Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement
Abstract
:1. Introduction
Date | Approach | Cultivar (s)/Tissues | Reference |
---|---|---|---|
1989 | Isozymes | G. arboreum | [11] |
G. herbaceum | |||
1994 | RFLP | G. hirsutum | [12] |
G. barbadense | |||
1999 | RFLP | G. herbaceum L. × G. arboreum L. | [7] |
G. trilobum Skovsted × G. raimondii | |||
G. hirsutum “palmeri” × G. barbadense | |||
2003 | Microsatellites | G. hirsutum | [13] |
G. arboreum | |||
2007 | Microsatellites | G. arboreum | [14] |
G. herbaceum | |||
G. thurberi | |||
G. raimondii | |||
G. gossypioides | |||
G. hirsutum | |||
G. barbadense | |||
2010 | Physical Map | G. raimondii | [15] |
2012 | EST | G. arboreum (gynoecium, calyx, fiber, roots, whole seedlings) | [16] |
G. arboreum (cotton fiber 7–10 days post anthesis (dpa)) | |||
G. raimondii (gynoecium, calyx, fiber, roots, whole seedlings) | |||
G. raimondii (meristem, calyx, fiber, root, petal, seedling) | |||
G. raimondii (whole seedling, normalized floral organs including developing embryos) | |||
G. hirsutum (gynoecium, calyx, fiber, roots, whole seedlings) | |||
G. hirsutum (bud, leaf, stem, whole seedling (with roots)) | |||
G. hirsutum (ESTs that are publically available in GenBank) | |||
G. barbadense (bud, leaf, stem, whole seedling (with roots)) | |||
G. barbadense (bud, leaf, stem, whole seedling (with roots)) | |||
G. barbadense (ESTs that are publically available in GenBank) | |||
2012 | Genome Sequencing | G. raimondii | [8] |
2012 | Genome Sequencing | G. raimondii | [9] |
2. Genome Insights into Polyploidy and Evolution of Cotton
3. Cotton Improvement—Simple and Complex Traits
4. Development of New Transformation Strategies
Plant Chloroplast Genome | Date of Completion | Accession Number/Reference |
---|---|---|
Tobacco | April 27, 1998 | Z00044 |
Rice (japonica) | March 29, 2001 | X15901 |
Soybean | December 18, 2005 | DQ317523 |
French Bean | August 7, 2007 | DQ886273 |
Maize | April 18, 2005 | X86563 |
Cotton (G. hirsutum) | May 3, 2006 | DQ317523 |
G. barbadense | December 26, 2006 | AP009123 |
Gossypium sp. (11 other species and races) | August 2, 2012 | [104] |
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Fryxell, P.A. The Natural History of the Cotton Tribe; Texas A and M University Press: College Station, TX, USA, 1979. [Google Scholar]
- Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of cotton. In Advances in Agronomy; Sparks, D., Ed.; Academic Press: New York, NY, USA, 2003; Volume 78, pp. 139–186. [Google Scholar]
- Fryxell, P.A. A revised taxonomic interpretation of Gossypium. Rheedea 1992, 2, 108–165. [Google Scholar]
- Beasley, J.O. Meiotic chromosome behavior in species, species hybrids, haploids, and induced polyploids of Gossypium. Genetics 1942, 27, 25–54. [Google Scholar]
- Endrizzi, J.E.; Turcotte, E.L.; Kohel, R.J. Genetics, cytology, and evolution of Gossypium. Adv. Genet. 1985, 23, 271–375. [Google Scholar] [CrossRef]
- Rathore, K.S. Cotton. In Biotechnology in Agriculture and Forestry; Pua, E.C., Davey, M.R., Eds.; Springer: Heidelberg/Berlin, Germany, 2007; Volume 61, pp. 107–145. [Google Scholar]
- Brubaker, C.L.; Paterson, A.H.; Wendel, J.F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 1999, 42, 184–203. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Li, F.; Ye, W.; Wang, J.; Song, G.; Yue, Z.; Cong, L.; Shang, H.; Zhu, S.; et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 2012, 44, 1098–1103. [Google Scholar] [CrossRef]
- Paterson, A.H.; Wendel, J.F.; Gundlach, H.; Guo, H.; Jenkins, J.; Jin, D.; Llewellyn, D.; Showmaker, K.C.; Shu, S.; Udall, J.; et al. Repeated polyploidization of gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492, 423–427. [Google Scholar] [CrossRef]
- USDA, Crop Values 2012 Summary; USDA National Agricultural Statistics Service: Washington, DC, USA, 2013.
