Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Olive oil Extractive Methods and Olive Mill Wastes
3. Active Molecules in OMW and Their Analytical Characterization
3.1. Phenols and Polyphenols
3.2. Secoiridoids
3.3. Carbohydrates
4. Sustainable Processes for the Isolation of Bioactive Molecules from OMWs
5. Application of OWS and OMW-Derived Bioactive Molecules in Plant Growth and Protection
5.1. Effects of OMW as Plant Biostimulants
5.2. Effects of OMW on Soil Properties and Plant Nutrition
- -
- Chemical properties: The physico-chemical characteristics of raw or processed OMW are adequate for an agronomic use as an organic fertilizer such as a slightly acidic pH, a very high content of organic matter, and balanced concentrations of mineral elements [117]. An important advantage of OMW is that it is free of heavy metals and other potential pollutants [118]. Many studies reported the general increase of the organic matter, organic N, macro and micronutrients on the soil, in particular, the available K [99,109,119,120]. The long term application of OMW in general did not cause significant differences in pH, EC, P, Na. However, pH, EC, and salinity can increase temporarily in topsoil after spreading high rates (200 m3/(ha*year)) of OMWW [103,104,105,121,122,123].
- -
- Physical and hydrological properties: Different results are reported in the function of forms of OMW (solid or liquid), rates of application, and pretreatments.
- -
- Biological properties: The high polyphenols content of OMW represents the most limiting factor for spreading on soils due to their antimicrobial and phytotoxic effects. Nevertheless, OMW polyphenols are rapidly degraded depending on environmental conditions [100]. In regards to the soil microflora, OMW exercises the following two contrasting actions: It stimulates the development of the microflora by temporarily enriching the soil in carbon and inhibits some microorganisms and phytopathogenic agents due to the presence of antimicrobial substances. Studies report that microbial counts increase with OMW quantities and frequency of spreading [119,131]. In particular, aerobic bacteria and fungi increase in proportion with OMW spreading rates. Furthermore, soil respiration [96,99] and soil enzyme activities (dehydrogenase, β-glucosidase, and urease) seem to be enhanced in OMW-amended soils [122,123].
- -
- Growth and yield of crops: Almost always positive responses on plant growth and yield performances are reported when treated OMW (by composting or co-composting) are used as a consequence of polyphenols biodegradation. However, fertilizations or irrigations with untreated OMW at high doses can harm seeds germination and have negative effects on plant growth due to the phytotoxic effects of the elevated load of polyphenols and high salinity. Recent articles concerning the effect of OMW on plant growth and yield performances are listed in Table 2.
5.3. Effects of OMW as Biopesticides in Plant Protection
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References and Note
- Olive Oil. Available online: https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/olive-oil_en (accessed on 29 October 2020).
- Khdair, A.; Abu-Rumman, G. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes 2020, 8, 671. [Google Scholar] [CrossRef]
- Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C.M. Olive oil production sector: Environmental effects and sustainability challenges. In Olive Mill Waste; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–28. ISBN 978-0-12-805314-0. [Google Scholar]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Nadour, M.; Laroche, C.; Pierre, G.; Delattre, C.; Moulti-Mati, F.; Michaud, P. Structural Characterization and Biological Activities of Polysaccharides from Olive Mill Wastewater. Appl. Biochem. Biotechnol. 2015, 177, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Aggoun, M.; Arhab, R.; Cornu, A.; Portelli, J.; Barkat, M.; Graulet, B. Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chem. 2016, 209, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Ochando-Pulido, J.M.; Pimentel-Moral, S.; Verardo, V.; Martinez-Ferez, A. A focus on advanced physico-chemical processes for olive mill wastewater treatment. Sep. Purif. Technol. 2017, 179, 161–174. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [Green Version]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Ogunnupebi, T.A.; Oluyori, A.P.; Dada, A.O.; Oladeji, O.S.; Inyinbor, A.A.; Egharevba, G.O. Promising Natural Products in Crop Protection and Food Preservation: Basis, Advances, and Future Prospects. Int. J. Agron. 2020, 2020, 1–28. [Google Scholar] [CrossRef]
- Coppola, A.; Renzo, G.C.D.; Altieri, G.; D’Antonio, P. Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production: International Mid-Term Conference 2019 of the Italian Association of Agricultural Engineering (AIIA); Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-39299-4. [Google Scholar]
- Sygouni, V.; Pantziaros, A.G.; Iakovides, I.C.; Sfetsa, E.; Bogdou, P.I.; Christoforou, E.A.; Paraskeva, C.A. Treatment of Two-Phase Olive Mill Wastewater and Recovery of Phenolic Compounds Using Membrane Technology. Membranes 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Sánchez, J.; Bendini, A.; Lecce, G.D.; Valli, E.; Toschi, T.G.; Segura-Carretero, A. Macro and micro functional components of a spreadable olive by-product (pâté) generated by new concept of two-phase decanter. Eur. J. Lipid Sci. Technol. 2017, 119, 1600096. [Google Scholar] [CrossRef]
