Genomic Analysis of the Natural Variation of Fatty Acid Composition in Seed Oils of Camelina sativa
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiments
2.2. Measurements of Fatty Acid and Seed Oil Percentages
2.3. Marker Discovery and Validation
2.4. Population Structure
2.5. GWAS Program, Model Selection, and Settings
2.6. Pangenome Analysis
3. Results
3.1. Variation of Seed Fatty Acid Composition in Different Growth Locations
3.2. Marker Discovery and Population Structure Analysis
3.3. GWAS Identified Multiple QTLs for Camelina Seed Oil and Fatty Acid Contents
3.3.1. QTLs for Oil Content and Linolenic Acid
3.3.2. Markers Associated with Oleic Acid Content
3.4. Variation of Putative Candidate Genes Within Fatty Acid QTLs Among Pangenomes
4. Discussion
4.1. Successful QTL Mapping Depends on Both Genetic Markers and Trait Measurements
4.2. Population Structure of the Camelina Diversity Panel
4.3. Linkage Decay and Pangenome Analyses May Aid in Identification of Candidate Genes Within QTLs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GWAS | Genome-wide association study |
QTL | Quantitative Trait Locus |
SNP | Single nucleotide polymorphism |
Indel | Insertion/deletion |
LD | Linkage decay |
PCA | Principal component analysis |
VLCFA | Very long chain fatty acid |
TAG | Triacylglycerol |
FAD2 | Fatty acid desaturase 2 |
18:1 | Oleic acid |
18:2 | Linoleic acid |
18:3 | Linolenic acid |
LN | Low Nitrogen |
HN | High Nitrogen |
References
- Taheripour, F.; Sajedinia, E.; Karami, O. Oilseed Cover Crops for Sustainable Aviation Fuels Production and Reduction in Greenhouse Gas Emissions Through Land Use Savings. Front. Energy Res. 2022, 9, 790421. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Mondor, M.; Hernández-Álvarez, A.J. Camelina sativa Composition, Attributes, and Applications: A Review. Eur. J. Lipid Sci. Technol. 2022, 124, 2100035. [Google Scholar] [CrossRef]
- Kang, J.; Snapp, A.R.; Lu, C. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol. Biochem. 2011, 49, 223–229. [Google Scholar] [CrossRef]
- Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1059–1070. [Google Scholar] [CrossRef]
- Dyer, J.M.; Mullen, R.T. Engineering plant oils as high-value industrial feedstocks for biorefining: The need for underpinning cell biology research. Physiol. Plant 2008, 132, 11–22. [Google Scholar] [CrossRef]
- Ozseyhan, M.E.; Kang, J.; Mu, X.; Lu, C. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol. Biochem. 2018, 123, 1–7. [Google Scholar] [CrossRef]
- Jiang, W.Z.; Henry, I.M.; Lynagh, P.G.; Comai, L.; Cahoon, E.B.; Weeks, D.P. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 2017, 15, 648–657. [Google Scholar] [CrossRef]
- Morineau, C.; Bellec, Y.; Tellier, F.; Gissot, L.; Kelemen, Z.; Nogue, F.; Faure, J.D. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol. J. 2017, 15, 729–739. [Google Scholar] [CrossRef]
- Xu, C.; Shaw, T.; Choppararu, S.A.; Lu, Y.; Farooq, S.N.; Qin, Y.; Hudson, M.; Weekley, B.; Fisher, M.; He, F.; et al. FatPlants: A comprehensive information system for lipid-related genes and metabolic pathways in plants. Database 2024, 2024, baae074. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cano, F.; Carey, L.; Lucas, K.; García Navarrete, T.; Mukundi, E.; Lundback, S.; Schnell, D.; Grotewold, E. CamRegBase: A gene regulation database for the biofuel crop, Camelina sativa. Database 2020, 2020, baaa075. [Google Scholar] [CrossRef]
- Pollard, M.; Martin, T.M.; Shachar-Hill, Y. Lipid analysis of developing Camelina sativa seeds and cultured embryos. Phytochemistry 2015, 118, 23–32. [Google Scholar] [CrossRef]