- Wendel, J.F.; Olson, P.D.; Stewart, J.M. Genetic diversity, introgression, and independent domestication of old-world cultivated cottons. Am. J. Bot. 1989, 76, 1795–1806. [Google Scholar] [CrossRef]
- Reinisch, A.J.; Dong, J.M.; Brubaker, C.L.; Stelly, D.M.; Wendel, J.F.; Paterson, A.H. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics 1994, 138, 829–847. [Google Scholar]
- Saha, S.; Karaca, M.; Jenkins, J.N.; Zipf, A.E.; Reddy, O.U.K.; Kantety, R.V. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 2003, 130, 355–364. [Google Scholar] [CrossRef]
- Kebede, H.; Burow, G.; Dani, R.G.; Allen, R.D. A-genome cotton as a source of genetic variability for upland cotton (Gossypium hirsutum). Genet. Res. Crop Evol. 2007, 54, 885–895. [Google Scholar] [CrossRef]
- Lin, L.; Pierce, G.; Bowers, J.; Estill, J.; Compton, R.; Rainville, L.; Kim, C.; Lemke, C.; Rong, J.; Tang, H.; et al. A draft physical map of a D-genome cotton species (Gossypium raimondii). BMC Genomics 2010, 11, 395. [Google Scholar] [CrossRef]
- Flagel, L.; Wendel, J.; Udall, J. Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics 2012, 13, 302. [Google Scholar] [CrossRef]
- Grant, V. The Origin of Adaptations; Columbia University Press: New York, NY, USA, 1963. [Google Scholar]
- Goldblatt, P. Polyploidy in angiosperms: Monocotyledons. In Polyploidy: Biological Relevance; Lewis, W.H., Ed.; Plenum Press: New York, NY, USA, 1980; pp. 219–239. [Google Scholar]
- Masterson, J. Stomatal size in fossil plants: Evidence for polypolidy in majority of angiosperms. Science 1994, 264, 421–423. [Google Scholar]
- Bowers, J.E.; Chapman, B.A.; Rong, J.; Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422, 433–438. [Google Scholar] [CrossRef]
- Adams, K.L.; Wendel, J.F. Exploring the genomic mysteries of polyploidy in cotton. Biol. J. Linn. Soc. 2004, 82, 573–581. [Google Scholar] [CrossRef]
- Jiang, C.-X.W.; Robert, J.; El-Zik, K.M.; Paterson, A.H. Polyploid formation created unique avenuesfor response to selection in Gossypium (cotton). Proc. Natl. Acad. Sci. USA 1998, 95, 4419–4424. [Google Scholar] [CrossRef]
- Phillips, L.L. Cotton. In The Evolution of Crop Plants; Simmonds, N.W., Ed.; Longman Scientific and Technical: Harlow, UK, 1976; pp. 196–200. [Google Scholar]
- Paterson, A.H.; Saranga, Y.; Menz, M.; Jiang, C.X.; Wright, R.J. QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor. Appl. Genet. 2003, 106, 384–396. [Google Scholar]
- Rong, J.-K.; Feltus, F.A.; Waghmare, V.N.; Pierce, G.J.; Chee, P.W.; Draye, X.; Saranga, Y.; Wright, R.J.; Wilkins, T.A.; May, O.L.; et al. Meta-analysis of polyploid cotton QTLs shows unequal contributions of subgenomes to acomplex network of genes and gene clusters implicated in lint fiber development. Genetics 2007, 176, 2577–2588. [Google Scholar]
- Flagel, L.E.; Wendel, J.F. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol. 2010, 186, 184–193. [Google Scholar] [CrossRef]
- Chaudhary, B.F.L.; Stupar, R.M.; Udall, J.A.; Verma, N.; Springer, N.M.; Wendel, J.F. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 2009, 182, 503–517. [Google Scholar] [CrossRef]
- James, C. ISAAA Brief No. 44; ISAAA: Ithaca, NY, USA, 2013. [Google Scholar]
- Gill, S.S.; Cowles, E.A.; Pietrantonio, P.V. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 1992, 37, 615–636. [Google Scholar] [CrossRef]