- Antónia Nunes, M.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Bellumori, M.; Cipriani, C.; Mocali, A.; Innocenti, M.; Mulinacci, N.; Giovannelli, L. A two-phase olive mill by-product (pâté) as a convenient source of phenolic compounds: Content, stability, and antiaging properties in cultured human fibroblasts. J. Funct. Foods 2018, 40, 751–759. [Google Scholar] [CrossRef]
- Tufariello, M.; Durante, M.; Veneziani, G.; Taticchi, A.; Servili, M.; Bleve, G.; Mita, G. Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications. Front. Nutr. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Conidi, C.; Loizzo, M.R.; Sicari, V.; Cassano, A. Olive Mill Wastewater Polyphenol-Enriched Fractions by Integrated Membrane Process: A Promising Source of Antioxidant, Hypolipidemic and Hypoglycaemic Compounds. Antioxidants 2020, 9, 602. [Google Scholar] [CrossRef]
- Belaid, C.; Khadraoui, M.; Mseddi, S.; Kallel, M.; Elleuch, B.; Fauvarque, J.F. Electrochemical treatment of olive mill wastewater: Treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. J. Environ. Sci. 2013, 25, 220–230. [Google Scholar] [CrossRef]
- Christoforou, E.; Kylili, A.; Fokaides, P.A. Technical and economical evaluation of olive mills solid waste pellets. Renew. Energy 2016, 96, 33–41. [Google Scholar] [CrossRef]
- Moharram, H.; Youssef, M. Methods for Determining the Antioxidant Activity: A Review. Alex. J. Food Sci. Technol. 2014, 11, 31–42. [Google Scholar]
- Pisoschi, A.M.; Negulescu, G.P. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Opitz, S.; Smrke, S.; Goodman, B.A.; Yeretzian, C. Methodology for the measurement of antioxidant capacity of coffee: A validated platform composed of three complementary antioxidant assays. Process. Impact Antioxid. Beverage 2014, 253–264. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Cheregi, M.C.; Danet, A.F. Total antioxidant capacity of some commercial fruit juices: Electrochemical and spectrophotometrical approaches. Molecules 2009, 14, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Ordoudi, S.A.; Tsimidou, M.Z. Crocin bleaching assay (CBA) in structure-radical scavenging activity studies of selected phenolic compounds. J. Agric. Food Chem. 2006, 54, 9347–9356. [Google Scholar] [CrossRef] [PubMed]
- Finotti, E.; Bersani, A.M.; Bersani, E. Total Quality Indexes for Extra-Virgin Olive Oils. J. Food Qual. 2007, 30, 911–931. [Google Scholar] [CrossRef]
- Amir, S.; Hafidi, M.; Merlina, G.; Hamdi, H.; Revel, J.-C. Elemental analysis, FTIR and 13C-NMR of humic acids from sewage sludge composting. Agronomie 2004, 24, 13–18. [Google Scholar] [CrossRef]
- Hafidi, M.; Amir, S.; Revel, J.-C. Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process Biochem. 2005, 40, 2615–2622. [Google Scholar] [CrossRef]
- Obied, H.K.; Karuso, P.; Prenzler, P.D.; Robards, K. Novel secoiridoids with antioxidant activity from Australian olive mill waste. J. Agric. Food Chem. 2007, 55, 2848–2853. [Google Scholar] [CrossRef] [PubMed]
- El Hajjouji, H.; Merlina, G.; Pinelli, E.; Winterton, P.; Revel, J.-C.; Hafidi, M. 13C NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content. J. Hazard. Mater. 2008, 154, 927–932. [Google Scholar] [CrossRef]
- Sannino, F.; De Martino, A.; Capasso, R.; El Hadrami, I. Valorisation of organic matter in olive mill wastewaters: Recovery of highly pure hydroxytyrosol. J. Geochem. Explor. 2013, 129, 34–39. [Google Scholar] [CrossRef]
- Zghari, B.; Doumenq, P.; Romane, A.; Boukir, A. GC-MS, FTIR and 1H,13C NMR Structural Analysis and Identification of Phenolic Compounds in Olive Mill Wastewater Extracted from Oued Oussefrou Effluent (Beni Mellal-Morocco). JMES 2017, 8, 4496–4509. [Google Scholar] [CrossRef]
- Ait Baddi, G.; Hafidi, M.; Cegarra, J.; Alburquerque, J.A.; Gonzálvez, J.; Gilard, V.; Revel, J.-C. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw. Bioresour. Technol. 2004, 93, 285–290. [Google Scholar] [CrossRef]
- Ntougias, S.; Gaitis, F.; Katsaris, P.; Skoulika, S.; Iliopoulos, N.; Zervakis, G.I. The effects of olives harvest period and production year on olive mill wastewater properties—Evaluation of Pleurotus strains as bioindicators of the effluent’s toxicity. Chemosphere 2013, 92, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Uribe, E.; Pasten, A.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Ortiz, J.; Scala, K.D. Comparison of Chemical Composition, Bioactive Compounds and Antioxidant Activity of Three Olive-Waste Cakes. J. Food Biochem. 2015, 39, 189–198. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of Phenols, Flavones, and Lignans in Virgin Olive Oils by Solid-Phase Extraction and High-Performance Liquid Chromatography with Diode Array Ultraviolet Detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef]
- Zafra Gomez, A.; Luzón-Toro, B.; Capel-Cuevas, S.; Morales, J. Stability of Hydroxytyrosol in Aqueous Solutions at Different Concentration, Temperature and with Different Ionic Content: A Study Using UPLC-MS. Food Nutr. Sci. 2011, 2, 1114–1120. [Google Scholar] [CrossRef] [Green Version]
- Boutaj, H.; Boutasknit, A.; Anli, M.; Ait Ahmed, M.; El Abbassi, A.; Meddich, A. Insecticidal Effect of Olive Mill Wastewaters on Potosia opaca (Coleoptera: Scarabeidae) Larva. Waste Biomass Valorization 2020, 11, 3397–3405. [Google Scholar] [CrossRef]
