The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Sample Collection
2.4. Determination of Key Soil Parameters
2.4.1. Determination of Gas Samples
2.4.2. Determination of Soil Enzyme Activity
2.4.3. The Determination of the Abundance of Relevant Functional Genes
2.5. Statistical Analysis
3. Results
3.1. Methane (CH4) Emissions of Paddy Fields Under Rice–Frog Co-Cultivation
3.2. Nitrous Oxide (N2O) Emissions of Paddy Fields Under Rice–Frog Co-Cultivation
3.3. Global Warming Potential of Paddy Fields Under Rice–Frog Co-Cultivation
3.4. Soil Enzyme Activity of Paddy Fields Under Rice–Frog Co-Cultivation
3.5. Abundance of Functional Genes Related to Greenhouse Gas Emissions in Paddy Fields Under Rice–Frog Co-Cultivation
3.6. Correlation Analysis Between Soil Factors and Greenhouse Gas Emissions
4. Discussion
4.1. The Impact of the Rice–Frog Co-Cultivation on CH4 Emissions from Reclaimed Paddy Fields
4.2. The Impact of Rice–Frog Co-Cultivation on N2O Emissions from Reclaimed Paddy Fields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pawlak, K.; Kolodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Wang, P.; Sun, H.; Fan, S.; Dong, Z.; Cheng, F. Research status and prospects of village reclamation in China. J. China Agric. Univ. 2020, 25, 209–220. [Google Scholar]
- Hu, Z. Re-exploration of Land Reclamation Science. China Land Sci. 2019, 33, 1–8. [Google Scholar]
- Meng, T.; Han, J.; Zhang, Y.; Sun, Y.; Liu, Z.; Zhang, R. Multifractal characteristics of soil particle size distribution of abandoned homestead reclamation under different forest management modes. Sci. Rep. 2024, 14, 8864. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Men, D.; Cao, Z.; Fan, P.; Li, F.; Long, H.; Liu, Y. Consolidation and Using Oriented Evaluation of Heavy Metal Pollution in Typical Soils of Hollowed Villages of Plain Agricultural Zones:A Case Study of Yucheng City, Shandong Province, China. J. Agric. Resour. Environ. 2017, 34, 328–334. [Google Scholar] [CrossRef]
- Adamou, S.N.; Touré, A.A.; Daoudi, L. Effects of restoration of degraded lands on soils physicochemical properties and adaptability of planted woody species in southwestern Niger. Land Degrad. Dev. 2022, 33, 3938–3953. [Google Scholar] [CrossRef]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O′Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Wu, X.D.; Li, C.H.; Cheng, C.X. Crop-Specific Emission Projection Suggests Peaking of Agricultural N2O by the Middle Century. Environ. Sci. Technol. 2024, 58, 22967–22979. [Google Scholar] [CrossRef]
- Sun, G.; Sun, M.; Du, L.; Zhang, Z.; Wang, Z.; Zhang, G.; Nie, S.; Xu, H.; Wang, H. Ecological rice-cropping systems mitigate global warming—A meta-analysis. Sci. Total Environ. 2021, 789, 147900. [Google Scholar] [CrossRef]
- Radmehr, R.; Brorsen, B.W.; Shayanmehr, S. Adapting to climate change in arid agricultural systems: An optimization model for water-energy-food nexus sustainability. Agric. Water Manag. 2024, 303, 109052. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Shen, W.; Yao, H.; Meng, X.; Zeng, J.; Zhang, G.; Zamanien, K. A meta-analysis of ecological functions and economic benefits of co-culture models in paddy fields. Agric. Ecosyst. Environ. 2023, 341, 108195. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Ding, K.; Shi, X.; Kalkhajeh, Y.K.; Wei, Z.; Zhang, Z.; Ma, C. Co-culture of rice and aquatic animals enhances soil organic carbon: A meta-analysis. Sci. Total Environ. 2024, 955, 176819. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Dai, L.; Gao, P.; Dou, Z. The environmental, nutritional, and economic benefits of rice-aquaculture animal coculture in China. Energy 2022, 249, 123723. [Google Scholar] [CrossRef]
