Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery
Abstract
:1. Introduction
2. Current Extraction Methods for Biofuels and High Value Products from Microalgae
3. MAE: Introduction and Working Principle
4. MAE of Biochemical Components from Microalgae
4.1. Lipids
4.1.1. Pre-Treatment: Lipids as a Feedstock for Biodiesel
4.1.2. Direct Transesterification for Biodiesel Production
4.1.3. High Value Lipids: EPA and DHA
4.2. High Value Pigments
4.3. High Value Proteins, Vitamins, Carbohydrates and Others
5. MAE vs. Current Extraction Methods
6. Recent Trends and Developments: MAE for Microalgae
7. Challenges Involved in MAE
8. Future Prospects: MAE as a Cost Effective Biorefinery Approach
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guiry, M.D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae—A review. J. Algal Biomass Util. Phycospectr. Inc. 2012, 3, 89–100. [Google Scholar]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Nio, A.; Martins, A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Abu-Ghosh, S.; Fixler, D.; Dubinsky, Z.; Iluz, D. Flashing light in microalgae biotechnology. Biores. Technol. 2016, 203, 357–363. [Google Scholar] [CrossRef] [PubMed]
- González-Delgado, Á.-D.; Kafarov, V. Microalgae based biorefinery: Issues to consider. Ciencia Tecnol. Futuro 2011, 4, 5–21. [Google Scholar]
- Benemann, J. Microalgae for biofuels and animal feeds. Energies 2013, 6, 5869–5886. [Google Scholar] [CrossRef]
- Patil, P.D.; Gude, V.G.; Mannarswamy, A.; Cooke, P.; Nirmalakhandan, N.; Lammers, P.; Deng, S. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 2012, 97, 822–831. [Google Scholar] [CrossRef]
- Cooney, M.; Young, G.; Nagle, N. Extraction of bio-oils from microalgae. Sep. Purif. Rev. 2016, 38, 291–325. [Google Scholar] [CrossRef]
- Burczyk, J. Cell wall carotenoids in green algae which form sporopollenins. Phytochemistry 1986, 26, 121–128. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M.; Raposo, M.F.J.; Bowen, J.; Young, A.J.; Morais, R. Evaluation of different cell disruption process on encysted cells of Haematococcus pluvialis. J. Appl. Phycol. 2001, 13, 19–24. [Google Scholar] [CrossRef]
- Cravotto, G.; Boffa, L.; Mantegna, S.; Perego, P.; Avogadro, M.; Cintas, P. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem. 2008, 15, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Hernández, D.A.; Ibarra-Garza, I.P.; Rodríguez-Rodríguez, J.; Cuéllar-Bermúdez, S.P.; de Jesús Rostro-Alanis, M.; Alemán-Nava, G.S.; Saul García-Pérez, J.S.; Parra-Saldívar, R. Green extraction technologies for high-value metabolites from algae: A review. Biofuels Bioprod. Biorefin. 2017, 11, 215–231. [Google Scholar]
- Gilbert-López, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2017, 99, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Al Hattab, M.; Ghaly, A. Microalgae oil extraction pre-treatment methods: Critical review and comparative analysis. J. Fundam. Renew. Energy Appl. 2015, 5, 1–26. [Google Scholar] [CrossRef]
- Kapoore, R.V. Mass spectrometry based hyphenated techniques for microalgal and mammalian metabolomics. Ph.D. Thesis, University of Sheffield, Sheffield, UK, August 2014. [Google Scholar]
- Denery, J.R.; Dragull, K.; Tang, C.S.; Li, Q.X. Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal. Chim. Acta 2004, 501, 175–181. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Muylaert, K.; Eeckhout, M.; Ruyssen, T.; Foubert, I. Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. J. Agric. Food Chem. 2011, 59, 11063–11069. [Google Scholar] [CrossRef] [PubMed]
- Spiden, E.M.; Yap, B.H.J.; Hill, D.R.A.; Kentish, S.E.; Scales, P.J.; Martin, G.J.O. Quantitative evaluation of the ease of rupture of industrially promising microalgae by high pressure homogenization. Bioresour. Technol. 2013, 140, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Theegala, C.S. Algal cell disruption and lipid extraction: A review on current technologies and limitations. Algal Biorefin. 2015, 419–441. [Google Scholar]
- Ali, M.; Watson, I.A. Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production. Renew. Energy 2015, 76, 470–477. [Google Scholar] [CrossRef]
- Gong, M.; Hu, Y.; Yedahalli, S.; Bassi, A. Oil Extraction Processes in Microalgae. Recent Adv. Renew. Energy 2017, 1, 377–411. [Google Scholar]
- Axelsson, M.; Gentili, F. A single-step method for rapid extraction of total lipids from green microalgae. PLoS ONE. 2014, 9, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.Y.; Kim, M.G.; Lee, K.; Lee, Y.-C.; Na, J.-G.; Jeon, S.G.; Park, S.B.; Oh, Y.K. Multifunctional nanoparticle applications to microalgal biorefinery. In Nanotechnology for Bioenergy and Biofuel Production; Rai, M., da Silva, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 59–87. [Google Scholar]
- Nobre, B.; Marcelo, F.; Passos, R.; Beir, O.L.; Palavra, A.; Gouveia, L.; Mendes, R. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur. Food Res. Technol. 2006, 223, 787–790. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, J.; Gao, Z.; Huang, H.; Ji, X.; Dou, C. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 2011, 164, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Goettel, M.; Eing, C.; Gusbeth, C.; Straessner, R.; Frey, W. Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res. 2013, 2, 401–408. [Google Scholar] [CrossRef]