- Ruiz-Lopez, N.; Haslam, R.P.; Usher, S.L.; Napier, J.A.; Sayanova, O. Reconstitution of EPA and DHA biosynthesis in Arabidopsis: Iterative metabolic engineering for the synthesis of n−3 LC-PUFAs in transgenic plants. Metab. Eng. 2013, 17, 30–41. [Google Scholar] [CrossRef]
- Ruiz-Lopez, N.; Haslam, R.P.; Napier, J.A.; Sayanova, O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 2014, 77, 198–208. [Google Scholar] [CrossRef]
- Han, L.; Haslam, R.P.; Silvestre, S.; Lu, C.; Napier, J.A. Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid in transgenic Camelina through the CRISPR-Cas9 inactivation of the competing FAE1 pathway. Plant Biotechnol. J. 2022, 20, 1444–1446. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.; Chen, Y.; Wang, H.; Zhao, Y.; Du, C.; Lu, C.; Zhang, M. Creating ultra-high linolenic acid camelina by co-expressing AtFAD2sm with synonymous mutations and BnFAD3 in the fae1 mutant. Plant Biotechnol. J. 2025. [Google Scholar] [CrossRef]
- Li, H.; Hu, X.; Lovell, J.T.; Grabowski, P.P.; Mamidi, S.; Chen, C.; Amirebrahimi, M.; Kahanda, I.; Mumey, B.; Barry, K.; et al. Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping. Plant Genome 2021, 14, e20110. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.R.; Bird, K.A.; Platts, A.E.; Gomez-Cano, F.; Gupta, S.K.; Palos, K.; Railey, C.E.; Teresi, S.J.; Lee, Y.S.; Magallanes-Lundback, M.; et al. Exploring genetic diversity, population structure, and subgenome differences in the allopolyploid Camelina sativa: Implications for future breeding and research studies. Hortic Res 2024, 11, uhae247. [Google Scholar] [CrossRef] [PubMed]
- Kagale, S.; Koh, C.; Nixon, J.; Bollina, V.; Clarke, W.E.; Tuteja, R.; Spillane, C.; Robinson, S.J.; Links, M.G.; Clarke, C.; et al. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat. Commun. 2014, 5, 3706. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Li, H.; Kang, J.; Lu, C. Mapping quantitative trait loci for seed traits in Camelina sativa. Theor. Appl. Genet. 2019, 132, 2567–2577. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R Package Version 1.5.1. 2023. Available online: https://stringr.tidyverse.org (accessed on 5 August 2025).
- Wickham, H.; Francois, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr. A Grammar of Data Manipulation. R Package Version 1.1.4.9000. 2025. Available online: https://github.com/tidyverse/dplyr (accessed on 5 August 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org (accessed on 5 August 2025).
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Knaus, B.J.; Grunwald, N.J. vcfr: A package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 2017, 17, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Schliep, K.P. phangorn: Phylogenetic analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef]
- Mijangos, J.L.; Gruber, B.; Berry, O.; Pacioni, C.; Georges, A. dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture. Methods Ecol. Evol. 2022, 13, 2150–2158. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef] [PubMed]
- Bird, K.A.; Brock, J.R.; Grabowski, P.P.; Harder, A.M.; Healy, A.L.; Shu, S.; Barry, K.; Boston, L.; Daum, C.; Guo, J.; et al. Allopolyploidy expanded gene content but not pangenomic variation in the hexaploid oilseed Camelina sativa. Genetics 2025, 229, iyae183. [Google Scholar] [CrossRef] [PubMed]
- Decker, S. Pangenome Alignment Analyzer: Scripts to Generate and Classify Sequence Alignments for More Than 2 Genomes. 2025. Available online: https://github.com/FlyingNostril/pangenome_alignment_analyzer (accessed on 5 August 2025).
