Hsp27 in oral leukoplakia vs. healthy volunteers (p < 0.001) |
Bhat et al. [106] | Heat shock proteins 90 (Hsps90) and L-Fucose | Salivary supernatant from 90 subjects: 30 healthy subjects, 30 subjects with OPMD, and 30 subjects with OSCC ELISA | ↑ Elevated expression L-Fucose and HSP-70 in saliva in subjects with OPMD and OSCC vs. healthy subjects (both, p < 0.05) |
Rathore et al. [108] | Cytokeratin fragment 21-1 (CYFRA21-1) | Saliva supernatant from 30 patients with oral potentially malignant disorders (OPMDs) and 5 subjects with oral squamous cell carcinoma (OSCC) ELISA | ↑ Higher concentration of CYFRA21-1 in saliva in OSCC vs. OPDM (p = 0.01) |
Sharma et al. [107] | L-Fucose | Saliva supernatant from 85 participants: 30 control subjects, 25 OPMDs patients, and 30 OSCC patients Spectrophotometry | ↑ Higher level of L-Fucose in the study participants vs. control subjects (p < 0.001) |
Gulzar et al. [109] | Mucin (MUC1) | Saliva supernatant from three groups: 10 subjects with OSCC, 10 with OPDM, and control group ELISA | Salivary MUC1 was highest in patients with OSCC followed by premalignant diseases and lowest in the control group (p < 0.05) |
Azeem et al. [110] | Salic acid (salivary protein-bound SA, PBSA and salivary-free SA, FSA) | Salivary supernatants from the tobacco chewers with OSCC patients, and tobacco chewers with no premalignant lesions of the oral cavity and the healthy controls Spectrophotometry | ↑ Higher salivary level of PBSA and FSA in both tobacco chewers with OSCC and in tobacco chewers with no precancerous or cancerous lesions in the oral cavity (p < 0.05) |
Cai et al. [111] | Angiogenic factors and matrix-metalloproteinases (MMPs): ANG, ANG-2, HGF, PIGF, VEGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1, and TIMP-2 | Saliva samples collected from 8 OSCC patients without chemotherapy or radiotherapy and 8 healthy controls without oral mucosal lesions The survival curve for 260 OSCC patients with higher expression of angiogenic factors/MMPs and other 259 patients with lower angiogenic factors/MMP expression was plotted to evaluate the 5-year survival percentage and duration Quantibody® Human MMP Array and RT-qPCR | ↑ Higher expression of HGF, PIGF, and VEGF (2.00-, 8.10-, and 1.38-fold) in the saliva of OSCC patients compared to healthy controls (p < 0.01, p < 0.01 and p < 0.05, respectively) PDGF-BB was not detected in healthy controls while 62.5% of OSCC patients showed higher expression of PDGF-BB in saliva The expressions of ANG, ANG-2, bFGF, HB-EGF, and leptin in saliva were not significantly different in OSCC vs. control ↑ higher 5-year survival rate in OSCC patients with lower expressions of HB-EGF (p = 0.01) and TIMP-1 (p = 0.0063) vs. higher HB-EGF and TIMP-1 expression |
Radulescu et al. [112] | Inflammation marker— IL-6, extracellular collagen degradation marker—MMP-9, and tissue inhibitors of metalloprotease 2 (TIMP-2) | Salivary concentration of cytokines from 30 patients diagnosed with oral cancer ELISA and immunofluorescence | Total antioxidant capacity (TAC) levels were negatively correlated with IL-6 levels (r = −0.66) MMP-9 levels were positively correlated with the Ki-67protein (also known as MKI67) levels (r = 0.65) and negatively correlated with TIMP-2 levels (r = −0.71) |
Chang et al. [113] | Metalloproteinase-1 (MMP-1) | Saliva supernatant samples from 1160 subjects: 313 healthy controls and 578 OPMD and 269 OSCC patients ELISA | ↑ Higher level of MMP-1 in patients with OSCCs at the oral cavity ~ non-cancerous groups (HC, OPMD I, and OPMD II) (p < 0.001) Salivary MMP-1 levels in OSCC patients were increased with increasing pT status (T0–T4), pN status (N0–N3), and grade (G0–G3) (all, p < 0.05) |