- Biller, P.; Friedman, C.; Ross, A.B. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour. Technol. 2013, 136, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.; Carretero, J.; Ferrer, I. Comparing pretreatment methods for improving microalgae anaerobic digestion: Thermal, hydrothermal, microwave and ultrasound. Chem. Eng. J. 2015, 279, 667–672. [Google Scholar] [CrossRef]
- Shankar, M.; Chhotaray, P.K.; Agrawal, A.; Gardas, R.L.; Tamilarasan, K.; Rajesh, M. Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res. 2017, 25, 228–236. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef] [PubMed]
- Virot, M.; Tomao, V.; Ginies, C.; Visinoni, F.; Chemat, F. Microwave-integrated extraction of total fats and oils. J. Chromatogr. A. 2008, 1196, 57–64. [Google Scholar] [CrossRef] [PubMed]
- García-Ayuso, L.E.; Sánchez, M.; Fernández de Alba, A.; Luque de Castro, M.D. Focused microwave-assisted soxhlet: An advantageous tool for sample extraction. Am. Chem. Soc. 1998, 70, 2426–2431. [Google Scholar] [CrossRef] [PubMed]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Jaki, B.U.; Franzblau, S.G.; Cho, S.H.; Pauli, G.F. Development of an extraction method for mycobacterial metabolome analysis. J. Pharm. Biomed. Anal. 2006, 41, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell disruption for microalgae biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, X.; Fu, L.; Zhu, H.; Zhang, B. Effect of extraction and drying methods on antioxidant activity of astaxanthin from Haematococcus pluvialis. Food Bioprod. Process. 2016, 99, 197–203. [Google Scholar] [CrossRef]
- Guldhe, A.; Singh, B.; Rawat, I.; Bux, F. Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst. Chem. Eng. Res. Des. 2014, 92, 1503–1511. [Google Scholar] [CrossRef]
- Kim, S.M.; Jung, Y.-J.; Kwon, O.-N.; Cha, K.H.; Um, B.-H.; Chung, D.; Pan, C.H. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol. 2012, 166, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.P.; Verma, J.L.; Subrahmanyam, N. A review on FAME production processes. Fuel 2010, 89, 1–9. [Google Scholar] [CrossRef]
- Moreau, R.A.; Powell, M.J.; Singh, V. Pressurized liquid extraction of polar and nonpolar lipids in corn and oats with hexane, methylene chloride, isopropanol, and ethanol. J. Am. Oil Chem. Soc. 2003, 80, 1063–1067. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef]
- Gil-Chávez, J.G.; Villa, J.A.; Ayala-Zavala, F.J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Vinayak, V.; Manoylov, K.; Gateau, H.; Blanckaert, V.; Hérault, J.; Pencréac’h, G.; Marchard, J.; Gordon, R.; Schoefs, B. Diatom milking: A review and new approaches. Mar. Drugs 2015, 13, 2629–2665. [Google Scholar] [CrossRef] [PubMed]
- Luengo, E.; Condón-Abanto, S.; Álvarez, I.; Raso, J. Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. J. Membr. Biol. 2014, 247, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil extraction from Scenedesmus obliquus using a continuous microwave system—Design, optimization, and quality characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Ganzler, K.; Salgó, A.; Valkó, K. Microwave extraction: A novel sample preparation method for chromatography. J. Chromatogr. A. 1986, 371, 299–306. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Lang, S.; Ulber, R.; Muffler, K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem. 2012, 47, 1691–1698. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Tatke, P.; Jaiswal, Y. An overview of microwave assisted extraction and its applications in herbal drug research. Res. J. Med. Plant. 2011, 5, 21–31. [Google Scholar] [CrossRef]
- Zill-E-Huma. Microwave hydro-diffusion and gravity: A novel technique for antioxidants extraction. Ph.D. Thesis, Université d’Avignon, Avignon, France, December 2010. [Google Scholar]
- Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of microwave extraction. In Microwave-Assisted Extraction for Bioactive Compounds; Chemat, F., Cravotto, G., Eds.; Springer International Publishing: New York, NY, USA, 2012; pp. 15–52. [Google Scholar]
- Périno-Issartier, S.; Zill-e-Huma; Abert-Vian, M.; Chemat, F. Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol. 2011, 4, 1020–1028. [Google Scholar]
- Ansari, F.A.; Shriwastav, A.; Gupta, S.K.; Rawat, I.; Bux, F. Exploration of microalgae biorefinery by optimizing sequential extraction of major metabolites from Scenedesmus obliquus. Ind. Eng. Chem. Res. 2017, 56, 3407–3412. [Google Scholar] [CrossRef]
- Reddy, H.K.; Muppaneni, T.; Sun, Y.; Li, Y.; Ponnusamy, S.; Patil, P.D.; Dailey, P. Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 2014, 133, 73–81. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Huang, Y.; Feng, J.; Zhou, J.; Cen, K. Dynamic microstructures and fractal characterization of cell wall disruption for microwave irradiation-assisted lipid extraction from wet microalgae. Bioresour. Technol. 2013, 150, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Prommuak, C.; Pavasant, P.; Quitain, A.T.; Goto, M.; Shotipruk, A. Microalgal lipid extraction and evaluation of single-step biodiesel production. Eng. J. 2012, 16, 157–166. [Google Scholar] [CrossRef]
- Iqbal, J.; Theegala, C. Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res. 2013, 2, 34–42. [Google Scholar] [CrossRef]
- Pan, J.; Muppaneni, T.; Sun, Y.; Reddy, H.K.; Fu, J.; Lu, X.; Deng, S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 2016, 178, 49–55. [Google Scholar] [CrossRef]