- Ventura, G.; Calvano, C.D.; Abbattista, R.; Bianco, M.; De Ceglie, C.; Losito, I.; Palmisano, F.; Cataldi, T.R.I. Characterization of bioactive and nutraceutical compounds occurring in olive oil processing wastes. Rapid Commun. Mass Spectrom. 2019, 33, 1670–1681. [Google Scholar] [CrossRef]
- Jiménez-Herrera, S.; Ochando-Pulido, J.M.; Martínez-Ferez, A. Comparison between different liquid-liquid and solid phase methods of extraction prior to the identification of the Phenolic fraction present in olive oil washing wastewater from the two-phase olive oil extraction system. Grasas y Aceites 2017, 68. [Google Scholar] [CrossRef] [Green Version]
- Silvan, J.M.; Pinto-Bustillos, M.A.; Vásquez-Ponce, P.; Prodanov, M.; Martinez-Rodriguez, A.J. Olive mill wastewater as a potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. Innov. Food Sci. Emerg. Technol. 2019, 51, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.; Levin, C.E.; Henika, P.R. Addition of phytochemical-rich plant extracts mitigate the antimicrobial activity of essential oil/wine mixtures against Escherichia coli O157:H7 but not against Salmonella enterica. Food Control 2017, 73, 562–565. [Google Scholar] [CrossRef] [Green Version]
- De Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. Oleuropein and related compounds. J. Sci. Food Agric. 2000, 80, 1013–1023. [Google Scholar] [CrossRef]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K.; Stockmann, R. Bioactivity and Analysis of Biophenols Recovered from Olive Mill Waste. J. Agric. Food Chem. 2005, 53, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.M.; Falcão, S.I.; Peres, A.M.; Domingues, M.R.M. Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters. Food Chem. 2011, 129, 291–296. [Google Scholar] [CrossRef]
- Ghisalberti, E.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 1998, 5, 147–163. [Google Scholar] [CrossRef]
- Araújo, M.; Pimentel, F.B.; Alves, R.C.; Oliveira, M.B.P.P. Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxidants. Trends Food Sci. Technol. 2015, 45, 200–211. [Google Scholar] [CrossRef]
- Liu, Y.; McKeever, L.C.; Malik, N.S.A. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Japón-Luján, R. State-of-the-art and trends in the analysis of oleuropein and derivatives. TrAC Trends Anal. Chem. 2006, 25, 501–510. [Google Scholar] [CrossRef]
- Miranda, I.; Simões, R.; Medeiros, B.; Nampoothiri, K.M.; Sukumaran, R.K.; Rajan, D.; Pereira, H.; Ferreira-Dias, S. Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresour. Technol. 2019, 292, 121936. [Google Scholar] [CrossRef]
- Jiménez, A.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Cell Wall Composition of Olives. J. Food Sci. 1994, 59, 1192–1196. [Google Scholar] [CrossRef]
- Mafra, I.; Lanza, B.; Reis, A.; Marsilio, V.; Campestre, C.; Angelis, M.D.; Coimbra, M. Effect of ripening on texture, microstructure and cell wall polysaccharide composition of olive fruit (Olea europaea). Physiol. Plant. 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, A.; Rodríguez, R.; Fernández-Caro, I.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Olive Fruit Cell Wall: Degradation of Pectic Polysaccharides during Ripening. J. Agric. Food Chem. 2001, 49, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Huisman, M.M.H.; Schols, H.A.; Voragen, A.G.J. Changes in cell wall polysaccharides from ripening olive fruits. Carbohydr. Polym. 1996, 31, 123–133. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Coimbra, M.A.; Lopes da Silva, J.A. Calcium-mediated gelation of an olive pomace pectic extract. Carbohydr. Polym. 2003, 52, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Vierhuis, E.; Korver, M.; Schols, H.A.; Voragen, A.G.J. Structural characteristics of pectic polysaccharides from olive fruit (Olea europaea cv moraiolo) in relation to processing for oil extraction. Carbohydr. Polym. 2003, 51, 135–148. [Google Scholar] [CrossRef]
- Galanakis, C.M. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 2015, 42, 44–63. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tornberg, E.; Gekas, V. A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fibre fraction. Food Sci. Technol. 2010, 43, 1009–1017. [Google Scholar] [CrossRef]
- Cano, M.E.; García-Martin, A.; Comendador Morales, P.; Wojtusik, M.; Santos, V.E.; Kovensky, J.; Ladero, M. Production of Oligosaccharides from Agrofood Wastes. Fermentation 2020, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Suárez, L.; Savatin, D.V.; Salvi, G.; Lorenzo, G.D.; Cervone, F.; Ferrari, S. The non-traditional growth regulator Pectomorf is an elicitor of defense responses and protects Arabodopsis against Botrytis cinerea. J. Plant Pathol. 2013, 95, 177–180. [Google Scholar] [CrossRef]
- de Souza, C.A.; Li, S.; Lin, A.Z.; Boutrot, F.; Grossmann, G.; Zipfel, C.; Somerville, S.C. Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses. Plant Physiol. 2017, 173, 2383–2398. [Google Scholar] [CrossRef] [Green Version]
- De Lorenzo, G.; Ferrari, S.; Cervone, F.; Okun, E. Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol. 2018, 39, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Mélida, H.; Bacete, L.; Ruprecht, C.; Rebaque, D.; del Hierro, I.; Lòpez, G.; Brunner, F.; Pfrengle, F.; Molina, A. Arabinoxylan-Oligosaccharides Act as Damage Associated Molecular Patterns in Plants Regulating Disease Resistance. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2020.01210/full (accessed on 15 October 2020).
