Multivariate and Geometric Morphometrics Reveal Morphological Variation Among Sinibotia Fish
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Multivariate Morphometric Analyses
2.3. Geometric Morphometric Analyses
3. Results
3.1. Morphological Variation Based on Multivariate Morphological Metrics
3.2. Morphological Variation Based on Geometric Morphometrics
4. Discussion
4.1. Benefits of Combining Multivariate and Geometric Morphometrics in Species Identification
4.2. Morphological Variation Among Sinibotia Species
4.3. Morphological Variation and Ecological Adaptation Among Sinibotia Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynch, A.J.; Cooke, S.J.; Arthington, A.H.; Baigun, C.; Bossenbroek, L.; Dickens, C.; Harrison, I.; Kimirei, I.; Langhans, S.D.; Murchie, K.J.; et al. People need freshwater biodiversity. WIREs Water 2023, 10, e1633. [Google Scholar] [CrossRef]
- Omukoto, J.O.; Graham, N.A.J.; Hicks, C.C. Fish contributions toward nutritional security in Kenya. Food Sec. 2024, 16, 951–971. [Google Scholar] [CrossRef]
- Turchini, G.M. Aquaculture sustainability: Global challenges need local actions. Rev. Aquac. 2023, 15, 402–403. [Google Scholar] [CrossRef]
- Cao, L.; Shao, W.H.; Yi, W.J.; Zhang, E. A review of conservation status of freshwater fish diversity in China. J. Fish Biol. 2024, 104, 345–364. [Google Scholar] [CrossRef]
- Cooke, S.J.; Lynch, A.J.; Tickner, D.; Abell, R.; Dalu, T.; Fiorella, K.J.; Raghavan, R.; Harrison, I.J.; Jähnig, S.C.; Vollmer, D.; et al. Can the planetary health concept save freshwater biodiversity and ecosystems? Lancet. Planet. health 2024, 8, e2–e3. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Liu, W.X.; Li, Z.P.; Qiu, B.; Li, J.; Geng, G.; Hu, B.; Liao, A.M.; Cai, Y.P.; Wen, M.; et al. Improvement and application of genetic resources of grass carp (Ctenopharyngodon idella). Reprod. Breed. 2024, 4, 126–133. [Google Scholar] [CrossRef]
- Mayer, I.; Pšenička, M. Conservation of teleost fishes: Application of reproductive technologies. Theriogenol. Wild 2024, 4, 100078. [Google Scholar] [CrossRef]
- van Rijssel, J.C.; Breukelaar, A.W.; de Leeuw, J.J.; van Puijenbroek, M.E.B.; Schilder, K.; Schrimpf, A.; Vriese, F.T.; Winter, H.V. Reintroducing Atlantic salmon in the river Rhine for decades: Why did it not result in the return of a viable population? River Res. Applic. 2024, 40, 1164–1182. [Google Scholar] [CrossRef]
- Xu, M.; Fang, M.; Usoof, A.M.; Mandrak, N.E.; Chu, C.; Qian, H.; Cao, Y.; Liu, C.L.; Cuthbert, R.N.; Li, S.P.; et al. Ecological similarity governs non-native fish establishment while human pressure and native diversity shape invasion richness. Sci. Adv. 2025, 11, eadw4347. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, W.; Liu, Y.J.; Zhan, A.B. Perspectives of invasive alien species management in China. Ecol. Appl. 2024, 34, e2926. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.L.; Kabala, J.P.; Caputi, S.S.; Ventura, M.; Calizza, E.; Careddu, G.; Rossi, L. Biological invasions in fresh waters: Micropterus salmoides, an American fish conquering the world. Water 2023, 15, 3796. [Google Scholar] [CrossRef]
- Makki, T.; Mostafavi, H.; Matkan, A.A.; Valavi, R.; Hughes, R.M.; Shadloo, S.; Aghighi, H.; Abdoli, A.; Teimori, A.; Eagderi, S.; et al. Predicting climate heating impacts on riverine fish species diversity in a biodiversity hotspot region. Sci. Rep. 2023, 13, 14347. [Google Scholar] [CrossRef]