- Dong, W.-J.; Xu, M.-D.; Yang, X.-W.; Yang, X.-M.; Long, X.-Z.; Han, X.-Y.; Cui, L.-Y.; Tong, Q. Rice straw ash and amphibian health: A deep dive into microbiota changes and potential ecological consequences. Sci. Total Environ. 2024, 926, 171651. [Google Scholar] [CrossRef]
- Wen, T.; Zhao, B.; Zhang, J. Emission pathways and influencing factors for CH4and N2O from rice-duck farming. J. Agro-Environ. Sci. 2020, 39, 1442–1450. [Google Scholar]
- Xu, G.; Liu, X.; Wang, Q.; Yu, X.; Hang, Y. Integrated rice-duck farming mitigates the global warming potential in rice season. Sci. Total Environ. 2017, 575, 58–66. [Google Scholar] [CrossRef]
- Xu, Q.; Dai, L.X.; Shang, Z.Y.; Zhou, Y.; Li, J.Y.; Dou, Z.; Yuan, X.C.; Gao, H. Application of controlled-release urea to maintain rice yield and mitigate greenhouse gas emissions of rice-crayfish coculture field. Agric. Ecosyst. Environ. 2023, 344, 108312. [Google Scholar] [CrossRef]
- Ou, X.; Xiong, R.; Zhou, W.; Zhong, K.; Long, P.; Xu, Y.; Fu, Z. Rice-fish symbiosis patterns with different densities affect methane emissions from double-cropping paddy fields. J. Agro-Environ. Sci. 2024, 43, 2174–2182. [Google Scholar]
- Arunrat, N.; Sansupa, C.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Microbial Diversity and Community Composition in Rice-Fish Co-Culture and Rice Monoculture Farming System. Biology 2022, 11, 1242. [Google Scholar] [CrossRef]
- Ge, L.; Sun, Y.; Li, Y.; Wang, L.; Guo, G.; Song, L.; Wang, C.; Wu, G.; Zang, X.; Cai, X.; et al. Ecosystem sustainability of rice and aquatic animal co-culture systems and a synthesis of its underlying mechanisms. Sci. Total Environ. 2023, 880, 163314. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, A.; Zhang, L.; Zheng, R. Effects of Rice–Frog Co-Cropping on the Soil Microbial Community Structure in Reclaimed Paddy Fields. Biology 2024, 13, 396. [Google Scholar] [CrossRef]
- Fang, K.; Gao, H.; Sha, Z.; Dai, W.; Yi, X.; Chen, H.; Cao, L. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China. Agric. Ecosyst. Environ. 2021, 308, 107235. [Google Scholar] [CrossRef]
- Yan, J.; Yu, J.; Huang, W.; Pan, X.; Li, Y.; Li, S.; Tao, Y.; Zhang, K.; Zhang, X. Initial Studies on the Effect of the Rice-Duck-Crayfish Ecological Co-Culture System on Physical, Chemical, and Microbiological Properties of Soils: A Field Case Study in Chaohu Lake Basin, Southeast China. Int. J. Environ. Res. Public Health 2023, 20, 2006. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Dai, W.; Chen, H.; Wang, J.; Gao, H.; Sha, Z.M.; Cao, L.K. The effect of integrated rice–frog ecosystem on rice morphological traits and methane emission from paddy fields. Sci. Total Environ. 2021, 783, 147123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q. Measurement and Evaluation of Soil Fertility in the Farmlands in Zuowei Town. Agric. Technol. Equip. 2020, 5, 147–148. [Google Scholar]