- Prabakaran, P.; Ravindran, A.D. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett. Appl. Microbiol. 2011, 53, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Šoštarič, M.; Klinar, D.; Bricelj, M.; Golob, J.; Berovič, M.; Likozar, B. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnol. 2012, 29, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Lohman, E.J.; Gardner, R.D.; Halverson, L.; Macur, R.E.; Peyton, B.M.; Gerlach, R. An efficient and scalable extraction and quantification method for algal derived biofuel. J. Microbiol. Methods. 2013, 94, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez Menéndez, J.M.; Arenillas, A.; Menéndez Díaz, J.Á.; Boffa, L.; Mantegna, S.; Binello, A.; Cravatto, G. Optimization of microalgae oil extraction under ultrasound and microwave irradiation. J. Chem. Technol. Biotechnol. 2014, 89, 1779–1784. [Google Scholar] [CrossRef]
- Dai, Y.-M.; Chen, K.-T.; Chen, C.-C. Study of the microwave lipid extraction from microalgae for biodiesel production. Chem. Eng. J. 2014, 250, 267–273. [Google Scholar] [CrossRef]
- Patrícya, A.; De Souza Silva, F.; Carantino Costa, M.; Lopes, A.C.; Fares, E.; Neto, A.; Leitão, R.C.; Mota, C.R.; dos Santos, A.B. Comparison of pretreatment methods for total lipids extraction from mixed microalgae. Renew. Energy 2014, 63, 762–766. [Google Scholar]
- Hernández, D.; Solana, M.; Riaño, B.; García-González, M.C.; Bertucco, A. Biofuels from microalgae: Lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour. Technol. 2014, 170, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Guerra, E.; Gude, V.G.; Mondala, A.; Holmes, W.; Hernandez, R. Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent. Bioresour. Technol. 2014, 156, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Qv, X.-Y.; Zhou, Q.-F.; Jiang, J.-G. Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis. J. Sep. Sci. 2014, 37, 2991–2999. [Google Scholar] [CrossRef] [PubMed]
- Wahidin, S.; Idris, A.; Raehanah Muhamad Shaleh, S.; Bahru, J. Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers. Manag. 2014, 84, 227–233. [Google Scholar] [CrossRef]
- Ansari, F.A.; Shriwastav, A.; Gupta, S.K.; Rawat, I.; Guldhe, A.; Bux, F. Lipid extracted algae as a source for protein and reduced sugar: A step closer to the biorefinery. Bioresour. Technol. 2015, 179, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Hernández, D.; López, V.; Rodríguez-Rodríguez, J.; Alemán-Nava, G.; Cuéllar-Bermúdez, S.; Rostro-Alanis, M.; Parra Saldívar, R. Supercritical carbon dioxide and microwave-assisted extraction of functional lipophilic compounds from Arthrospira platensis. Int. J. Mol. Sci. 2016, 17, E658. [Google Scholar] [CrossRef] [PubMed]
- Garoma, T.; Janda, D. Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency. Renew. Energy 2016, 86, 117–123. [Google Scholar] [CrossRef]
- Ansari, F.A.; Gupta, S.K.; Shriwastav, A.; Guldhe, A.; Rawat, I.; Bux, F. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. Environ. Sci. Pollut. Res. 2017, 24, 15299–15307. [Google Scholar] [CrossRef] [PubMed]
- Koberg, M.; Cohen, M.; Ben-Amotz, A.; Gedanken, A. Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour. Technol. 2011, 102, 4265–4269. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.D.; Reddy, H.; Muppaneni, T.; Mannarswamy, A.; Schuab, T.; Holguin, F.O.; Lammers, P.; Nirmalakhandan, N.; Cooke, P.; Deng, S. Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel. Green Chem. 2012, 14, 809–818. [Google Scholar] [CrossRef]
- Patil, P.D.; Reddy, H.; Muppaneni, T.; Schaub, T.; Holguin, F.O.; Cooke, P.; Lammers, P.; Nirmalakhandan, N.; Li, Y.; Lu, X.; Deng, S. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresour. Technol. 2013, 139, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Hu, W.; Pei, H.; Jiang, L.; Song, M.; Mu, R. In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energy Convers. Manag. 2015, 90, 41–46. [Google Scholar] [CrossRef]
- Salgueiro, J.L.; Cancela, Á.; Sánchez, Á.; Maceiras, R.; Pérez, L. Analysis of extraction and transesterification conditions for Phaeodactylum Tricornutum Microalgae. Eur. J. Sustain. Dev. 2015, 4, 89–96. [Google Scholar] [CrossRef]
- Patil, P.; Gude, V.; Mannarswamy, A.; Deng, S.; Cooke, P.; Lammers, P. Direct conversion of algal biomass under supercritical methanol and microwave irradiation conditions. In Proceedings of the International Bioenergy & Bioproducts Conference, Atlanta, GA, USA, 14–16 March 2011. [Google Scholar]
- Lien, E.L.; Richard, C.; Hoffman, D.R. DHA and ARA addition to infant formula: Current status and future research directions. PLEFA 2017, 128, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Yongmanitchai, W.; Ward, P. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 1991, 57, 419–425. [Google Scholar] [PubMed]
- Britton, G. Carotenoids. In Natural Food Colorants; Hendry, G.A.F., Houghton, J.D., Eds.; Blackie Academic and Professional: New York, NY, USA, 1996; pp. 197–243. [Google Scholar]
- Zhao, P.; Zang, Z.; Xie, X.; Huang, A.; Wang, G. The influence of different flocculants on the physiological activity and fucoxanthin production of Phaeodactylum tricornutum. Process Biochem. 2014, 49, 681–687. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, G.; Chen, F.; Wang, Z.; Wu, J.; Hu, X. Different effects of microwave and ultrasound on the stability of (all-E)-astaxanthin. J. Agric. Food Chem. 2006, 54, 8346–8351. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, V.; Chérouvrier, J.R.; Farhat, F.; Thiéry, V.; Piot, J.M.; Bérard, J.B.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.P.; Picot, L. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem. 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Ruen-Ngam, D.; Shotipruk, A.; Pavasant, P. Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Sep. Sci. Technol. 2010, 46, 64–70. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, G.; Zhao, G.; Hu, X. Optimization of microwave-assisted extraction of astaxanthin from Haematococcus Pluvialis by response surface methodology and antioxidant activities of the extracts. Sep. Sci. Technol. 2009, 44, 243–262. [Google Scholar] [CrossRef]