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, H.-J.; Yan, J.; Tian, F. Natural Variation in Crops: Realized Understanding, Continuing Promise. Annu. Rev. Plant Biol. 2021, 72, 357–385. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, H.; Lu, S.; Yu, L.; Zhang, G.; Zhang, Y.; Yang, Q.-Y.; Zhou, Y.; Wang, X.; Ma, W.; et al. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 2021, 14, 470–487. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Tworkowski, J.; Puttick, D.; Eynck, C.; Załuski, D.; Kwiatkowski, J. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Ind. Crops Prod. 2019, 138, 111443. [Google Scholar] [CrossRef]
- Kuzmanović, B.; Petrović, S.; Nagl, N.; Mladenov, V.; Grahovac, N.; Zanetti, F.; Eynck, C.; Vollmann, J.; Jeromela, A.M. Yield-Related Traits of 20 Spring Camelina Genotypes Grown in a Multi-Environment Study in Serbia. Agronomy 2021, 11, 858. [Google Scholar] [CrossRef]
- Załuski, D.; Tworkowski, J.; Krzyżaniak, M.; Stolarski, M.J.; Kwiatkowski, J. The Characterization of 10 Spring Camelina Genotypes Grown in Environmental Conditions in North-Eastern Poland. Agronomy 2020, 10, 64. [Google Scholar] [CrossRef]
- Obour, A.K.; Obeng, E.; Mohammed, Y.A.; Ciampitti, I.A.; Durrett, T.P.; Aznar-Moreno, J.A.; Chen, C. Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment. Agron. J. 2017, 109, 947–956. [Google Scholar] [CrossRef]
- Alberio, C.; Aguirrezábal, L.A.N. Meta-analysis unravels common responses of seed oil fatty acids to temperature for a wide set of genotypes of different plant species. Front. Plant Sci. 2024, 15, 1476311. [Google Scholar] [CrossRef] [PubMed]
- O’Quin, J.B.; Bourassa, L.; Zhang, D.; Shockey, J.M.; Gidda, S.K.; Fosnot, S.; Chapman, K.D.; Mullen, R.T.; Dyer, J.M. Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum-associated degradation pathway. J. Biol. Chem. 2010, 285, 21781–21796. [Google Scholar] [CrossRef] [PubMed]
- Weng, M.-L.; Becker, C.; Hildebrandt, J.; Neumann, M.; Rutter, M.T.; Shaw, R.G.; Weigel, D.; Fenster, C.B. Fine-Grained Analysis of Spontaneous Mutation Spectrum and Frequency in Arabidopsis thaliana. Genetics 2018, 211, 703–714. [Google Scholar] [CrossRef]
- Gloss, A.D.; Steiner, M.C.; Novembre, J.; Bergelson, J. The design of mapping populations: Impacts of geographic scale on genetic architecture and mapping efficacy for defense and immunity. Curr. Opin. Plant Biol. 2023, 74, 102399. [Google Scholar] [CrossRef]
- Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 2002, 5, 94–100. [Google Scholar] [CrossRef]
- Silva-Junior, O.B.; Grattapaglia, D. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis. N. Phytol. 2015, 208, 830–845. [Google Scholar] [CrossRef]
- Otyama, P.I.; Wilkey, A.; Kulkarni, R.; Assefa, T.; Chu, Y.; Clevenger, J.; O’Connor, D.J.; Wright, G.C.; Dezern, S.W.; MacDonald, G.E.; et al. Evaluation of linkage disequilibrium, population structure, and genetic diversity in the U.S. peanut mini core collection. BMC Genom. 2019, 20, 481. [Google Scholar] [CrossRef]
Palmitic (16:0) | Stearic (18:0) | Oleic (18:1) | Linoleic (18:2) | Linolenic (18:3) | VLCFA (20–22:x) | Oil Content |
---|---|---|---|---|---|---|
10/1 | 16/1 | 33/8 | 17/0 | 5/0 | 37/1 | 34/0 |
Trait | Location, Nitrogen | Marker | Chr | Pos | p-Value | MAF | Effect | PVE (%) |
---|---|---|---|---|---|---|---|---|
Oil content * | SD, NA SD, HN | SNP 12699 | 2 | 17472554 | 2.04 × 10−12 5.03 × 10−14 | 0.064 0.064 | −1.175 −1.508 | 12.83 11.02 |
SD, NA SD, HN | SNP 129397 | 12 | 31847058 | 9.75 × 10−12 5.62 × 10−12 | 0.076 0.074 | 1.013 1.27 | 38.64 64.24 | |
BZ, NA | SNP 71383 | 7 | 30829468 | 1.25 × 10−18 | 0.162 | −0.656 | 30.79 | |