- Roberfroid, M.; Slavin, J. Nondigestible oligosaccharides. Crit. Rev. Food Sci. Nutr. 2000, 40, 461–480. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M.; Tornberg, E.; Gekas, V. Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT Food Sci. Technol. 2010, 43, 1018–1025. [Google Scholar] [CrossRef]
- Reem, N.; Pogorelko, G.; Lionetti, V.; Chambers, L.; Held, M.A.; Bellincampi, D.; Zabotina, O.A. Decreased polysaccharide feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathogens. Front. Plant Sci. 2016, 7, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillén, R.; Heredia, A.; Felizón, B.; Jiménez, A.; Montaño, A.; Fernández-Bolaños, J. Fibre fraction carbohydrates in Olea europaea (Gordal and Manzanilla var.). Food Chem. 1992, 44, 173–178. [Google Scholar] [CrossRef]
- Alonso, S.; Setser, C. Functional replacements for sugars in foods. Trends Food Sci. Technol. 1994, 5, 139–146. [Google Scholar] [CrossRef]
- Stoop, J.; Williamson, J.; Masonpharr, D. Mannitol metabolism in plants: A method for coping with stress. Trends Plant Sci. 1996, 1, 139–144. [Google Scholar] [CrossRef]
- Tholakalabavi, A.; Zwiazek, J.J.; Thorpe, T.A. Effect of mannitol and glucose-induced osmotic stress on growth, water relations, and solute composition of cell suspension cultures of poplar (Populus deltoides var.Occidentalis) in relation to anthocyanin accumulation. Vitro Cell. Dev. Biol. Plant 1994, 30, 164–170. [Google Scholar] [CrossRef]
- Capasso, R.; de Martino, A.; Arienzo, M. Recovery and Characterization of the Metal Polymeric Organic Fraction (Polymerin) from Olive Oil Mill Wastewaters. J. Agric. Food Chem. 2002, 50, 2846–2855. [Google Scholar] [CrossRef]
- Capasso, R.; Pigna, M.; De Martino, A.; Pucci, M.; Sannino, F.; Violante, A. Potential Remediation of Waters Contaminated with Cr(III), Cu, and Zn by Sorption on the Organic Polymeric Fraction of Olive Mill Wastewater (Polymerin) and Its Derivatives. Environ. Sci. Technol. 2004, 38, 5170–5176. [Google Scholar] [CrossRef]
- Bazinet, L.; Doyen, A. Antioxidants, mechanisms, and recovery by membrane processes. Crit. Rev. Food Sci. Nutr. 2017, 57, 677–700. [Google Scholar] [CrossRef] [PubMed]
- El-Abbassi, A.; Hafidi, A.; Khayet, M.; García-Payo, M.C. Integrated direct contact membrane distillation for olive mill wastewater treatment. Desalination 2013, 323, 31–38. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Raiti, J.; Hafidi, A. Application of ultrafiltration for olive processing wastewaters treatment. J. Clean. Prod. 2014, 65, 432–438. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tornberg, E.; Gekas, V. Clarification of high-added value products from olive mill wastewater. J. Food Eng. 2010, 99, 190–197. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Bolaños, J. Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll. 2012, 28, 92–104. [Google Scholar] [CrossRef]
- Stoller, M.; Pulido, J.M.O.; Di Palma, L.; Ferez, A.M. Membrane process enhancement of 2-phase and 3-phase olive mill wastewater treatment plants by photocatalysis with magnetic-core titanium dioxide nanoparticles. J. Ind. Eng. Chem. 2015, 30, 147–152. [Google Scholar] [CrossRef]
- Rizvi, S.S.H. Supercritical Fluid Processing of Food and Biomaterials; Springer: Berlin/Heidelberg, Germany, 1994; ISBN 978-1-4613-5907-4. [Google Scholar]
- Baysal, T.; Ersus, S.; Starmans, D.A.J. Supercritical CO2 Extraction of β-Carotene and Lycopene from Tomato Paste Waste. J. Agric. Food Chem. 2000, 48, 5507–5511. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Cabezudo, M.D. Supercritical carbon dioxide extraction of volatiles from spices. Comparison with simultaneous distillation-extraction. J. Chromatogr. A 2002, 947, 23–29. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Study on Oleuropein Extraction from Olive Tree (Olea europaea) Leaves by Means of SFE: Comparison of Water and Ethanol as CoSolvent. Sep. Sci. Technol. 2012, 47. [Google Scholar] [CrossRef]
- Markhali, F.S.; Teixeira, J.A.; Rocha, C.M.R. Olive Tree Leaves—A Source of Valuable Active Compounds. Processes 2020, 8, 1177. [Google Scholar] [CrossRef]
- Caballero, A.S.; Romero-García, J.M.; Castro, E.; Cardona, C.A. Supercritical fluid extraction for enhancing polyphenolic compounds production from olive waste extracts. J. Chem. Technol. Biotechnol. 2020, 95, 356–362. [Google Scholar] [CrossRef]
- Schievano, A.; Adani, F.; Buessing, L.; Botto, A.; Casoliba, E.N.; Rossoni, M.; Goldfarb, J.L. An integrated biorefinery concept for olive mill waste management: Supercritical CO2 extraction and energy recovery. Green Chem. 2015, 17, 2874–2887. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EU) 2019 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003.114.