- Knowles, B.H. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv. Insect Physiol. 1994, 24, 275–308. [Google Scholar] [CrossRef]
- Schnepf, E.; Crickmore, N.; van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. R. 1998, 62, 775–806. [Google Scholar]
- Höfte, H.; Whiteley, H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 1989, 5, 242–255. [Google Scholar]
- Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, E.; van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. R. 1998, 62, 807–813. [Google Scholar]
- Wilkins, T.A.; Rajasekaran, K.; Anderson, D.M. Cotton biotechnology. Crit. Rev. Plant Sci. 2000, 19, 511–550. [Google Scholar] [CrossRef]
- Perlak, F.J.; Deaton, R.W.; Armstrong, T.A.; Fuchs, R.L.; Sims, S.R.; Greenplate, J.T.; Fischhoff, D. Insect resistant cotton plants. Biotechnology 1990, 8, 939–943. [Google Scholar]
- Perlak, F.; Fuchs, R.; Dean, D.A.; McPherson, S.L.; Fischhoff, D.A. Modification of the coding sequences enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 1991, 88, 3324–3329. [Google Scholar]
- Benedict, J.H.; Sachs, E.S.; Altman, D.W.; Ring, D.R.; Stone, T.B.; Sims, S.R. Impact of endotoxin-producing transgenic cotton on insect plant interactions with Heliothis virescens and Helicoverpa zea (lepidoptera: Noctuidae). Environ. Entomol. 1993, 22, 1–9. [Google Scholar]
- Halcomb, J.L.; Benedict, J.H.; Cook, B.; Ring, D.R. Survival and growth of bollworm and tobacco budworm on nontransgenic and transgenic cotton expressing a cryla insecticidal protein (lepidoptera: Noctuidae). Environ. Entomol. 1996, 25, 250–255. [Google Scholar]
- Flint, H.M.; Henneberry, T.J.; Wilson, F.D.; Holguin, E.; Parks, N.; Buehler, R.E. The effects of transgenic cotton, Gossypium hirsutum L., containing Bacillus thuringiensis toxin genes for the control of the pink bollworm, Pectinophora gossypiella (saunders) and other arthropods. Southwest. Entomol. 1995, 20, 281–292. [Google Scholar]
- Flint, H.M.; Antilla, L.; Leggett, J.E.; Parks, N.J. Seasonal infestation by pink bollworm, Pectinophora gossypiella (saunders) of transgenic cotton, containing the bollgard gene, planted in commercial fields in central Arizona. Southwest. Entomol. 1996, 21, 229–235. [Google Scholar]
- Wilson, D.F.; Flint, H.M.; Deaton, R.W.; Fischhoff, D.A.; Perlak, F.J.; Armstrong, T.A.; Fuchs, R.L.; Berberich, S.A.; Parks, N.J.; Stap, B.R. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (lepidoptera: Gelechiidae). J. Econ. Entomol. 1992, 85, 1516–1521. [Google Scholar]
- Hardee, D.D.; Bryan, W.W. Influence of Bacillus thuringiensis- transgenic and nectariless cotton on insect populations with emphasis on the tarnished plant bug (heteroptera: Miridae). J. Econ. Entomol. 1997, 90, 663–668. [Google Scholar]
- ISAAA. Global Status of Commercialized Biotech/GM Crops:2012; International Service for the Acquisition of Agricultural Bio-tech Applications: Ithaca, NY, USA, 2012; Volume 44. [Google Scholar]
- Rothrock, C.S.; Colyer, P.D.; Buchanana, M.; Gbur, E.E. Cotton Seedling Diseases: Importance, Occurance and Chemical Control. In Proceedings of the World Cotton Research Conference, Lubbock, TX, USA, 10–14 September 2007; pp. 1–5.
- Service, U.N.A.S. Quick Stats. Available online: http://www.nass.usda.gov/ (accessed on 20 August 2013).
- FDA. CPG Sec. 683.100 Action Levels for Aflatoxin in Animal Feeds; Food and Drug Administration: Rockville, MD, USA, 1994.