- Deng, J. Research on the Effects of Tillage and Residue Treatmentson Growing-Season Greenhouse Gases Emissions And Carbon Footprint in Paddy Fields. Ph.D. Thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- Feng, J.F.; Yang, T.; Li, F.B.; Zhou, X.Y.; Xu, C.C.; Fang, F.P. Impact of tillage on the spatial distribution of CH4 and N2O in the soil profile of late rice fields. Soil Tillage Res. 2021, 211, 105029. [Google Scholar] [CrossRef]
- Jia, R.; Yi, W.; Dong, Q.U. Study on Influencing Factors for TTC-dehydrogenase Activity Measurement in Slurry of Paddy Soil. Acta Agric. Boreali-Occident. Sin. 2012, 21, 154–158. [Google Scholar]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef]
- Nwokolo, N.L.; Enebe, M.C. Methane production and oxidation-A review on the pmoA and mcrA gene abundances for understanding the functional potentials of agricultural soils. Pedosphere 2025, 35, 161–181. [Google Scholar] [CrossRef]
- Qi, L.; Pokharel, P.; Chang, S.X.; Zhou, P.; Niu, H.; He, X.; Wang, Z.; Gao, M. Biochar application increased methane emission, soil carbon storage and net ecosystem carbon budget in a 2-year vegetable–rice rotation. Agric. Ecosyst. Environ. 2020, 292, 106831. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, C.; Peng, X.; Li, Y.; Hao, Q. Effects of the Crop Rotation on Greenhouse Gases from Flooded Paddy Fields. Environ. Sci. 2019, 40, 392–400. [Google Scholar] [CrossRef]
- Fang, K.K.; Chen, H.; Dai, W.; Wang, J.; Cao, L.K.; Sha, Z.M. Microbe-mediated reduction of methane emission in rice-frog crop ecosystem. Appl. Soil Ecol. 2022, 174, 104415. [Google Scholar] [CrossRef]
- Xie, K.; Wang, M.; Wang, X.; Li, F.; Xu, C.; Feng, J.; Fang, F. Effect of rice cultivar on greenhouse-gas emissions from rice–fish co-culture. Crop. J. 2024, 12, 888–896. [Google Scholar] [CrossRef]
- Du, C.; Hu, L.; Yuan, S.; Xu, L.; Wang, W.; Cui, K.; Peng, S.; Huang, J. Ratoon rice-duck co-culture maintains rice grain yield and decreases greenhouse gas emissions in central China. Eur. J. Agron. 2023, 149, 126911. [Google Scholar] [CrossRef]
- Fang, K.; Yi, X.; Dai, W.; Gao, H.; Cao, L. Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions. Int. J. Environ. Res. Public Health 2019, 16, 1930. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, X.; Xia, W.; Li, Z.; Wang, L.; Chen, Z.; Ge, S. Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure. Sci. Total Environ. 2023, 877, 162702. [Google Scholar] [CrossRef]
- Qiu, S.; Xia, W.; Xu, J.; Li, Z.; Ge, S. Impacts of 2-bromoethanesulfonic sodium on methanogenesis: Methanogen metabolism and community structure. Water Res. 2023, 230, 119527. [Google Scholar] [CrossRef]
- Lin, X.; Wang, N.; Li, F.; Yan, B.; Pan, J.; Jiang, S.; Peng, H.; Chen, A.; Wu, G.; Zhang, J.; et al. Evaluation of the synergistic effects of biochar and biogas residue on CO2 and CH4 emission, functional genes, and enzyme activity during straw composting. Bioresour. Technol. 2022, 360, 127608. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, S.; Gao, M.; Yang, X.; Zhang, S.; Feng, H.; Sun, B. Effects of Long-Term Fertilization on Soil Water Characteristics in Rainfed Farmland. Res. Soil Water Conserv. 2024, 31, 168–175+187. [Google Scholar] [CrossRef]
- Lin, H.; Huang, Q.; Shao, Z.; Luo, L.; Shen, N.; Jin, C.; Mo, Y.; Luo, W. Characterization of Soil Enzymatic Activities and Main Nutrient Contents in Paddy Field for Eco-planting and Breeding Rice and Frog. J. Nucl. Agric. Sci. 2018, 32, 802–808. [Google Scholar]