- Yang, F.C.; Shao, M.Q.; Wang, J.Y. Distributional and behavioral responses of the wintering Oriental Storks to drought in China’s largest freshwater lake. Avian Res. 2024, 15, 100176. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Kosgei, J.K. Low optimal fisheries yield creates challenges for sustainability in a climate refugia. Conserv. Sci. Pract. 2023, 5, e13043. [Google Scholar] [CrossRef]
- Xu, P.; Xie, M.J.; Zhou, W.G.; Suo, A.N. Research on fishery resource assessment and sustainable utilization (FRASU) during 1990–2020: A bibliometric review. Glob. Ecol. Conserv. 2021, 29, e01720. [Google Scholar] [CrossRef]
- Taghavimotlagh, S.A.; Kaymaram, F.; Vahabnezhad, A.; Daryanabard, G. An updated checklist of bony fishes from the Persian Gulf. Zootaxa 2024, 5424, 437–455. [Google Scholar] [CrossRef]
- Cadrin, S.X. Advances in morphometric identification of fishery stocks. Rev. Fish Biol. Fisher. 2000, 10, 91–112. [Google Scholar] [CrossRef]
- Smith, K.E.; Aubin, M.; Burrows, M.T.; Filbee-Dexter, K.; Hobday, A.J.; Holbrook, N.J.; King, N.G.; Moore, P.J.; Gupta, A.S.; Thomsen, M.; et al. Global impacts of marine heatwaves on coastal foundation species. Nat. Commun. 2024, 15, 5052. [Google Scholar] [CrossRef]
- Chichorro, F.; Juslén, A.; Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 2019, 237, 220–229. [Google Scholar] [CrossRef]
- Suggitt, A.J.; Wheatley, C.J.; Aucott, P.; Beale, C.M.; Fox, R.; Hill, J.K.; Lsaac, N.J.B.; Martay, B.; Southall, H.; Thomas, C.D.; et al. Linking climate warming and land conversion to species’ range changes across Great Britain. Nat. Commun. 2023, 14, 6759. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Bhat, A. Morphological divergences and ecological correlates among wild populations of zebrafish (Danio rerio). Environ. Biol. Fish. 2017, 100, 251–264. [Google Scholar] [CrossRef]
- Leblanc, C.A.; Räsänen, K.; Morrissey, M.; Skúlason, S.; Ferguson, M.; Kristjánsson, B.K. Fine scale diversity in the lava: Genetic and phenotypic diversity in small populations of Arctic charr Salvelinus alpinus. BMC Ecol. Evol. 2024, 24, 45. [Google Scholar] [CrossRef]
- Le Verger, K.; Hautier, L.; Gerber, S.; Bardin, J.; Delsuc, F.; González Ruiz, L.R.; Amson, E.; Billet, G. Pervasive cranial allometry at different anatomical scales and variational levels in extant armadillosAlometría craneal generalizada a diferentes escalas anatómicas y niveles de variación en armadillos actuales. Evolution 2024, 78, 423–441. [Google Scholar] [CrossRef]
- Ma, B.S.; Zhao, T.Y.; Xu, B.; Zhong, L.Q.; Wu, X.X.; Wei, K.J.; Zhang, Z.M.; Li, Y.F. Morphological variation in Schizothorax oconnori, Schizothorax waltoni (Teleostei: Cyprinidae: Schizothoracinae), and their natural hybrids from the middle Yarlung Zangbo River, Tibet. Ecol. Evol. 2024, 14, e11342. [Google Scholar] [CrossRef]
- Turner, G.F.; Crampton, D.A.; Rusuwa, B.; Hooft van Huysduynen, A.; Svardal, H. Taxonomic investigation of the zooplanktivorous Lake Malawi cichlids Copadichromis mloto (Iles) and C. virginalis (Iles). Hydrobiologia 2023, 850, 2165–2175. [Google Scholar] [CrossRef]