BZ, NA | INDEL 74281 | 14 | 26078537 | 8.87 × 10−13 | 0.052 | −0.736 | 40.03 | |
PM, NA | SNP 10199 | 2 | 7566564 | 4.84 × 10−10 | 0.074 | −1.429 | 19.19 | |
PM, NA | SNP 196088 | 20 | 7751829 | 3.17 × 10−8 | 0.107 | −1.127 | 11.48 | |
PM, LN | SNP 169383 | 17 | 13201950 | 1.70 × 10−13 | 0.2 | −1.11 | 15.46 | |
PM, LN | SNP 15542 | 2 | 28383138 | 7.13 × 10−11 | 0.126 | −1.38 | 15.03 | |
18:3 | SD, NA | SNP 72835 | 8 | 1844855 | 6.96 × 10−9 | 0.130 | 0.876 | 14.08 |
SD, NA | SNP 151966 | 14 | 31754793 | 6.95 × 10−8 | 0.054 | −1.165 | 24.04 | |
SD, NA | SNP 187379 | 19 | 7626530 | 1.78 × 10−10 | 0.127 | −1.035 | 21.85 | |
SD, HN | SNP 78439 | 8 | 19496871 | 1.52 × 10−10 | 0.099 | 1.320 | 24.34 | |
SD, HN | SNP 79026 | 8 | 20320858 | 1.03 × 10−7 | 0.335 | −0.703 | 18.84 |
Marker | Pos | p-Value | MAF | Effect | PVE (%) | Trait, Location, N Level |
---|---|---|---|---|---|---|
SNP 591 | 2611818 | 1.11 × 10−7 | 0.110 | −0.930 | 9.90 | 18:2, PM, LN |
SNP 653 | 2712622 | 9.35 × 10−11 4.70 × 10−14 | 0.0896 0.0911 | 1.027 0.980 | 57.77 34.41 | 18:1, SD, LN * 18:1, SD, HN |
INDEL 458_1 | 3063926 | 4.45 × 10−15 1.46 × 10−17 1.83 × 10−11 | 0.117 0.118 0.114 | 1.318 0.869 0.688 | 35.18 21.45 19.81 | 18:1, PM, HN 18:1, SD, HN 18:1, SD, LN |
SNP 739 ** | 3125731 | 1.90 × 10−11 | 0.101 | 0.852 | 51.55 | 18:1, SD, HN |
SNP 742 ** | 3148736 | 3.14 × 10−10 | 0.075 | 1.197 | 52.80 | 18:1, SD, LN |
INDEL 480 | 3198922 | 1.80 × 10−8 | 0.150 | 0.808 | 3.83 | 18:2, PM, LN |
SNP 753 * | 3225897 | 5.53 × 10−10 | 0.126 | 0.596 | 23.75 | 18:1, BZ, NA |
SNP 754 ** | 3226206 | 4.06× 10−15 | 0.133 | 0.620 | 25.65 | 18:1, BZ, NA |
INDEL 483 | 3230709 | 6.45 × 10−13 | 0.088 | 1.131 | 10.53 | 18:1, PM, NA |
SNP 763 | 3247468 | 4.59 × 10−11 | 0.076 | −1.673 | 29.76 | 18:2, PM, NA |
SNP 1392 | 5000540 | 3.38 × 10−10 3.41 × 10−8 7.64 × 10−13 4.49 × 10−16 8.68 × 10−14 8.21× 10−11 | 0.0744 0.0760 0.0744 0.0762 0.0762 0.0743 | −1.589 0.682 0.968 1.738 1.839 1.069 | 60.53 50.53 61.13 65.50 29.93 59.36 | 18:2, BZ, NA 18:1, SD, NA 18:1, BZ, NA 18:1, PM, NA 18:1, PM, HN 18:1, SD, LN |
SNP 1558 | 5899218 | 2.22 × 10−8 | 0.138 | −0.934 | 14.65 | 18:2, PM, LN |
Associated Marker Set Tested | Total Genes | Four or More Pangenome Members with Protein Differences | One to Three Pangenome Members with Protein Differences | Silent CDS Differences | Differences in Non-Coding Regions Only | No Match or No Differences |
---|---|---|---|---|---|---|
All 118 fatty acid markers | 2676 | 880 | 507 | 144 | 806 | 339 |
Markers from Table 3 | 254 | 56 | 61 | 24 | 101 | 12 |
SNP 1392 | 33 | 4 | 3 | 5 | 20 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decker, S.; Craine, W.; Paulitz, T.; Chen, C.; Lu, C. Genomic Analysis of the Natural Variation of Fatty Acid Composition in Seed Oils of Camelina sativa. Biology 2025, 14, 1199. https://doi.org/10.3390/biology14091199
Decker S, Craine W, Paulitz T, Chen C, Lu C. Genomic Analysis of the Natural Variation of Fatty Acid Composition in Seed Oils of Camelina sativa. Biology. 2025; 14(9):1199. https://doi.org/10.3390/biology14091199
Chicago/Turabian StyleDecker, Samuel, Wilson Craine, Timothy Paulitz, Chengci Chen, and Chaofu Lu. 2025. "Genomic Analysis of the Natural Variation of Fatty Acid Composition in Seed Oils of Camelina sativa" Biology 14, no. 9: 1199. https://doi.org/10.3390/biology14091199
APA StyleDecker, S., Craine, W., Paulitz, T., Chen, C., & Lu, C. (2025). Genomic Analysis of the Natural Variation of Fatty Acid Composition in Seed Oils of Camelina sativa. Biology, 14(9), 1199. https://doi.org/10.3390/biology14091199