- Cotty, P.J.; Bayman, P. Competitive exclusion of a toxigenic strain of Aspergillus flavus by an atoxigenic strain. Phytopathology 1993, 83, 1283–1287. [Google Scholar] [CrossRef]
- Cotty, P.J.; Antilla, L.; Wakelyn, P.J. Competitive Exclusion of Aflatoxin Producers: Farmer-Driven Research and Development. In Biological Control: A Global Perspective; Vincent, C.G., Goettel, M.S., Lazarovits, G., Eds.; CAB International: Oxfordshire, UK, 2007; pp. 241–253. [Google Scholar]
- Chlan, C.A.; Manual, R.; Rajasekaran, K.; Cary, J.; Cleveland, T.E.; Guo, J. Genetic engineering of cotton to confer resistance to the fungal pathogen Aspergillus flavus. South. Assoc. Agric. Sci. B Biochem. Biotech. 2003, 16, 12–19. [Google Scholar]
- Cary, J.W.; Rajasekaran, K.; Brown, R.L.; Luo, M.; Chen, Z.-Y.; Bhatnagar, D. Developing resistance to aflatoxin in maize and cottonseed. Toxins 2011, 3, 678–696. [Google Scholar] [CrossRef]
- Guo, B.; Fedorova, N.D.; Chen, X.; Wan, C.-H.; Wang, W.; Nierman, W.C.; Bhatnagar, D.; Yu, J. Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 2011, 3, 737–753. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically rethinking agriculture for the 21st century. Science 2010, 327, 833–834. [Google Scholar] [CrossRef]
- Allen, R.D. Evaluation of Drought Tolerance Strategies in Cotton; National Agricultural Biotechnology Council: Ithaca, NY, USA, 2012; pp. 45–63. [Google Scholar]
- Saranga, Y.; Jiang, C.X.; Wright, R.J.; Yakir, D.; Paterson, A.H. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ. 2004, 27, 263–277. [Google Scholar] [CrossRef]
- Levi, A.; Ovnat, L.; Paterson, A.H.; Saranga, Y. Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Plant Sci. 2009, 177, 88–96. [Google Scholar] [CrossRef]
- Zhang, L.; Li, F.-G.; Liu, C.-L.; Zhang, C.-J.; Zhang, X.-Y. Construction and analysis of cotton (Gossypium arboreum L.) drought-related cDNA library. BMC Res. Notes 2009, 2, 120. [Google Scholar] [CrossRef]
- Park, W.; Scheffler, B.E.; Bauer, P.J.; Campbell, T.B. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2012, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, A.; Pandey, N.; Lakhwani, D.; Dubey, N.K.; Pathre, U.; Sawant, S. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics 2012, 13, 680. [Google Scholar] [CrossRef]
- Kulkarni, V.N.K.B.; Maralappanavar, M.S.; Deshapande, L.A.; Narayanan, S.S. The Worldwide Gene Pools of Gossypium arboreum L. and G. herbaceum L.; Springer: New York, NY, USA, 2009; Volume 3. [Google Scholar]
- Ranjan, A.; Nigam, D.; Asif, M.; Singh, R.; Ranjan, S.; Mantri, S.; Pandey, N.; Trivedi, I.; Rai, K.; Jena, S.; et al. Genome wide expression profiling of two accession of G. herbaceum L. In response to drought. BMC Genomics 2012, 13, 94. [Google Scholar] [CrossRef]
- Kim, H.J.; Triplett, B.A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001, 127, 1361–1366. [Google Scholar] [CrossRef]
- May, O.L.; Jividen, G. Genetic modification of cotton fiber properties as measured by single and high-volume instruments. Crop Sci. 1999, 39, 328–333. [Google Scholar]
- Wilkins, T.A.; Jernstedt, J. Molecular genetics of developing cotton fibers. In Cotton Fibers: Developmental Biology, Quality Improvement and Textile Processing; Basra, A.S., Ed.; Food Products Press: New York, NY, USA, 1999; pp. 231–269. [Google Scholar]
- Lee, J.J.; Woodward, A.W.; Chen, Z.J. Gene expression changes and early events in cotton fibre development. Ann. Bot. 2007, 100, 1391–1401. [Google Scholar] [CrossRef]
- Arpat, A.B.; Waugh, M.; Sullivan, J.P.; Gonzales, M.; Frisch, D.; Main, D.; Wood, T.; Leslie, A.; Wing, R.A.; Wilkins, T. Functional genomics of cell elongation in developing cotton fibers. Plant Mol. Biol. 2004, 54, 911–929. [Google Scholar] [CrossRef]
- Chaudhary, B.; Hovav, R.; Rapp, R.; Verma, N.; Udall, J.A.; Wendel, J.F. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol. Dev. 2008, 10, 567–582. [Google Scholar] [CrossRef]