- Esquivel-Hernández, D.A.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.; Cuéllar-Bermúdez, S.P.; Mancera-Andrade, E.I.; Núñez-Echevarría, J.E.; Saúl García-Pérez, J.; Chandra, R.; Parra-Saldívar, R. Advancement of green process through microwave-assisted extraction of bioactive metabolites from Arthrospira platensis and bioactivity evaluation. Bioresour. Technol. 2017, 224, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.D. Astaxanthin: A Comparative Case of Synthetic vs Natural Production. Available online: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1094&context=utk_chembiopubs (accessed on 14 December 2017).
- Li, J.; Zhu, D.; Niu, J.; Shen, S.; Wang, G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol. Adv. 2011, 29, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.P.; Gong, X.D.; Chen, F. Separation and analysis of carotenoids and chlorophylls in Haematococcus lacustris by high-performance liquid chromatography photodiode array detection. J. Agric. Food Chem. 1997, 45, 1952–1956. [Google Scholar] [CrossRef]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Capelli, B.; Bagchi, D.; Cysewski, G.R. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 2013, 12, 145–152. [Google Scholar] [CrossRef]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef]
- Aflalo, C.; Meshulam, Y.; Zarka, A.; Boussiba, S. On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 2007, 98, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.; McDougall, G.; Campbell, R.; Stanley, M.; Day, J. Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology 2017, 7, E2. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, T.; Wang, G.; Dai, S.; He, H.; Xiang, W. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from different origins. Chin. J. Oceanol. Limnol. 2016, 34, 391–398. [Google Scholar] [CrossRef]
- Heo, S.J.; Yoon, W.J.; Kim, K.N.; Ahn, G.N.; Kang, S.M.; Kang, D.H.; Oh, C.; Jung, W.K.; Jeon, Y.J. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2010, 48, 2045–2051. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruiz, F.; Benavides, J.; Rito-Palomares, M. Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: Practical experiences. Process Biochem. 2013, 48, 738–745. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juin, C.; Chérouvrier, J.R.; Thiéry, V.; Gagez, A.L.; Bérard, J.B.; Joguet, N.; Kaas, R.; Cadoret, J.P.; Picot, L. Microwave-assisted extraction of phycobiliproteins from Porphyridium purpureum. Appl. Biochem. Biotechnol. 2015, 175, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Vernès, L.; Granvillain, P.; Chemat, F.; Vian, M. Phycocyanin from Arthrospira platensis. Production, extraction and analysis. Curr. Biotechnol. 2016, 4, 481–491. [Google Scholar] [CrossRef]
- Kathiresan, S.; Sarada, R.; Bhattacharya, S.; Ravishankar, G.A. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnol. Bioeng. 2007, 96, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.; Solé, M.; García, J.; Ferrer, I. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl. Energy 2013, 108, 168–175. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef]
- Graulet, B.; Girard, C.L. B Vitamins in cow milk. In Dairy in Human Health and Disease across the Lifespan; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 211–224. [Google Scholar]
- Dong, S.; Huang, Y.; Zhang, R.; Wang, S.; Liu, Y. Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. Sci. World J. 2014. [Google Scholar] [CrossRef]
- McMillan, J.R.; Watson, I.A.; Ali, M.; Jaafar, W. Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Appl. Energy 2013, 103, 128–134. [Google Scholar] [CrossRef]
- Angles, E.; Jaouen, P.; Pruvost, J.; Marchal, L. Wet lipid extraction from the microalga Nannochloropsis sp.: Disruption, physiological effects and solvent screening. Algal Res. 2017, 21, 27–34. [Google Scholar] [CrossRef]
- Terigar, B.G.; Balasubramanian, S.; Sabliov, C.M.; Lima, M.; Boldor, D. Soybean and rice bran oil extraction in a continuous microwave system: From laboratory- to pilot-scale. J. Food Eng. 2011, 104, 208–217. [Google Scholar] [CrossRef]
- Petigny, L.; Périno, S.; Minuti, M.; Visinoni, F.; Wajsman, J.; Chemat, F. Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. From lab to industrial scale. Int. J. Mol. Sci. 2014, 15, 7183–7198. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Naghdi, F.; González González, L.M.; Chan, W.; Schenk, P.M. Progress on lipid extraction from wet algal biomass for biodiesel production. Microb. Biotechnol. 2016, 9, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Sommerfeld, M.; Hu, Q. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 2011, 102, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.-K. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. Close-Out Report. Available online: https://www.nrel.gov/docs/legosti/fy98/24190.pdf (accessed on 20 December 2017).