- Ricci, M.; Tilbury, L.; Daridon, B.; Sukalac, K. General Principles to Justify Plant Biostimulant Claims. Front. Plant Sci. 2019, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, G.; Schiavon, M.; Nardi, S.; Ertani, A.; Celano, G.; Colombo, C.M. Biostimulant Potential of Humic Acids Extracted From an Amendment Obtained via Combination of Olive Mill Wastewaters (OMW) and a Pre-treated Organic Material Derived From Municipal Solid Waste (MSW). Front. Plant Sci. 2018, 9, 1028. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of Seaweed Extracts from Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- García-Sánchez, M.; Garrido, I.; de Casimiro, I.J.; Casero, P.J.; Espinosa, F.; García-Romera, I.; Aranda, E. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue. Chemosphere 2012, 89, 708–716. [Google Scholar] [CrossRef]
- Killi, D.; Kavdır, Y. Effects of olive solid waste and olive solid waste compost application on soil properties and growth of Solanum lycopersicum. Int. Biodeterior. Biodegrad. 2013, 82, 157–165. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Sayadi, S. Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol. Res. 2006, 161, 93–101. [Google Scholar] [CrossRef]
- Sdiri Ghidaoui, J.; Bargougui, L.; Chaieb, M.; Mekki, A. Study of the phytotoxic potential of olive mill wastewaters on a leguminous plant ‘Vicia faba L.’. Water Sci. Technol. 2019, 80, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.I.L.; Pereira, R.; Freitas, A.C.; Rocha-Santos, T.A.P.; Panteleitchouk, T.S.L.; Duarte, A.C. Olive oil mill wastewaters before and after treatment: A critical review from the ecotoxicological point of view. Ecotoxicology 2012, 21, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Lanza, B.; Di Serio, M.G.; Di Giovacchino, L. Microbiological and Chemical Modifications of Soil Cultivated with Grapevine Following Agronomic Application of Olive Mill Wastewater. Water Air Soil Pollut. 2020, 231, 86. [Google Scholar] [CrossRef]
- Barbera, A.C.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 2013, 119, 43–53. [Google Scholar] [CrossRef]
- Di Bene, C.; Pellegrino, E.; Debolini, M.; Silvestri, N.; Bonari, E. Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biol. Biochem. 2013, 56, 21–30. [Google Scholar] [CrossRef]
- Rusan, M.J.M.; Albalasmeh, A.A.; Zuraiqi, S.; Bashabsheh, M. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.). Environ. Sci. Pollut. Res. 2015, 22, 9127–9135. [Google Scholar] [CrossRef]
- Mohawesh, O.; Al-Hamaiedeh, H.; Albalasmeh, A.; Qaraleh, S.; Haddadin, M. Effect of Olive Mill Wastewater (OMW) Application on Soil Properties and Wheat Growth Performance Under Rain-Fed Conditions. Water Air Soil Pollut. 2019, 230, 160. [Google Scholar] [CrossRef]
- Zema, D.A.; Esteban Lucas-Borja, M.; Andiloro, S.; Tamburino, V.; Zimbone, S.M. Short-term effects of olive mill wastewater application on the hydrological and physico-chemical properties of a loamy soil. Agric. Water Manag. 2019, 221, 312–321. [Google Scholar] [CrossRef]
- Mohawesh, O.; Albalasmeh, A.; Al-Hamaiedeh, H.; Qaraleh, S.; Maaitah, O.; Bawalize, A.; Almajali, D. Controlled Land Application of Olive Mill Wastewater (OMW): Enhance Soil Indices and Barley Growth Performance in Arid Environments. Water Air Soil Pollut. 2020, 231, 214. [Google Scholar] [CrossRef]
- Ahmed, P.M.; Fernández, P.M.; Figueroa, L.I.C.; Pajot, H.F. Exploitation alternatives of olive mill wastewater: Production of value-added compounds useful for industry and agriculture. Biofuel Res. J. 2019, 6, 980–994. [Google Scholar] [CrossRef]
- Aquilanti, L.; Taccari, M.; Bruglieri, D.; Osimani, A.; Clementi, F.; Comitini, F.; Ciani, M. Integrated biological approaches for olive mill wastewater treatment and agricultural exploitation. Int. Biodeterior. Biodegrad. 2014, 88, 162–168. [Google Scholar] [CrossRef]
- Rusan, M.J.; Albalasmeh, A.A.; Malkawi, H.I. Treated Olive Mill Wastewater Effects on Soil Properties and Plant Growth. Water Air Soil Pollut. 2016, 227, 135. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Psarras, G.; Moutsopoulou, M.; Stefanoudaki, E. Application of olive mill wastewater to a Cretan olive orchard: Effects on soil properties, plant performance and the environment. Agric. Ecosyst. Environ. 2010, 138, 293–298. [Google Scholar] [CrossRef]
- Proietti, P.; Federici, E.; Fidati, L.; Scargetta, S.; Massaccesi, L.; Nasini, L.; Regni, L.; Ricci, A.; Cenci, G.; Gigliotti, G. Effects of amendment with oil mill waste and its derived-compost on soil chemical and microbiological characteristics and olive (Olea europaea L.) productivity. Agric. Ecosyst. Environ. 2015, 207, 51–60. [Google Scholar] [CrossRef]