- Mahfuj, S.; Rahman, S.; Samad, A. Landmark-based truss morphometrics delineate the stock structure of Lepidocephalichthys guntea. J. Fish. Aquat. Sci. 2019, 14, 25–32. [Google Scholar] [CrossRef]
- Ramya, V.L.; Behera, B.K.; Das, B.K.; Krishna, G.; Pavankumar, A.; Pathan, M.K. Stock structure analysis of the endemic fish, Barbodes carnaticus (Jerdon 1849), for conservation in a biodiversity hotspot. Environ. Sci. Pollut. Res. 2021, 28, 55277–55289. [Google Scholar] [CrossRef]
- Millard, J.A.; Kouhestani, K.; Swaak, A.; Luna, A.; Baltins, E.M.; Bengson, C.J.; Mann, B.; Greenberg, S.S.; Baukhages, R. Geometric relationships of neural and bony landmarks of the cranial base. Anat. Sci. Int. 2025, 1–10. [Google Scholar] [CrossRef]
- Bookstein, F.L. Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1986, 1, 181–222. [Google Scholar] [CrossRef]
- Olave, M.; Griotti, M.; Carrara, R.; Franchini, P.; Meyer, A.; Roig-Juñent, S.A. Historical climate change dynamics facilitated speciation and hybridization between highland and lowland species of Baripus ground beetles from Patagonia. Bull. Soc. Syst. Biol. 2023, 2, 1–16. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; De, K. Role of morphometrics in fish diversity assessment: Status, challenges and future prospects. Natl. Acad. Sci. Lett. 2024, 47, 123–126. [Google Scholar] [CrossRef]
- Luo, D. Quantitative analysis of fish morphology through landmark and outline-based geometric morphometrics with free software. Bio. Protoc. 2024, 14, e5087. [Google Scholar] [CrossRef]
- Chen, J.X. A Study on the classification of the Botoid fishes of China. Zoological Research 1980, 1, 23–28. [Google Scholar]
- Šlechtová, V.; Bohlen, J.; Freyhof, J.; Ráb, P. Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol. Phylogenet. Evol. 2006, 39, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Nalbant, T.T. Sixty million years of evolution. Part one: Family Botiidae (Pisces: Ostariophysi: Cobitoidea). Trav. Mus. Natl. Hist. Nat. Grigore Antipa 2002, 44, 309–333. [Google Scholar]
- Tang, Q.Y.; Xiong, B.X.; Yang, X.P.; Liu, H.Z. Phylogeny of the East Asian botiine loaches (Cypriniformes, Botiidae) inferred from mitochondrial cytochrome b gene sequences. Hydrobiologia 2005, 544, 249–258. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Yu, D.; Liu, H.Z. Leptobotia zebra should be revised as Sinibotia zebra (Cypriniformes: Botiidae). Zool. Res. 2008, 29, 1–9. [Google Scholar] [CrossRef]
- Bohlen, J.; Šlechtová, V.; Šlechta, V.; Šlechtová, V.; Sember, A.; Ráb, P. A Ploidy Difference Represents an Impassable Barrier for Hybridisation in Animals. Is There an Exception among Botiid Loaches (Teleostei: Botiidae)? PLoS ONE 2016, 11, e0159311. [Google Scholar] [CrossRef]
- Wu, T.J.; Yang, J. Sinibotia lani, a new species of botiid loach (Teleostei: Botiidae) from Guangxi, China. Zootaxa 2019, 4679, 97–106. [Google Scholar] [CrossRef]
- Xu, D.D.; Wang, Z.J.; Wang, Y.M.; Peng, M.R.; Xie, B.W.; He, X.F.; LI, B. Morphological variation between Sinibotia superciliaris and Sinibotia reevesae with notes on their validities. Acta Hydrobiol. Sinica 2017, 41, 827–834. [Google Scholar]
- Zhang, H.; Wu, J.M.; Gorfine, H.; Shan, X.J.; Shen, L.; Yang, H.L.; Du, H.; Li, J.Y.; Wang, C.Y.; Zhou, Q.; et al. Inland fisheries development versus aquatic biodiversity conservation in China and its global implications. Rev. Fish Biol. Fish. 2020, 30, 637–655. [Google Scholar] [CrossRef]