- Olivares, J.A. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB). Available online: https://www.energy.gov/sites/prod/files/2014/06/f16/naabb_synopsis_report.pdf (accessed on 22 December 2017).
- Baoyan, G.; Ailing, C.; Wenyuan, Z.; Aifen, L.; Chengwu, Z. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J. Ocean Univ. China 2017, 16, 916–924. [Google Scholar]
- Coward, T.; Fuentes-Grünewald, C.; Silkina, A.; Oatley-Radcliffe, D.L.; Llewellyn, G.; Lovitt, R.W. Utilising light emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. Bioresour. Technol. 2016, 221, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.T.; Schenk, P.M. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour. Technol. 2017, 244, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
Method | Operates at Industrial Scale | Suitability for Commercial Application | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
High pressure homogeniser | ✓ | - | Destruction of cell walls at room temperature, effective for neutral lipid extraction | High energy input, not effective for extraction of high molecular weight proteins | [15,19] |
Mechanical cell press | ✓ | - | Industry standard for oil recovery from oilseeds | Inefficient cell disruption, high energy input | [20] |
Hydrodynamic cavitation | ✓ | - | Relatively low energy input | Cavitation area limited | [21] |
Horn sonication | ✓ | ++ | Effective cell wall disruption, low maintenance cost, relatively rapid process, hazardous chemicals are not required | Multiple units required, cavitation area limited, high operational costs and energy input | [15] |
Bath sonication | x | +++ | Effective cell wall disruption, minimal maintenance cost, relatively rapid, no hazardous substances required | High operational costs and energy input | [15] |
Microwaves | x | ++++ | Effective cell wall disruption and excellent recovery of bioactives, relatively low energy input, fast heating and short reaction time, reduced solvent usage | Generates heat, high maintenance cost | [15] |
Bead milling/beat beating | ✓ | ++ | Effective cell wall disruption, rapid extraction | Varied efficiency across species, additional step required to remove beads, high maintenance costs and energy input | [15] |
Osmotic shock | x | - | Low energy input, easier to scale-up | Inefficient cell disruption, generation of waste saltwater, time consuming | [22] |
Acid/alkali | ✓ | - | Low energy input | Requires disposal of acid/alkali after extraction, carotenoid degradation | [22] |
Enzymatic hydrolysis | ✓ | ++ | Effective cell wall hydrolysis, high selectivity, mild treatment, carotenoid bioactivity not affected | High cost of enzymes, longer treatment time, enzymes must be disposed of after use | [15] |
Autoclave | x | + | Low maintenance cost | High energy input, not suitable for pigments | [11,23] |
Steam explosion | ✓ | +++++ | Effective cell wall disruption, low maintenance costs, relatively low energy input | Varied efficiency across species | [15] |
Freeze drying | ✓ | + | Mild operating conditions, drying and extraction can be incorporated in one step, does not affect cellular components | Cell disruption variable and often the integrity of the cell wall is weakened but not disrupted, cost associated with pump maintenance, time consuming, expensive, high energy input | [15] |
Nanoparticles | x | - | Non-toxic | Expensive, additional step required to remove nanoparticles, technology in its infancy | [24] |
Supercritical fluid extraction | ✓ | + | Polarity of solvent is tunable, fast process, uses non-toxic solvents such CO2, effective for carotenoid extraction | Expensive, not suitable for scale-up | [13,25] |
Grinding (with/without cryogens) | x | - | Quick and efficient at a laboratory-scale | Time consuming, degradation of some of the bioactives | [26] |
Pulse electric field | ✓ | + | High selectivity, mild treatment, carotenoid bioactivity not affected, relatively low energy input | Still in its infancy | [27] |