- Duan, H.R.; Zhao, Y.F.; Koch, K.; Wells, G.F.; Zheng, M.; Yuan, Z.G.; Ye, L. Insights into Nitrous Oxide Mitigation Strategies in Wastewater Treatment and Challenges for Wider Implementation. Environ. Sci. Technol. 2021, 55, 7208–7224. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Liao, X.; He, Y.; Cui, X.; Wishart, M.; Zhao, F.; Liao, Y.; Zhao, Y.; Lv, X.; Xie, J.; et al. Mitigating greenhouse gas emissions from municipal wastewater treatment in China. Environ. Sci. Ecotechnol. 2024, 20, 100341. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Akker, B.v.D.; Thwaites, B.J.; Peng, L.; Herman, C.; Pan, Y.; Ni, B.J.; Watt, S.; Yuan, Z.; Ye, L. Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. Water Res. 2020, 185, 116196. [Google Scholar] [CrossRef] [PubMed]
- Liao, B. The Effects of Alternate Wetting and Drying Irrigation on Water and Nitrogen Use Efficiency of Rice and CH4 and N2O Emissions from Paddy Soil. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar]
- Bao, T.; Zhang, N.; Mo, D.; Liu, Z.; Yang, T.; Zhang, B.; Wang, L.; Qian, H.; Ding, Y.; Jiang, Y. Higher N2O emissions and lower rice yield within double-cropped rice systems of South China under warming. Field Crop. Res. 2025, 322, 322. [Google Scholar] [CrossRef]
- Luo, J.; Qian, K.; Xu, B.; Li, H.; Liu, S.; Xiong, Q.; Li, S.; Sun, R.; Zhang, C.; Ye, X. Effects of lobster species and breeding density on CH4and N2O emissions under rice shrimp co-cropping. J. Agro-Environ. Sci. 2023, 42, 1852–1859. [Google Scholar]
- Li, X.; Jin, N.; Wu, W.; Li, X.; Lu, K.; Song, K.; Li, P.; Chen, Z.; Mohsen, M.; Wang, L.; et al. Nitrogen and phosphorus budgets of the bullfrog (Aquarana catesbeiana) in different body weights. Aquaculture 2025, 595, 741390. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Xu, M.S.; Ma, T.Q.; Lu, J.W.; Zhu, J.; Li, X.K. Optimal fertilization strategy promotes the sustainability of rice-crayfish farming systems by improving productivity and decreasing carbon footprint. Agron. Sustain. Dev. 2024, 44. [Google Scholar] [CrossRef]
- Cuhel, J.; Šimek, M.; Laughlin, R.J.; Bru, D.; Chèneby, D.; Watson, C.J.; Philippot, L. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl. Environ. Microbiol. 2010, 76, 1870–1878. [Google Scholar] [CrossRef]
- Mao, X.; Cheng, M.; Xu, Q.; Chen, J.; Zhao, T.; Yu, X.; Li, Y. Effects of Nitrification Inhibitors on Soil N2O Emission and Community Structure and Abundance of Ammonia Oxidation Microorganism in Soil under Extensively Managed Phyllostachys edulis Stands. Acta Pedol. Sin. 2016, 53, 1528–1540. [Google Scholar]
- Ma, L.; Li, X.; Li, B.; Yan, X. Contributions of Abiotic Processes Driven by Hydroxylamine and Nitrite to N2O Emission in Six Different Types of Soils in China. Acta Pedol. Sin. 2016, 53, 1181–1190. [Google Scholar]