- Mikkola, H. Aquaculture and fisheries as a food source in the Amazon region—A review. Food Nutr. J. 2024, 9, 286. [Google Scholar]
- Liu, F.; Lin, P.C.; Li, M.Z.; Gao, X.; Wang, C.L.; Liu, H.Z. Situation and conservation strategies of fish resources in the Yangtze river basin. Acta Hydrobiol. Sinica. 2019, 43, 144–156. [Google Scholar]
- Mullin, S.K.; Taylor, P.J. The effects of parallax on geometric morphometric data. Comput. Biol. Med. 2002, 32, 455–464. [Google Scholar] [CrossRef]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Kocovsky, P.M.; Adams, J.V.; Bronte, C.R. The effect of sample size on the stability of principal components analysis of truss-based fish morphometrics. Trans. Am. Fish. Soc. 2009, 138, 487–496. [Google Scholar] [CrossRef]
- Turak, E.; Harrison, I.; Dudgeon, D.; Abell, R.; Bush, A.; Darwall, W.; Finlayson, C.M.; Freyhof, J.; Hermoso, V.; Juffe-Bignoli, D.; et al. Essential biodiversity variables for measuring change in global freshwater biodiversity. Biol. Conserv. 2017, 213, 272–279. [Google Scholar] [CrossRef]
- Begg, G.A.; Friedland, K.D.; Pearce, J.B. Stock identification and its role in stock assessment and fisheries management: An overview. Fish. Res. 1999, 43, 1–8. [Google Scholar] [CrossRef]
- Vaz, A.C.; Karnauskas, M.; Smith, M.; Denson, L.S.; Paris, C.B.; Hénaff, M.L.; Siegfried, K. Red Snapper connectivity in the Gulf of Mexico. Mar. Coastal Fish. 2023, 15, e210275. [Google Scholar] [CrossRef]
- Beemelmanns, A.; Bouchard, R.; Michaelides, S.; Normandeau, E.; Jeon, H.B.; Chamlian, B.; Babin, C.; Hénault, P.; Perrot, O.; Harris, L.N.; et al. Development of SNP panels from low-coverage whole genome sequencing (lcWGS) to support indigenous fisheries for three salmonid species in northern Canada. Mol. Ecol. Resour. 2025, 25, e14040. [Google Scholar] [CrossRef] [PubMed]
- Will, K.W.; Mishler, B.D.; Wheeler, Q.D. The perils of DNA barcoding and the need for integrative taxonomy. Syst. Biol. 2005, 54, 844–851. [Google Scholar] [CrossRef]
- Liyandja, T.L.D.; Armbruster, J.W.; Poopola, M.O.; Stiassny, M.L.J. Evolutionary convergence in body shape obscures taxonomic diversity in species of the African Labeo forskalii group: Case study of L. parvus Boulenger 1902 and L. ogunensis Boulenger 1910. J. Fish. Biol. 2022, 101, 898–913. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Durán, V.; Landaeta, M.F. Feeding variations and shape changes of a temperate reef clingfish during its early ontogeny. Sci. Mar. 2017, 81, 205–215. [Google Scholar] [CrossRef]
- Ferreira, I.; Schroeder, R.; Mugerza, E.; Oyarzabal, I.; McCarthy, I.D.; Correia, A.T. Chelidonichthys lucerna (Linnaeus, 1758) population structure in the Northeast Atlantic inferred from landmark-based body morphometry. Biology 2023, 13, 17. [Google Scholar] [CrossRef]
- Reis-Júnior, J.; Bertrand, A.; Frédou, T.; Vasconcelos-Filho, J.; Aparecido, K.C.; Duarte-Neto, P.J. Community-scale relationships between body shape and trophic ecology in tropical demersal marine fish of northeast Brazil. J. Fish Biol. 2023, 102, 1017–1028. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Goatley, C.H.; Brandl, S.J.; Bellwood, O. Fifty million years of herbivory on coral reefs: Fossils, fish and functional innovations. Proc. Biol. Sci. 2014, 281, 20133046. [Google Scholar] [CrossRef]