- Rajhi, H.; Mnif, I.; Abichou, M.; Rhouma, A. Assessment and valorization of treated and non-treated olive mill wastewater (OMW) in the dry region. Int. J. Recycl. Organ. Waste Agric. 2018, 7, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Ameziane, H.; Nounah, A.; Khamar, M.; Zouahri, A. Composting olive pomace: Evolution of organic matter and compost quality. Agron. Res. 2020. [Google Scholar] [CrossRef]
- Ait Baddi, G.; Hafidi, M.; Gilard, V.; Revel, J.-C. Characterization of humic acids produced during composting of olive mill wastes: Elemental and spectroscopic analyses (FTIR and 13C-NMR). Agronomie 2003, 23, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Aviani, I.; Laor, Y.; Medina, S.; Krassnovsky, A.; Raviv, M. Co-composting of solid and liquid olive mill wastes: Management aspects and the horticultural value of the resulting composts. Bioresour. Technol. 2010, 101, 6699–6706. [Google Scholar] [CrossRef]
- Gigliotti, G.; Proietti, P.; Said-Pullicino, D.; Nasini, L.; Pezzolla, D.; Rosati, L.; Porceddu, P.R. Co-composting of olive husks with high moisture contents: Organic matter dynamics and compost quality. Int. Biodeterior. Biodegrad. 2012, 67, 8–14. [Google Scholar] [CrossRef]
- Bargougui, L.; Chaieb, M.; Mekki, A. Monitoring Cocomposting of Agro-Wastes from Olive Mill By-Products and Poultry Manures. Environ. Eng. Sci. 2020, 37. [Google Scholar] [CrossRef]
- Alburquerque, J. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef]
- Fernández-Hernández, A.; Roig, A.; Serramiá, N.; Civantos, C.G.-O.; Sánchez-Monedero, M.A. Application of compost of two-phase olive mill waste on olive grove: Effects on soil, olive fruit and olive oil quality. Waste Manag. 2014, 34, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, S.; Al-Absi, K.; Al-Shdiefat, S.; Al-Majali, D.; Hijazean, D. Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality. Sci. Hortic. 2014, 175, 160–166. [Google Scholar] [CrossRef]
- Belaqziz, M.; El-Abbassi, A.; Lakhal, E.K.; Agrafioti, E.; Galanakis, C.M. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. J. Environ. Manag. 2016, 171, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Chaari, L.; Elloumi, N.; Mseddi, S.; Gargouri, K.; Rouina, B.B.; Mechichi, T.; Kallel, M. Changes in Soil Macronutrients after a Long-Term Application of Olive Mill Wastewater. J. Agric. Chem. Environ. 2015, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Magdich, S.; Rouina, B.B.; Ammar, E. Olive Mill Wastewater Agronomic Valorization by its Spreading in Olive Grove. Waste Biomass Valorization 2020, 11, 1359–1372. [Google Scholar] [CrossRef]
- Okur, N.; Kayikçioğlu, H.H.; Okur, B.; Yağmur, B.; Sponza Teresa, D.; Kara, R.S. A study of olive mill wastewaters obtained from different treatment processes effects on chemical and microbial properties of a typic xerofluvent soil and wheat yield. Turk. J. Agric. For. 2020, 44, 140–155. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L.; del Toro Carrillo de Albornoz, M. Effects of oil mill wastes on surface soil properties, runoff and soil losses in traditional olive groves in southern Spain. CATENA 2011, 85, 187–193. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Ntoulas, N.; McElroy, S.; Volterrani, M.; Arbis, G. Effect of Olive Mill Compost on Native Soil Characteristics and Tall Fescue Turfgrass Development. Agron. J. 2011, 103, 1524–1531. [Google Scholar] [CrossRef]
- Abu-Rumman, G. Effect of Olive Mill Solid Waste on Soil Physical Properties. Int. J. Soil Sci. 2016, 11, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.; Janssen, M.; Peth, S.; Horn, R.; Lennartz, B. Long-term impact of irrigation with olive mill wastewater on aggregate properties in the top soil. Soil Tillage Res. 2012, 124, 24–31. [Google Scholar] [CrossRef]
- Mohawesh, O.; Mahmoud, M.; Janssen, M.; Lennartz, B. Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. Int. J. Environ. Sci. Technol. 2014, 11, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Albalasmeh, A.A.; Alajlouni, M.A.; Ghariabeh, M.A.; Rusan, M.J. Short-Term Effects of Olive Mill Wastewater Land Spreading on Soil Physical and Hydraulic Properties. Water Air Soil Pollut. 2019, 230, 208. [Google Scholar] [CrossRef]
- Cabrera, D.; López-Piñeiro, A.; Albarrán, Á.; Peña, D. Direct and residual effects on diuron behaviour and persistence following two-phase olive mill waste addition to soil: Field and laboratory experiments. Geoderma 2010, 157, 133–141. [Google Scholar] [CrossRef]