- Al-Ghazi, Y.; Bourot, S.; Arioli, T.; Dennis, E.S.; Llewellyn, D. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton quality. Plant Cell Physiol. 2009, 50, 1364–1381. [Google Scholar] [CrossRef]
- Lacape, J.-M.; Claverie, M.; Vidal, R.O.; Carazzolle, M.F.; Guimarães Pereira, G.A.; Ruiz, M.; Pré, M.; Llewellyn, D.; Al-Ghazi, Y.; Jacobs, J.; et al. Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 2012, 7, e48855. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yuan, D.; Zhang, J.; Lin, Z.; Zhang, X. Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLoS One 2013, 8, e54444. [Google Scholar]
- Gilbert, M.; Turley, R.; Kim, H.; Li, P.; Thyssen, G.; Tang, Y.; Delhom, C.; Naoumkina, M.; Fang, D. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant ligon lintless-1 (li1). BMC Genomics 2013, 14, 403. [Google Scholar]
- Naoumkina, M.; Hinchliffe, D.; Turley, R.; Bland, J.; Fang, D. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in ligon lintless-2 mutant cotton (Gossypium hirsutum L.). BMC Genomics 2013, 14, 155. [Google Scholar] [CrossRef]
- Padmalatha, K.V.; Patil, D.P.; Kumar, K.; Dhandapani, G.; Kanakachari, M.; Phanindra, M.; Kumar, S.; Mohan, T.C.; Jain, N.; Prakash, A.H.; et al. Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. Cv. Mcu5 reveal key genes and pathways involved in cotton fibre initiation and elongation. BMC Genomics 2012, 13, 1–15. [Google Scholar]
- Zhao, P.-M.; Wang, L.-L.; Han, L.-B.; Wang, J.; Yao, Y.; Wang, H.-Y.; Du, X.-M.; Luo, Y.-M.; Xia, G.-X. Proteomic identification of differentially expressed proteins in the ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J. Proteome Res. 2009, 9, 1076–1087. [Google Scholar]
- Yuan, D.; Tu, L.; Zhang, X. Generation, annotation and analysis of first large-scale expressed sequence tags from developing fiber of Gossypium barbadense L. PLoS One 2011, 6, e22758. [Google Scholar] [CrossRef]
- Risco, C.A.; Chase, C.C. Gossypol; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Adams, R.; Geissman, T.A.; Edwards, J.D. Gossypol, a pigment of cottonseed. Chem. Rev. 1960, 60, 555–574. [Google Scholar] [CrossRef]
- Bottger, G.T.; Shehan, E.T.; Lukefahr, M.J. Relation of gossypol content of cotton plants to insect resistance. J. Econ. Entomol. 1964, 57, 183–185. [Google Scholar]
- Reiser, R.; Hwei, C.F. The mechanism of gossypol detoxification by ruminant animals. J. Nutr. 1962, 76, 215–218. [Google Scholar]
- Cater, C.M.; Lyman, C.M. Reaction of gossypol with amino acids and other amino compounds. J. Am. Oil Chem. Soc. 1969, 46, 649–653. [Google Scholar] [CrossRef]
- McMichael, S.C. Glandless boll in upland cotton and its use in the study of natural crossing. Agron. J. 1954, 46, 527–528. [Google Scholar] [CrossRef]
- Lusas, E.W.; Jividen, G.M. Glandless cottonseed: A review of the first 25 years of processing and utilization research. J. Am. Oil Chem. Soc. 1987, 64, 839–854. [Google Scholar] [CrossRef]
- Chlan, C.A.; Borroto, K.; Kamalay, J.A.; Dure, L., III. Developmental biochemistry of cottonseed embryogenesis and germination. XIX. Sequences and genomic organization of the α globulin (vicilin) genes of cottonseed. Plant Mol. Biol. 1987, 9, 533–546. [Google Scholar] [CrossRef]
- Sunilkumar, G.; Campbell, L.M.; Puckhaber, L.; Stipanovic, R.D.; Rathore, K.S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc. Natl. Acad. Sci. USA 2006, 103, 18054–18059. [Google Scholar]
- Palle, S.R.; Campbell, L.M.; Pandeya, D.; Puckhaber, L.; Tollack, L.K.; Marcel, S.; Sundaram, S.; Stipanovic, R.D.; Wedegaertner, T.C.; Hinze, L.; et al. RNAi-mediated ultra-low gossypol cottonseed trait: Performance of transgenic lines under field conditions. Plant Biotech. J. 2013, 11, 296–304. [Google Scholar] [CrossRef]
- Watkins, C. The saga of ultralow gossypol cottonseed. Inform 2013, 24, 279–283. [Google Scholar]
- Stam, M.; Mol, J.N.M.; Kooter, J.M. The silence of genes in transgenic plants. Ann. Bot. 1997, 79, 3–12. [Google Scholar] [CrossRef]