- Li, Y.P.; Burridge, C.P.; Lv, Y.Y.; Peng, Z.G. Morphometric and population genomic evidence for species divergence in the Chimarrichthys fish complex of the Tibetan Plateau. Mol. Phylogenet. Evol. 2021, 159, 107117. [Google Scholar] [CrossRef] [PubMed]
- Silva, A. Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES J. Mar. Sci. 2003, 60, 1352–1360. [Google Scholar] [CrossRef]
- Xu, R.R.; Liu, S.Y.; Wang, Y.M.; Li, Y.P.; Xie, B.W.; Peng, Z.G. Origin and evolution of botiid loaches (Teleostei: Cypriniformes: Botiidae). J. Fish China 2025, 49, 029116. [Google Scholar]
- Glazier, D.S.; Gjoni, V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos. Trans. Royal Soc. B: Biol. Sci. 2024, 379, 20220489. [Google Scholar] [CrossRef]
- Wiens, J.J.; Penkrot, T.A. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst. Biol. 2002, 51, 69–91. [Google Scholar] [CrossRef]
- López-Martínez, A.M.; Magallón, S.; von Balthazar, M.; Schönenberger, J.; Sauquet, H.; Chartier, M. Angiosperm flowers reached their highest morphological diversity early in their evolutionary history. New Phytol. 2024, 241, 1348–1360. [Google Scholar] [CrossRef]
- Troyer, E.M.; Betancur-R, R.; Hughes, L.C.; Westneat, M.; Carnevale, G.; White, W.T.; Pogonoski, J.J.; Tyler, J.C.; Baldwin, C.C.; Ortí, G.; et al. The impact of paleoclimatic changes on body size evolution in marine fishes. Proc. Natl. Acad. Sci. USA 2022, 119, e2122486119. [Google Scholar] [CrossRef] [PubMed]
- Barton, K.E. The ontogenetic dimension of plant functional ecology. Funct. Ecol. 2024, 38, 98–113. [Google Scholar] [CrossRef]
- Fang, P.W. Study on botoid fishes of China. Sinensia 1936, 7, 1–49. [Google Scholar]
- Langerhans, R.B. Morphology, performance, fitness: Functional insight into a post-Pleistocene radiation of mosquitofish. Biol. Lett. 2009, 5, 488–491. [Google Scholar] [CrossRef]
- Yang, L.; Mayden, R.L.; Naylor, G.J.P. Origin of polyploidy, phylogenetic relationships, and biogeography of Botiid fishes (Teleostei: Cypriniformes). Biology 2025, 14, 531. [Google Scholar] [CrossRef]
- Shen, Y.B.; Wang, L.; Fu, J.J.; Xu, X.Y.; Yue, G.H.; Li, J.L. Population structure, demographic history and local adaptation of the grass carp. BMC. Genomics 2019, 20, 467. [Google Scholar] [CrossRef]
- Ruzzante, D.E.; Walde, S.J.; Cussac, V.E.; Dalebout, M.L.; Seibert, J.; Ortubay, S.; Habit, E. Phylogeography of the Percichthyidae (Pisces) in Patagonia: Roles of orogeny, glaciation, and volcanism. Mol. Ecol. 2006, 15, 2949–2968. [Google Scholar] [CrossRef]
- Laakkonen, H.M.; Hardman, M.; Strelkov, P.; Väinölä, R. Cycles of trans-Arctic dispersal and vicariance, and diversification of the amphi-boreal marine fauna. J. Evol. Biol. 2021, 34, 73–96. [Google Scholar] [CrossRef] [PubMed]
- Tellier, A.; Hodgins, K.; Stephan, W.; Stukenbrock, E. Rapid evolutionary adaptation: Potential and constraints. Mol. Ecol. 2024, 33, e17350. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Li, X.H.; Kormas, K.A.; Li, Y.F.; Li, H.F.; Li, J. Variable phylosymbiosis and cophylogeny patterns in wild fish gut microbiota of a large subtropical river. mSphere 2025, 10, e0098224. [Google Scholar] [CrossRef]