- Magdich, S.; Ben Ahmed, C.; Jarboui, R.; Ben Rouina, B.; Boukhris, M.; Ammar, E. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere 2013, 93, 1896–1903. [Google Scholar] [CrossRef]
- Cavallaro, V.; Maucieri, C.; Barbera, A.C. Lolium multiflorum Lam. cvs germination under simulated olive mill wastewater salinity and pH stress. Ecol. Eng. 2014, 71, 113–117. [Google Scholar] [CrossRef]
- Montemurro, F.; Ferri, D.; Fiore, A.; Diacono, M. Suitability of Untreated and Composted Olive Mill By-Products as Amendments in Organic Olive Orchards. Compost Sci. Util. 2014, 22, 216–229. [Google Scholar] [CrossRef]
- Endeshaw, S.T.; Lodolini, E.M.; Neri, D. Effects of untreated two-phase olive mill pomace on potted olive plantlets. Ann. Appl. Biol. 2015, 166, 508–519. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Saadaoui, N.; Kiai, H.; Raiti, J.; Hafidi, A. Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 2017, 576, 10–21. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds from Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7. [Google Scholar] [CrossRef]
- Vagelas, I.; Kalorizou, H.; Papachatzis, A.; Botu, M. Bioactivity of Olive Oil Mill Wastewater Against Plant Pathogens and Post-Harvest Diseases. Biotechnol. Biotechnol. Equip. 2009, 23, 1217–1219. [Google Scholar] [CrossRef]
- Vagelas, I.; Papachatzis, A.; Kalorizou, H.; Wogiatzi, E. Biological Control of Botrytis Fruit Rot (Gray Mold) on Strawberry and Red Pepper Fruits by Olive Oil Mill Wastewater. Biotechnol. Biotechnol. Equip. 2009, 23, 1489–1491. [Google Scholar] [CrossRef] [Green Version]
- Cayuela, M.L.; Millner, P.D.; Meyer, S.L.F.; Roig, A. Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes. Sci. Total Environ. 2008, 399, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Lykas, C.; Vagelas, I.; Gougoulias, N. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases. Span. J. Agric. Res. 2014, 12, 233. [Google Scholar] [CrossRef] [Green Version]
- Daayf, F.; Hadrami, A.E.; El-Bebany, A.F.; Henriquez, M.A.; Yao, Z.; Derksen, H.; El-Hadrami, I.; Adam, L.R. Phenolic Compounds in Plant Defense and Pathogen Counter-Defense Mechanisms. In Recent Advances in Polyphenol Research; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012; pp. 191–208. ISBN 978-1-118-29975-3. [Google Scholar]
- Al-Mughrabi, K.I.; Aburjai, T.A.; Anfoka, G.H.; Shahrour, W. Antifungal activity of olive cake extracts. Phytopathol. Mediterr. 2001, 40, 240–244. [Google Scholar]
- Winkelhausen, E.; Pospiech, R.; Laufenberg, G. Antifungal activity of phenolic compounds extracted from dried olive pomace. Bull. Chem. Technol. Maced. 2005, 24, 41–46. [Google Scholar]
- Yangui, T.; Sayadi, S.; Dhouib, A. Sensitivity of Pectobacterium carotovorum to hydroxytyrosol-rich extracts and their effect on the development of soft rot in potato tubers during storage. Crop Prot. 2013, 53, 52–57. [Google Scholar] [CrossRef]
- Bleve, G.; Gallo, A.; Altomare, C.; Vurro, M.; Maiorano, G.; Cardinali, A.; D’Antuono, I.; Marchi, G.; Mita, G. In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiol. Lett. 2018, 365. [Google Scholar] [CrossRef] [Green Version]
- Thielmann, J.; Kohnen, S.; Hauser, C. Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents. Int. J. Food Microbiol. 2017, 251, 48–66. [Google Scholar] [CrossRef]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef]
- Diallinas, G.; Rafailidou, N.; Kalpaktsi, I.; Komianou, A.C.; Tsouvali, V.; Zantza, I.; Mikros, E.; Skaltsounis, A.L.; Kostakis, I.K. Hydroxytyrosol (HT) Analogs Act as Potent Antifungals by Direct Disruption of the Fungal Cell Membrane. Front. Microbiol. 2018, 9, 2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellincampi, D.; Cervone, F.; Lionetti, V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, S.; Liu, Z.; Shen, H.; Wu, D. Damage-Associated Molecular Pattern-Triggered Immunity in Plants. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Vierhuis, E.; Schols, H.A.; Beldman, G.; Voragen, A.G.J. Structural characterisation of xyloglucan and xylans present in olive fruit (Olea europaea cv koroneiki). Carbohydr. Polym. 2001, 44, 51–62. [Google Scholar] [CrossRef]
- Vierhuis, E.; York, W.S.; Kolli, V.S.; Vincken, J.; Schols, H.A.; Van Alebeek, G.W.; Voragen, A.G. Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr. Res. 2001, 332, 285–297. [Google Scholar] [CrossRef]