- Forsbach, A.; Schubert, D.; Lechtenberg, B.; Gils, M.; Schmidt, R. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol. Biol. 2003, 52, 161–176. [Google Scholar] [CrossRef]
- Clark, K.A.; Krysan, P.J. Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J. 2010, 64, 990–1001. [Google Scholar] [CrossRef]
- Lafleuriel, J.; Degroote, F.; Depeiges, A.; Picard, G. A reciprocal translocation, induced by a canonical integration of a single T-DNA, interrupts the hmg-i/y Arabidopsis thaliana gene. Plant Physiol. Biochem. 2004, 42, 171–179. [Google Scholar] [CrossRef]
- Paszkowski, J.; Baur, M.; Bogucki, A.; Potrykus, I. Gene targeting in plants. EMBO J. 1988, 7, 4021–4026. [Google Scholar]
- Albert, H.; Dale, E.C.; Lee, E.; Ow, D.W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 1995, 7, 649–659. [Google Scholar]
- Puchta, H.; Dujon, B.; Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double-strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 1993, 21, 5034–5040. [Google Scholar] [CrossRef]
- Townsend, J.A.; Wright, D.A.; Winfrey, R.J.; Fu, F.; Maeder, M.L.; Joung, J.K.; Voytas, D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459, 442–445. [Google Scholar] [CrossRef]
- Ruhlman, T.; Verma, D.; Samson, N.; Daniell, H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 2010, 152, 2088–2104. [Google Scholar] [CrossRef]
- Verma, D.; Daniell, H. Chloroplast vector systems for biotechnology applications. Plant Physiol. 2007, 145, 1129–1143. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Nixon, P.; Kuroda, H.; Svab, Z.; Clare, S.; Bowe, F.; Fairweather, N.; Ytterberg, J.; van Wijk, K.J.; Dougan, G.; et al. Expression of tetanus toxin fragment c in tobacco chloroplasts. Nucleic Acids Res. 2003, 31, 1174–1179. [Google Scholar] [CrossRef]
- Daniell, H.; Singh, N.D.; Mason, H.; Streatfield, S.J. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci. 2009, 14, 669–679. [Google Scholar] [CrossRef]
- Ye, G.N.; Hajdukiewicz, P.T.J.; Broyles, D.; Rodriguez, D.; Xu, C.W.; Nehra, N.; Staub, J.M. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J. 2001, 25, 261–270. [Google Scholar]
- Leelavathi, S.; Reddy, V. Chloroplast expression of his-tagged gus-fusions: A general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breed. 2003, 11, 49–58. [Google Scholar] [CrossRef]
- Chlan, C.A.; Rajasekaran, K.; Cary, J.W.; Cleveland, T.E. Expression patterns of cotton chloroplast genes during development: Implications for development of plastid transformation vectors. Biol. Plant. 2011, 56, 126–130. [Google Scholar]
- Cronn, R.; Liston, A.; Parks, M.; Gernandt, D.S.; Shen, R.; Mockler, T. Multiplex sequencing of plant chloroplast genomes using solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008, 36, e122. [Google Scholar] [CrossRef]
- Stull, G.W.; Moore, M.J.; Mandala, V.S.; Douglas, N.A.; Kates, H.-R.; Qi, X.; Brockington, S.F.; Soltis, P.S.; Soltis, D.E.; Gitzendanner, M.A. A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Appl. Plant Sci. 2013, 1, 1200497. [Google Scholar]
- Xu, Q.; Xiong, G.; Li, P.; He, F.; Huang, Y.; Wang, K.; Li, Z.; Hua, J. Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: Origin and evolution of allotetraploids. PLoS One 2012, 7, e37128. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Moore, J.A.; Chlan, C.A. Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement. Biology 2013, 2, 1224-1241. https://doi.org/10.3390/biology2041224
Moore JA, Chlan CA. Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement. Biology. 2013; 2(4):1224-1241. https://doi.org/10.3390/biology2041224
Chicago/Turabian StyleMoore, Jocelyn A., and Caryl A. Chlan. 2013. "Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement" Biology 2, no. 4: 1224-1241. https://doi.org/10.3390/biology2041224
APA StyleMoore, J. A., & Chlan, C. A. (2013). Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement. Biology, 2(4), 1224-1241. https://doi.org/10.3390/biology2041224