- Rennison, D.J.; Stuart, Y.E.; Bolnick, D.I.; Peichel, C.L. Ecological factors and morphological traits are associated with repeated genomic differentiation between lake and stream stickleback. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180241. [Google Scholar] [CrossRef] [PubMed]
- Fritsches, K.A.; Marshall, N.J.; Warrant, E.J. Retinal specializations in the blue marlin: Eyes designed for sensitivity to low light levels. Mar. Freshwater Res. 2003, 54, 333–341. [Google Scholar] [CrossRef]
- Berner, D.; Adams, D.C.; Grandchamp, A.C.; Hendry, A.P. Natural selection drives patterns of lake–stream divergence in stickleback foraging morphology. J. Evol. Biol. 2008, 21, 1653–1665. [Google Scholar] [CrossRef]
- Langerhans, R.B.; Layman, C.A.; Shokrollahi, A.M.; DeWitt, T.J. Predator-driven phenotypic diversification in Gambusia affinis. Evolution 2004, 58, 2305–2318. [Google Scholar]
- Barrett, D.S.; Triantafyllou, M.S.; Yue, D.K.P.; Grosenbaugh, M.A.; Wolfgang, M.J. Drag reduction in fish-like locomotion. J. Fluid Mech. 1999, 392, 183–212. [Google Scholar] [CrossRef]
- Wang, Y.M.; Xie, B.W.; Yue, X.J.; Wang, F.; Qi, Z.M.; Wang, Y.; Wu, Y. Embryonic development of hybrid of Sinibotia superciliaris(♀) and Botia reevesae(♂). Sichuan J. Zool. 2014, 33, 90–98. [Google Scholar]
- Wang, H.J.; Wang, P.Z.; Xu, C.; Sun, Y.F.; Shi, L.; Zhou, L.; Jeppesen, E.; Chen, J.; Xie, P. Can the “10-year fishing ban” rescue biodiversity of the Yangtze River? Innovation (Camb.) 2022, 3, 100235. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Sun, H.J.; Wang, X.D.; Ding, J.; Lu, M.Y.; Pang, J.W.; Zhou, D.P.; Liang, M.; Ren, N.Q.; Yang, S.S. Spatiotemporal drivers of urban water pollution: Assessment of 102 cities across the Yangtze River Basin. Environ. Sci. Ecotechnol. 2024, 20, 100412. [Google Scholar] [CrossRef]
- Li, J.Q.; Huang, J.; Zheng, L.; Zheng, W. Study on a mother wavelet optimization framework based on change-point detection of hydrological time series. Hydrol. Earth Syst. Sci. 2023, 27, 2325–2339. [Google Scholar] [CrossRef]
Species | n | Sampling Location | Standard Length (mm) | Total Weight (g) | ||
---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | |||
S. superciliaris | 30 | Zizhong, Tuo River | 76.95–81.33 | 79.14 ± 5.87 | 6.87–7.96 | 7.41 ± 1.46 |
S. reevesae | 30 | Zizhong, Tuo River | 89.38–95.39 | 92.38 ± 8.05 | 12.64–15.29 | 13.96 ± 3.54 |
S. robusta | 32 | Pingle, Li River | 69.06–74.49 | 71.77 ± 7.54 | 7.57–9.22 | 8.40 ± 2.29 |
S. pulchra | 30 | Pingle, Li River | 73.04–77.28 | 75.16 ± 5.69 | 4.78–5.51 | 5.14 ± 0.98 |
S. zebra | 28 | Pingle, Lipu River | 66.34–70.57 | 68.46 ± 5.45 | 2.93–3.45 | 3.19 ± 0.67 |
Variable | S. superciliaris | S. reevesae | S. robusta | S. pulchra | S. zebra |
---|---|---|---|---|---|
HL | 0.269 ± 0.011 b | 0.263 ± 0.014 b | 0.281 ± 0.012 a | 0.278 ± 0.013 a | 0.245 ± 0.010 c |
ED | 0.031 ± 0.006 bc | 0.036 ± 0.009 b | 0.053 ± 0.011 a | 0.029 ± 0.008 cd | 0.025 ± 0.009 d |
SnL | 0.117 ± 0.010 a | 0.108 ± 0.013 b | 0.114 ± 0.009 ab | 0.111 ± 0.009 ab | 0.096 ± 0.007 c |
HBE | 0.119 ± 0.009 b | 0.119 ± 0.009 bc | 0.113 ± 0.012 c | 0.137 ± 0.009 a | 0.124 ± 0.006 b |
HD | 0.158 ± 0.009 c | 0.166 ± 0.008 b | 0.194 ± 0.012 a | 0.153 ± 0.012 c | 0.131 ± 0.012 d |
NSD | 0.070 ± 0.008 a | 0.061 ± 0.009 b | 0.070 ± 0.009 a | 0.070 ± 0.009 a | 0.059 ± 0.007 b |