Hydrothermal liquefaction | x | - | Uses a wet feedstock | High variability in recovery, high energy input and temperature, requires expensive catalyst | [28,29] |
Ionic liquids | x | - | Low cost | Still in their infancy, issues over toxicity | [30] |
Soxhlet extraction | ✓ | + | Cost-effective, easy to scale-up | Long extraction time, uses large amounts of solvents (often toxic) | [12] |
Microalgal Strain | Dry/Wet Method | Solvents Used | Ratio (Solvent to Sample) | Volumes Added | Microwave Settings | Product & Yield | Energy Use (MJ/kg) | Ref. |
---|---|---|---|---|---|---|---|---|
Crypthecodinium cohnii | Dry | Hexane | 18:1 | 2 g of milled algal powder, 35 mL hexane | 2.45 GHz, 45 °C, 30 min | 17.8% oil yield | x | [12] |
Botryococcus sp. | Dry | Chloroform:methanol (1:1) | 200:1 | 0.5 g of algae powder, 100 mL distilled water, 100 mL chloroform:methanol | 2.45 GHz, 100 °C, 5 min | 28.1% lipid | x | [31] |
Chlorella vulgaris | 10% lipid | |||||||
Scenedesmus sp. | 10.4% lipid | |||||||
Scenedesmus obliquus | Wet | Hexane | 1:1 | Equal volume of hexane to sample after heating | 2.45 GHz, 1200 W, 95 °C, 30 min (5 min intervals) | 31.38% wet weight (77% recoverable oil) | x | [47] |
Chlorella sp. | Dry | Chloroform:methanol (1:1) | 400:1 | 0.5 g algae, 200 mL chloroform:methanol | 2.45 GHz, 100 °C, 5 min | 26 mg/g FAMEs | x | [63] |
Nostoc sp. | 19 mg/g FAMEs | |||||||
Tolypothrix sp. | 21 mg/g FAMEs | |||||||
Chlorella vulgaris | Wet | Chloroform:methanol (1:1) | x | 500 mL culture pelleted | 2.45 GHz, 100 °C, 5 min | 18.14% lipid | x | [26] |
Chlorella vulgaris | x | Chloroform:methanol (1:1) | 100:1 | 1 g algae, 100 mL chloroform:methanol | 300 W, 50 °C, 30 min | 31.9% DW lipid | x | [60] |
Chlorella vulgaris SAG 211-12 | Dry | Chloroform:methanol (1:1) | 100:1 | 0.5 g algae, 50 mL distilled water, 50 mL chloroform:methanol | 2.45 GHz, 1000 W, 2.5 min | 9.59% DW lipid | x | [64] |
Chlorogleopsis fritcschii | Dry | Dichloromethane | 25:1 | 1 g algae, 10 mL deionised water, 25 mL dichloromethane | 1200 W, 140 °C, 15 min | 1.4% DW lipid | x | [28] |
Nannochloropsis oculata | 11.3% DW lipid | |||||||
Pseudochoricystis ellipsoidea | 37.5% DW lipid | |||||||
Chlorella PY-ZU1 GM | Wet | Chloroform:methanol (1:1) | 50:1 | 50 mL algal culture (1 g DW), 50 mL chloroform:methanol | 80 °C, 10 min | 18.7% DW lipid | 25.2 | [58] |
Nannochloropsis sp. | Wet | Chloroform:ethanol (1:2) | 45:1 | 3.3 g wet algal paste, 50 mL chloroform, 100 mL ethanol, 40 mL deionised water | 2.45 GHz, 1200 W, 120 °C, 50 min (5 min ramp, 15 min hold, 30 min cool-down) | 53% DW lipid | x | [61] |
40% methyl soyate in ethanol | x | 3.3 g wet algal paste, 40% methyl soyate in ethanol | 56.6% DW lipid | |||||
Phaeodactylum tricornutum | Wet | Chloroform | x | 45 mL culture pelleted, 5 mL distilled water, 3 mL chloroform | 2.45 GHz, 1000 W, level 4, 90 °C, 5 min | 32% (w/w) glycerides | x | [65] |
Chlorella vulgaris | 21% (w/w) glycerides | |||||||
Chlamydomonas reinhardtii | 7% (w/w) glycerides | |||||||
Scenedesmus dimorphus | Wet | Chloroform:methanol (1:1) | 40:1 | 200 mg wet algae, 8 mL solvent | 557 W, 1 min then 254 W, 4 min | 17.2% DW lipid | x | [23] |
Selanastrum minutum | 21% DW lipid | |||||||
Chlorella protothecoides | 17% DW lipid | |||||||
Nannochloropsis gaditana | Dry | Methanol | x | 5 g algae | 2.45 GHz, 30–35 W, 90 °C, 10 min | 14.82% DW FAs; 1.18% DW EPA | 10.9 Wh/g FA | [66] |
Unknown microalga | Dry | n-heptane:isopropanol (2:1) | x | 5 g algae | 1000 W, 40 min | 28% DW lipid | x | [67] |
Mixed culture of microalgae | Dry | Methanol:chloroform (1:1) | 10:1 | 500 mg algae, 2.5 mL methanol, 2.5 mL chloroform, 1.25 mL 1.5% sodium sulphate, 1 mL deionised water | 400 W, 100 °C, 5 min 30 s (70 s temperature ramp, 45 s hold, 3 cycles) | 33.7% DW lipid | x | [68] |
Isochrysis sp. | Dry | Methanol:chloroform (1:2) | x | 0.5 g algae, 50 mL distilled water | 2.45 GHz, 1200 W, 45 °C, 30 MPa, 5 min | 7.8% DW FFAs; 0.08% DW EPA | x | [69] |