Smriti et al. [114] | Metalloproteinase-9 (MMP-9) | Salivary MMP—9 concentration from 88 persons: subjects with oral squamous cell carcinoma (OSCC), oral potentially malignant disorders (OPMDs), tobacco users, and control groups ELISA | ↑ Higher level of MMP-9 in subjects with OSCC and OPMD vs. subjects with tobacco habits and control groups (p < 0.001) |
Mantri et al. [116] | Lactate dehydrogenase (LDH) | Saliva samples from 120 patients: healthy controls (with no addictions and diseases), OSCC, oral submucous fibrosis (OSMF), and habitual tobacco chewers (tobacco addiction without any disease) ELISA | ↑ Higher LDH activity increased in saliva of patients with tobacco pouch keratosis, OSMF, and oral cancer (p < 0.05) |
Ko et al. [117] | Aldo-keto reductase family 1 member B10 (AKR1B10) | Saliva samples from 35 normal controls and 86 patients with OSCC before cancer surgery ELISA | ↑ Higher salivary AKR1B10 levels in the patients with OSCC vs. normal controls (p < 0.001) ↑ Higher salivary AKR1B10 levels associated with larger tumor size, more advanced clinical stage, and areca quid chewing habit ↑ Higher salivary AKR1B10 level OSCC ~ poorer survival (p = 0.026) |
Feng et al. [118] | Matrix metalloproteinases MMP-1, MMP-2, MMP-10, MMP-12, A disintegrin, metalloprotease ADAM9, A disintegrin and metalloprotease with thrombospondin type 13 motifs (ADAMST13), cathepsin V and kallikrein 5, urokinase plasminogen activator (uPA)/urokinase, and kallikrein 7 | 16 saliva samples from healthy individuals and patients with jaw bone ossification fibroma (JBO), OSCC, and mild chronic periodontitis (CPD) A protease array kit and ELISA | ADAMST13, cathepsin E, and MMP-1, MMP-2, MMP-3, MMP-10, MMP-12, and MMP-13 were only detected in the saliva of patients with OSCC ADAM9, cathepsin V, kallikrein 5, urokinase plasminogen activator (uPA)/urokinase, and kallikrein 7 increased in the saliva of patients with OSCC vs. patients with CPD or JBO (p < 0.05 for all) The combination of enzymes cathepsin V/kallikrein5/ADAM9 was an optimal biomarker for diagnosing OSCC |
Avasthi [119] | Cytokeratin fragment 21-1 (CYFRA 21-1), Cytokeratin-19 (CA 19-9), lactate dehydrogenase (LDH), and amylase | Salivary samples from newly diagnosed cases of OSCC, premalignant lesions (PML) of oral cavity, and healthy controls ELISA | ↑ Increased salivary CYFRA 21-1, LDH in OSCC and PML vs. controls (both, p < 0.05) Increase in PML was significantly lower as compared to OSCC ↓ Decrease in amylase level in OSCC and PML vs. control group (both, p < 0.05) |
Gholizadeh et al. [115] | Lactate dehydrogenase (LDH) | Saliva supernatant from 100 subjects: 25 healthy controls, 25 oral lichen planus (OLP) and 25 oral lichenoid reactions (OLRs), and 25 OSCC patients Spectrophotometry | ↑ Higher salivary levels of LDH in OSCC patients vs. the corresponding values in other groups (p = 0.0001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starska-Kowarska, K. Salivaomic Biomarkers—An Innovative Approach to the Diagnosis, Treatment, and Prognosis of Oral Cancer. Biology 2025, 14, 852. https://doi.org/10.3390/biology14070852
Starska-Kowarska K. Salivaomic Biomarkers—An Innovative Approach to the Diagnosis, Treatment, and Prognosis of Oral Cancer. Biology. 2025; 14(7):852. https://doi.org/10.3390/biology14070852
Chicago/Turabian StyleStarska-Kowarska, Katarzyna. 2025. "Salivaomic Biomarkers—An Innovative Approach to the Diagnosis, Treatment, and Prognosis of Oral Cancer" Biology 14, no. 7: 852. https://doi.org/10.3390/biology14070852
APA StyleStarska-Kowarska, K. (2025). Salivaomic Biomarkers—An Innovative Approach to the Diagnosis, Treatment, and Prognosis of Oral Cancer. Biology, 14(7), 852. https://doi.org/10.3390/biology14070852