BD | 0.215 ± 0.015 b | 0.237 ± 0.015 a | 0.241 ± 0.019 a | 0.166 ± 0.013 c | 0.140 ± 0.013 d |
DFL | 0.164 ± 0.023 a | 0.147 ± 0.025 b | 0.139 ± 0.013 bc | 0.126 ± 0.013 c | 0.101 ± 0.010 d |
PFL | 0.142 ± 0.024 ab | 0.135 ± 0.022 b | 0.152 ± 0.020 a | 0.103 ± 0.013 c | 0.066 ± 0.012 d |
VFL | 0.121 ± 0.017 b | 0.119 ± 0.016 b | 0.134 ± 0.016 a | 0.104 ± 0.012 c | 0.077 ± 0.012 d |
AFL | 0.146 ± 0.019 a | 0.132 ± 0.021 b | 0.133 ± 0.014 b | 0.111 ± 0.010 c | 0.088 ± 0.012 d |
CPL | 0.152 ± 0.006 bc | 0.159 ± 0.010 b | 0.149 ± 0.013 c | 0.160 ± 0.013 b | 0.175 ± 0.019 a |
CPH | 0.144 ± 0.007 b | 0.164 ± 0.010 a | 0.158 ± 0.011 a | 0.130 ± 0.009 c | 0.126 ± 0.012 c |
CFL | 0.222 ± 0.026 b | 0.199 ± 0.032 c | 0.305 ± 0.027 a | 0.234 ± 0.012 b | 0.178 ± 0.014 d |
TL | 1.221 ± 0.024 b | 1.197 ± 0.031 c | 1.289 ± 0.021 a | 1.230 ± 0.016 b | 1.172 ± 0.012 d |
D1–2 | 0.222 ± 0.014 c | 0.218 ± 0.016 c | 0.254 ± 0.016 a | 0.239 ± 0.016 b | 0.219 ± 0.020 c |
D1–10 | 0.272 ± 0.012 a | 0.262 ± 0.017 a | 0.272 ± 0.016 a | 0.272 ± 0.014 a | 0.243 ± 0.016 b |
D2–3 | 0.336 ± 0.017 b | 0.361 ± 0.016 a | 0.303 ± 0.023 c | 0.330 ± 0.022 b | 0.368 ± 0.021 a |
D2–8 | 0.598 ± 0.015 bc | 0.620 ± 0.023 a | 0.601 ± 0.021 b | 0.585 ± 0.019 c | 0.583 ± 0.023 c |
D2–9 | 0.392 ± 0.017 b | 0.419 ± 0.017 a | 0.378 ± 0.016 c | 0.369 ± 0.014 c | 0.377 ± 0.017 c |
D2–10 | 0.147 ± 0.011 b | 0.152 ± 0.013 b | 0.170 ± 0.017 a | 0.132 ± 0.012 c | 0.113 ± 0.011 d |
D3–4 | 0.126 ± 0.009 c | 0.134 ± 0.011 b | 0.177 ± 0.011 a | 0.122 ± 0.009 c | 0.103 ± 0.011 d |
D3–7 | 0.368 ± 0.015 b | 0.375 ± 0.016 b | 0.414 ± 0.015 a | 0.348 ± 0.012 c | 0.300 ± 0.016 d |
D3–8 | 0.313 ± 0.023 c | 0.325 ± 0.013 b | 0.358 ± 0.015 a | 0.295 ± 0.014 d | 0.251 ± 0.014 e |
D3–9 | 0.212 ± 0.016 b | 0.237 ± 0.016 a | 0.237 ± 0.018 a | 0.163 ± 0.016 c | 0.140 ± 0.013 d |
D3–10 | 0.321 ± 0.016 b | 0.360 ± 0.02 a | 0.327 ± 0.014 b | 0.327 ± 0.016 b | 0.354 ± 0.012 a |
D4–5 | 0.306 ± 0.014 b | 0.292 ± 0.012 c | 0.285 ± 0.018 c | 0.324 ± 0.013 a | 0.310 ± 0.015 b |
D4–6 | 0.347 ± 0.014 ab | 0.349 ± 0.013 ab | 0.348 ± 0.013 ab | 0.356 ± 0.013 a | 0.343 ± 0.017 b |
D4–7 | 0.257 ± 0.011 a | 0.257 ± 0.012 a | 0.261 ± 0.013 a | 0.231 ± 0.009 b | 0.204 ± 0.013 c |
D4–8 | 0.217 ± 0.011 b | 0.227 ± 0.011 a | 0.232 ± 0.014 a | 0.190 ± 0.012 c | 0.169 ± 0.013 d |
D4–9 | 0.218 ± 0.010 c | 0.244 ± 0.018 b | 0.256 ± 0.017 a | 0.179 ± 0.015 d | 0.169 ± 0.014 d |
D4–10 | 0.423 ± 0.012 c | 0.466 ± 0.023 a | 0.467 ± 0.017 a | 0.433 ± 0.015 bc | 0.441 ± 0.011 b |
D5–6 | 0.147 ± 0.007 c | 0.170 ± 0.011 a | 0.155 ± 0.010 b | 0.125 ± 0.011 d | 0.121 ± 0.009 d |
D5–7 | 0.111 ± 0.013 c | 0.117 ± 0.011 c | 0.117 ± 0.014 c | 0.142 ± 0.013 b | 0.153 ± 0.013 a |
D5–8 | 0.250 ± 0.012 b | 0.271 ± 0.011 a | 0.271 ± 0.015 a | 0.257 ± 0.016 b | 0.251 ± 0.012 b |
D6–7 | 0.111 ± 0.013 c | 0.117 ± 0.011 c | 0.117 ± 0.014 c | 0.142 ± 0.013 b | 0.153 ± 0.008 a |
D7–8 | 0.081 ± 0.008 b | 0.081 ± 0.009 b | 0.091 ± 0.008 a | 0.078 ± 0.010 b | 0.065 ± 0.008 c |
D8–9 | 0.223 ± 0.017 b | 0.220 ± 0.018 bc | 0.244 ± 0.010 a | 0.225 ± 0.013 b | 0.212 ± 0.012 c |
D9–10 | 0.292 ± 0.014 b | 0.322 ± 0.021 a | 0.285 ± 0.016 b | 0.297 ± 0.018 b | 0.316 ± 0.013 a |
Variable | Principle Component | Variable | Principle Component | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