- Li, W.; Zhang, Y.; Wang, H.; Fan, B.; Bashir, M.A.; Jin, K.; Liu, H. Legacy effect of long-term rice–crab co-culture on N2O emissions in paddy soils. Appl. Soil Ecol. 2024, 196, 105251. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Wang, H.; Wang, S.; Zhai, L.; Liu, H. Greenhouse gas emission characteristics and influencing factors of rice–crab symbiosis system. J. Agric. Resour. Environ. 2022, 39, 931–939. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Z.; Zhan, Y.; Zheng, X.; Zhou, M.; Yan, G.; Wang, L.; Werner, C.; Butterbach-Bahl, K. Potential benefits of liming to acid soils on climate change mitigation and food security. Glob. Chang. Biol. 2021, 27, 2807–2821. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, Y.; Zhang, K.; Xu, X.; Zhao, Y.; Bai, T.; Zhao, Y.; Wang, H.; Sheng, X.; Bloszies, S.; et al. Intermediate soil acidification induces highest nitrous oxide emissions. Nat. Commun. 2024, 15, 2695. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Li, C.; Zhang, Y. Study on N2O emission and urease activity in dryland soil. J. Northwest A F Univ. (Nat. Sci. Ed.) 2003, 29–33. [Google Scholar] [CrossRef]
- Harris, E.; Yu, L.; Wang, Y.P.; Mohn, J.; Henne, S.; Bai, E.; Barthel, M.; Bauters, M.; Boeckx, P.; Dorich, C.; et al. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nat. Commun. 2022, 13, 4310. [Google Scholar] [CrossRef]
- Ayiti, O.E.; Babalola, O.O. Factors Influencing Soil Nitrification Process and the Effect on Environment and Health. Front. Sustain. Food Syst. 2022, 6, 821994. [Google Scholar] [CrossRef]
- Verhoeven, E.; Decock, C.; Barthel, M.; Bertora, C.; Sacco, D.; Romani, M.; Sleutel, S.; Six, J. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biol. Biochem. 2018, 120, 58–69. [Google Scholar] [CrossRef]
- Ma, X.; Bai, H.; Li, G.; Li, L.; Meng, H.; Liu, Y.; Yuan, J. Effects of nitrification inhibitors DCD and DMPP on maturity, N2O and NH3 emissions during manure composting. J. Environ. Manag. 2025, 380, 124895. [Google Scholar] [CrossRef]
Gene | Primer | Sequence |
---|---|---|
nirK | F1aCu | 3′-ATCATGGTSCTGCCGCG-5′ |
R3Cu | 3′-GCCTCGATCAGRTTGTGGTT-5′ | |
nirS | nirS-Cd3aF | 3′-GTSAACGTSAAGGARACSGG-5′ |
nirS-R3cd | 3′-GASTTCGGRTGSGTCTTGA-5′ | |
nosZ | nosZ-F | 3′-AGAACGACCAGCTGATCGACA-5′ |
nosZ-R | 3′-TCCATGGTGACGCCGTGGTTG-5′ | |
mcrA | 1106-F | 3′-TTWAGTCAGGCAACGAGC-5′ |
1378-R | 3′-TGTGCAAGGAGCAGGGAC-5′ | |
pmoA | A189-F | 3′-GGNGACTGGGACTTCTGG-5′ |
mb661-R | 3′-CCGGMGCAACGTCYTTACC-5′ |
Treatment | CH4 Cumulative Emission (kg·ha−2) | N2O Cumulative Emission (kg·ha−2) | Global Warming Potential (kg CO2-eq·ha−2) |
---|---|---|---|
CG | 249.89 ± 4.10 a | 0.40 ± 0.02 a | 6366.30 ± 98.71 a |
LRF | 162.88 ± 1.34 b | 0.55 ± 0.00 b | 4235.16 ± 33.12 b |
HRF | 129.85 ± 1.74 c | 0.78 ± 0.02 c | 3479.84 ± 44.51 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Wang, Z.; Ma, Y.; Zhu, P.; Zhang, X.; Chen, H.; Li, H.; Zheng, R. The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields. Biology 2025, 14, 861. https://doi.org/10.3390/biology14070861
Huang H, Wang Z, Ma Y, Zhu P, Zhang X, Chen H, Li H, Zheng R. The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields. Biology. 2025; 14(7):861. https://doi.org/10.3390/biology14070861
Chicago/Turabian StyleHuang, Haochen, Zhigang Wang, Yunshuang Ma, Piao Zhu, Xinhao Zhang, Hao Chen, Han Li, and Rongquan Zheng. 2025. "The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields" Biology 14, no. 7: 861. https://doi.org/10.3390/biology14070861
APA StyleHuang, H., Wang, Z., Ma, Y., Zhu, P., Zhang, X., Chen, H., Li, H., & Zheng, R. (2025). The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields. Biology, 14(7), 861. https://doi.org/10.3390/biology14070861