Nannochloropsis gaditana | 10.8% DW FFAs; 0.47% DW EPA | |||||||
Scenedesmus almeriensis | 3.1% DW FFAs; 0.22% DW EPA | |||||||
Tetraselmis sp. | 4.8% DW FFAs; 0.1% DW EPA | |||||||
Scenedesmus sp. | Dry | Chloroform:ethanol (1:1) | 20:1 | 40 mL mixture chloroform:ethanol, 2 g DW algae | 1000 W, 100 °C, 10 min | 53% lipid | 1.18 | [39] |
Chlorella sp. | Dry | Ethanol | 12:1 | 4 g algae, 48 mL ethanol and 2% NaOH catalyst | 700 W (50% power), 75–80 °C, 6 min | 20.1% DW FAMEs | x | [70] |
Dunaliella tertiolecta | Dry | Chloroform:methanol (2:1) | 100:1 | 0.2 g algae, 20 mL chloroform:ethanol | 490 W, 2 min 40 s | 57.02% lipid recovery | x | [71] |
160 W, 7 min | 56.98% lipid recovery | |||||||
Nannochloropsis salina | Wet | n-hexane (added after microwave extraction) | 3:1 | 60 mL algal culture, 15 mL n-hexane (biomass loading 25%) | 1400 W, 205 °C, 25 min, 21.5 bar | 24.3% DW FAMEs; 1.65% DW EPA | 9.89 | [57] |
Nannochloropsis sp. (BMRI) | Wet | Methanol:hexane (1:2) | x | 10 mL algal culture | 2.45 GHz, 1000 W (70% of power), 65 °C, 1 bar, 5 min | 38.31% DW lipid | x | [72] |
Nannochloropsis oculata | Wet | Ethanol:hexane (3:1) (added after microwaving) | 23:1 | 4.3 g algae (1 g dry algae equivalent), 17 mL ethanol, 8 mL distilled water, 5.6 mL hexane | 2.45 GHz, 1025 W (100% power), 5 min (15 s heating bursts and cooled for 15 min) | 5.2% DW lipid | 140.78 | [21] |
Scenedesmus obliquus | Dry | Chloroform:methanol (2:1) | 20:1 | 1 g algae, 20 mL chloroform:methanol | 1000 W, 100 °C, 10 min | 21.43% DW lipid | x | [73] |
Stigeoclonium sp.; Monoraphidium sp.; Nitzschia sp. & Navicula sp. | Wet | x | x | 150 mL algal biomass | 2.45 GHz, 900 W, 3 min | 5 mg/L FAMEs | 34.3 | [29] |
Arthrospira platensis | Dry | Methanol:ethyl acetate:light petroleum (1:1:1) | 17:1 | 20 g powder (milled with mortar and pestle) | 400 W, 70 °C, 1 bar, 15 min | 1.59% DW FAs | x | [74] |
Chlorella vulgaris | Dry | Chloroform:methanol (1:1) | 7:1 | 5 g algae | 700 W, 50 s (10 s on, 30 s off cycle) | 31.7% DW lipid | 2.39 Wh/g | [75] |
Chlorella sorokiniana | Dry | x | 10:1 | 1 g algae, 5 g hydrogen sulphate ionic liquid, 2% HCl | 800 W, 120 °C, 60 min | 27% DW lipid | x | [62] |
Nannochloropsis salina | 14% DW lipid | |||||||
Galdieria sulphuraria | 1 g algae, 5 g hydrogen sulphate ionic liquid | 22% DW lipid | ||||||
Scenedesmus obliquus FR751179.1 | Dry | Chloroform:methanol (2:1) | 20:1 | 1 g algae, 20 mL chloroform:methanol | 1000 W, 100 °C, 10 min | 16.53% DW lipid | x | [76] |
Scenedesmus obliquus | Dry | Chloroform:methanol (1:1) | 20:1 | 1 g algae, 20 mL chloroform:methanol | 1000 W, 100 °C, 10 min | 19.25% DW lipid | x | [56] |
Wet | Chloroform:ethanol (1:1) | 10.08% DW lipid | ||||||
Chlorella sp. | Wet | x | x | 15 g/L dewatered cells (15 mL distilled water), protonic ionic liquid (10:1 ratio to sample) | 700 W, 3 min | 3.5% DW lipid (cell disruption 74.75%) | x | [30] |
Chlorococcum sp. | 0.803% DW lipid (cell disruption 70.03%) |
Microalgal Strain | Dry/Wet Method | Solvents Used | Ratio (Solvent to Sample) | Volumes Added | Microwave Settings | Product & Yield | Energy Use (MJ/kg) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Nannochloropsis sp. | Dry | Methanol:chloroform (1:2) | x | 1 g of algae | 2.45 GHz, 1100 W (70% power), 60 °C, 5 min (cycle mode: 21 s on, 9 s off) | 32% biodiesel | x | [77] | |
Nannochloropsis salina | Dry | Methanol | 1:9 | 2 g algae, 24 mL methanol, 2% KOH catalyst | 2.45 GHz, 800 W (50% power), 60–64 °C, 6 min | 80.13% FAMEs | 127 | [8] | |
Nannochloropsis salina | Dry | Methanol | 1:15 | 3% KOH catalyst | 1400 W, 1400 W, 10 min | 40.03% DW FAMEs | x | [78] | |
Nannochloropsis salina | Wet | Ethanol | 9:1 | 2 g algae, 18 mL ethanol | 1400 W reduced to 800 W, 245–285 °C, 65–80 bar, 30 min | 30.9% DW FAMEs | x | [79] | |
Chlorella sp. | Dry | Ethanol | 12:1 | 4 g algae, 48 mL ethanol and 2% NaOH catalyst | 700 W (50% power), 78 °C, 6 min | 17.11% DW FAMEs | x | [70] | |