HL | 0.620 | −0.508 | −0.050 | D2–10 | 0.858 | −0.007 | −0.029 |
ED | 0.675 | −0.079 | 0.281 | D3–4 | 0.844 | −0.175 | 0.328 |
SnL | 0.550 | −0.323 | −0.087 | D3–7 | 0.954 | −0.051 | 0.092 |
HBE | −0.404 | −0.304 | −0.256 | D3–8 | 0.930 | 0.010 | 0.083 |
HD | 0.876 | −0.141 | 0.134 | D3–9 | 0.909 | 0.315 | 0.002 |
NSD | 0.317 | −0.437 | −0.055 | D3–10 | −0.217 | 0.709 | 0.390 |
BD | 0.914 | 0.293 | −0.028 | D4–5 | −0.553 | −0.261 | −0.187 |
DFL | 0.560 | 0.131 | −0.666 | D4–6 | 0.062 | −0.199 | 0.125 |
PFL | 0.818 | 0.043 | −0.378 | D4–7 | 0.858 | 0.116 | −0.172 |
VFL | 0.781 | −0.011 | −0.332 | D4–8 | 0.898 | 0.203 | −0.063 |
AFL | 0.665 | 0.093 | −0.573 | D4–9 | 0.900 | 0.270 | 0.179 |
CPL | −0.585 | 0.064 | 0.178 | D4–10 | 0.441 | 0.423 | 0.695 |
CPD | 0.773 | 0.381 | 0.067 | D5–6 | 0.759 | 0.414 | −0.019 |
CFL | 0.699 | −0.502 | 0.342 | D5–7 | −0.726 | −0.203 | 0.371 |
TL | 0.713 | −0.504 | 0.314 | D5–8 | 0.425 | 0.171 | 0.343 |
D1–2 | 0.404 | −0.637 | 0.367 | D6–7 | −0.726 | −0.203 | 0.371 |
D1–10 | 0.538 | −0.370 | −0.131 | D7–8 | 0.746 | −0.158 | 0.088 |
D2–3 | −0.512 | 0.704 | −0.008 | D8–9 | 0.521 | −0.207 | 0.393 |
D2–8 | 0.410 | 0.630 | 0.164 | D9–10 | −0.309 | 0.662 | 0.228 |
D2–9 | 0.283 | 0.828 | −0.095 |
Variable | S. superciliaris | S. reevesae | S. robusta | S. pulchra | S. zebra |
---|---|---|---|---|---|
BD | −649.906 | −652.521 | −593.096 | −842.953 | −992.365 |
CFL | 855.276 | 740.269 | 1032.533 | 891.593 | 681.982 |
DFL | 1936.75 | 1732.945 | 1686.195 | 1905.229 | 1783.063 |
HBE | 1564.229 | 1575.658 | 1506.593 | 1960.871 | 1880.49 |
HD | 1235.458 | 1267.257 | 1753.985 | 1485.928 | 1320.554 |
PFL | 91.896 | 135.38 | 313.923 | −35.366 | −154.035 |
SnL | 3564.3 | 3229.94 | 3105.582 | 3576.356 | 3316.018 |
D3–4 | 625.357 | 564.064 | 1202.921 | 710.819 | 411.203 |
D4–5 | 3524.526 | 3330.814 | 3443.542 | 3590.367 | 3329.115 |
D4–9 | −962.795 | −882.986 | −1146.886 | −1194.772 | −973.426 |
D4–10 | 3206.205 | 3305.072 | 3233.779 | 3432.547 | 3425.339 |
D5–6 | −412.321 | −76.278 | −458.97 | −701.59 | −532.633 |
D5–7 | −342.912 | −273.204 | −233.37 | −70.455 | 68.72 |
Constent | −1693.693 | −1669.88 | −1817.476 | −1813.591 | −1622.784 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xie, Y.; Li, Y.; Peng, F.; Li, J.; Jiang, W.; Xie, B.; Fu, P.; Peng, Z. Multivariate and Geometric Morphometrics Reveal Morphological Variation Among Sinibotia Fish. Biology 2025, 14, 1177. https://doi.org/10.3390/biology14091177
Wang Y, Xie Y, Li Y, Peng F, Li J, Jiang W, Xie B, Fu P, Peng Z. Multivariate and Geometric Morphometrics Reveal Morphological Variation Among Sinibotia Fish. Biology. 2025; 14(9):1177. https://doi.org/10.3390/biology14091177
Chicago/Turabian StyleWang, Yongming, Yong Xie, Yanping Li, Fei Peng, Jinping Li, Wei Jiang, Biwen Xie, Peng Fu, and Zuogang Peng. 2025. "Multivariate and Geometric Morphometrics Reveal Morphological Variation Among Sinibotia Fish" Biology 14, no. 9: 1177. https://doi.org/10.3390/biology14091177
APA StyleWang, Y., Xie, Y., Li, Y., Peng, F., Li, J., Jiang, W., Xie, B., Fu, P., & Peng, Z. (2025). Multivariate and Geometric Morphometrics Reveal Morphological Variation Among Sinibotia Fish. Biology, 14(9), 1177. https://doi.org/10.3390/biology14091177