Mixed microalgal culture | Dry | Methanol | 8:1 | 5 g algae, KFCaO catalyst, 40 mL methanol | 2.45 GHz, 10–80 W, 60 °C, 45 min | 58.12% biodiesel | x | [80] | |
Phaeodactylum tricornutum | Dry | Methoxide | 12:1 | 5 g algae, 60 mL methoxide, 2% NaOH catalyst in methanol | 2.45 GHz, 800 W, 1 bar, 4 min | 52% biodiesel conversion efficiency | x | [81] |
Microalgal Strain | Dry/Wet Method | Solvents Used | Ratio (Solvent to Sample) | Volumes Added | Microwave Settings | Product & Yield | Energy Use (MJ/kg) | Ref. |
---|---|---|---|---|---|---|---|---|
Haematococcus pluvialis | Dry | Ethanol:ethyl alcohol (2:1) | 49:1 | 9.81 mL solvent 200 mg algae powder | 141 W, 5 min 30 s | 0.59% DW astaxanthin | x | [90] |
Haematococcus pluvialis | Dry | Acetone | 100:1 | 0.1 g algae, 10 mL acetone | 2.45 GHz, 60% of 1200 W output, 75 °C, 5 min | 74% astaxanthin recovery | x | [89] |
Dunaliella tertiolecta | Dry | Acetone | 600:1 | 50 mg algae, 30 mL acetone | 50 W, 56 °C, 1 bar, 3–5 min | 0.12% DW β-carotene; 0.45% DW chlorophyll-a; 0.13% DW chlorophyll-b | x | [88] |
Cylindrotheca closterium | 0.42% DW fucoxanthin | |||||||
Arthrospira platensis | Dry | Methanol:ethyl acetate:light petroleum (1:1:1) | 16.7:1 | 20 g power (milled with mortar and pestle) | 400 W, 70 °C, 1 bar, 15 min | 4.27% DW fatty acids | x | [74] |
0.063% DW carotenoids | ||||||||
Haematococcus pluvialis | Dry | Acetic ether | 100:1 | 5 g algae, 500 mL solvent, 10 mL distilled water, 10 mL n-hexane | 2.45 GHz, 45 °C, 30 min | 7.96 mg/100 mg astaxanthin (36.88% yield) | x | [38] |
Arthrospira platensis | x | Ethanol:ammonium acetate (10 mM) (4:1) | x | x | 400 W, 60 °C, 1 bar, 15 min | 0.014% DW β-carotene | x | [91] |
Phaeodactylum tricornutum | Dry | Ethanol | 20:1 | 0.5 g algae, 10 mL ethanol | 2.45 GHz, 850 W, 30 °C, 2 min | 4.51% DW carotenoids & 0.46% DW fucoxanthin (32.26% recovery) | x | [14] |
Microalgal Strain | Dry/Wet Method | Solvents Used | Ratio (Solvent to Sample) | Volumes Added | Microwave Settings | Product & Yield | Energy Use (MJ/kg) | Ref. |
---|---|---|---|---|---|---|---|---|
Unknown microalga | Wet | x | x | 150 mL thickened algal biomass | 900 W, 98 °C, 3 min | 307.11 mLmethane/g total volatile solids | 65.4 | [107] |
Porphyridium purpureum | Dry | x | x | 20 mg algae, 7 mL deionised water | 2.45 GHz, 40 °C, 10 s | 7.37% DW phycoerythrin | x | [104] |
2.45 GHz, 100 °C, 10 s | 3.48% DW phycocyanin | |||||||
2.45 GHz, 100 °C, 1 min | 3.51% DW allophycocyanin | |||||||
Stigeoclonium sp.; Monoraphidium sp.; Nitzschia sp. and Navicula sp. | Wet | x | x | 150 mL algal biomass | 2.45 GHz, 900 W, 3 min | 915 mg/L soluble carbohydrates; 127.7 mL/g volatile solids & 193 mg/L protein | 34.3 | [29] |
Arthrospira platensis | Dry | Methanol:ethyl acetate:light petroleum (1:1:1) | 16.7:1 | 20 g power (milled with mortar and pestle) | 400 W, 70 °C, 1 bar, 15 min | 0.000246% DW α-tocopherol | x | [74] |
Arthrospira platensis | Dry | Limonene:ethyl acetate (0.81:1) | 7:1 | Unknown starting biomass concentration | 400 W, 60 °C, 1 bar, 15 min | 0.085% DW thiamine | x | [91] |
0.01% DW riboflavin | ||||||||
Ethanol:ammonium acetate (10 mM) (4:1) | 0.23% DW C-phycocyanin |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology 2018, 7, 18. https://doi.org/10.3390/biology7010018
Kapoore RV, Butler TO, Pandhal J, Vaidyanathan S. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology. 2018; 7(1):18. https://doi.org/10.3390/biology7010018
Chicago/Turabian StyleKapoore, Rahul Vijay, Thomas O. Butler, Jagroop Pandhal, and Seetharaman Vaidyanathan. 2018. "Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery" Biology 7, no. 1: 18. https://doi.org/10.3390/biology7010018
APA StyleKapoore, R. V., Butler, T. O., Pandhal, J., & Vaidyanathan, S. (2018). Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology, 7(1), 18. https://doi.org/10.3390/biology7010018