- Ferrari, S. Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Davidsson, P.; Broberg, M.; Kariola, T.; Sipari, N.; Pirhonen, M.; Palva, E.T. Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana. BMC Plant Biol. 2017, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Escudero, V.; Jordá, L.; Sopeña-Torres, S.; Mélida, H.; Miedes, E.; Muñoz-Barrios, A.; Swami, S.; Alexander, D.; McKee, L.S.; Sánchez-Vallet, A.; et al. Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β-subunit of the heterotrimeric G-protein. Plant J. 2017, 92, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, M.A.; Cardoso, S.M.; Lopes-da-Silva, J.A. Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides. In Carbohydrates in Sustainable Development I; Rauter, A.P., Vogel, P., Queneau, Y., Eds.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; pp. 129–141. ISBN 978-3-642-14837-8. [Google Scholar]
- Babbar, N.; Dejonghe, W.; Gatti, M.; Sforza, S.; Elst, K. Pectic oligosaccharides from agricultural by-products: Production, characterization and health benefits. Crit. Rev. Biotechnol. 2015, 1–13. [Google Scholar] [CrossRef]
- Christakopoulos, P.; Katapodis, P.; Kalogeris, E.; Kekos, D.; Macris, B.J.; Stamatis, H.; Skaltsa, H. Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int. J. Biol. Macromol. 2003, 31, 171–175. [Google Scholar] [CrossRef]
- Claverie, J.; Balacey, S.; Lemaître-Guillier, C.; Brulé, D.; Chiltz, A.; Granet, L.; Noirot, E.; Daire, X.; Darblade, B.; Héloir, M.-C.; et al. The Cell Wall-Derived Xyloglucan Is a New DAMP Triggering Plant Immunity in Vitis vinifera and Arabidopsis thaliana. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntougias, S.; Bourtzis, K.; Tsiamis, G. The Microbiology of Olive Mill Wastes. BioMed Res. Int. 2013, 2013, 784591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Molecule | Analytical Platform | Amount in OMWW (mg/g Dry Matter) | OMWW References | Amount in POC (mg/g Dry Matter) | POC References |
---|---|---|---|---|---|
Phenols | |||||
Tyrosol | HPLC, MS, GC, NMR | 1.0–2.8 | [6,32,39,40,41,42] | 0.4–1 | [13,14,15,16] |
Hydroxytyrosol | HPLC, MS, GC, NMR | 0.9–24 | [6,32,39,40,41,42] | 0.6–2 | [13,14,15,16] |
Hydroxybenzoic acid | HPLC, MS, GC, NMR | 2–9 | [6,32,39] | / | / |
Coumaric acid | HPLC, MS, GC, NMR | 1–2 | [32,39] | 0.1–0.6 | [13,16] |
Gallic acid | HPLC, MS | 2–6 | [6,39] | / | / |
Vanillic acid | HPLC, MS | 0.1–0.6 | [6,39] | 0.5–0.8 | [16] |
Caffeic acid | HPLC, MS | 0.3–1.9 | [6,39] | 0.9–5.0 | [13,14,15] |
Hydroxycinnamic acid | HPLC, MS | Detected | [41] | / | / |
Polyphenols | |||||
Quercetin-3-O-glucoside | HPLC, MS | 0.5–2.1 | [39,42] | / | / |
Luteolin-7-O-glucosides | HPLC, MS | 25–55 | [6,40,42] | 0.5–1.2 | [13,15] |
Secoiridoids | |||||
Oleuropein | HPLC, MS, GC | 18–92 | [6,39,40,41,42] | 0.1–9.2 | [14,15,16] |
Oleuropein aglycone | HPLC, MS | Detected | [40] | Detected | [14] |
Ligstroside | HPLC, MS | Detected | [40] | / | / |
Ligstroside aglycone | HPLC, MS | Detected | [40] | / | / |
Olecantal | HPLC, MS | Detected | [40,42] | 0.1–0.4 | [13] |
Plant Organism | OMW | Plant Growth Performance | Notes | References | ||||
---|---|---|---|---|---|---|---|---|
OMWW | OP | Positive | Negative | |||||
Raw | Treated | Raw | Treated | |||||
Italian ryegrass | * | * | Germination index | [132] | ||||
Olive trees | * POC from MPD | * POC from MPD | * | Long-term field study | [110] | |||
Maize | * | * | Field trials calcareous soil | [120] | ||||
Durum wheat Barley | * | * | Field trials | [103,105] | ||||
Olive trees | * | * | Long-term field study | [119] | ||||
Olive trees | * | * | * | Long-term field study | [133] | |||
Faba bean | * | * dose 25 m3/ha | Pot trials with different doses | [97] | ||||
Olive trees | * | * Olive grove yield | Long-term field study | [122] | ||||
Grapevine | * | * | Long-term field study (11 years) | [99] | ||||
Olive plantlets | * | * | pot trials in greenhouse | [134] | ||||
Winter Weath | * | * | * (OMWW treated) | * (OMWW raw) | Field trials | [123] |
Microbial Organism | Tested Sample | Notes | References |
---|---|---|---|
Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. | OMWW | Reduction of in vitro mycelium growth Reduction of Scab-like lesions B. tulipae on infected tulip bulbs | [140] |
Xylella fastidiosa | OMWW and OMWs-derived MF, UF, and NF fractions | Inhibition of in vitro bacterium growth at minimum quantity of 10 µL/mL | [145] |
Aspergillus flavus, Aspergillus. fumigatus, Fusarium oxysporum | Hydroxtyrosol analogues | Severe inhibition of myceliar growth at 100 µM | [148] |
Xylella fastidiosa | Cathecol, Methyl cathecol, Caffeic acid, Verbascoside, and Oleuperin | Inhibition activity due to a bacteriostatic effect of tested phenols at 1 and 10 mM | [145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; et al. Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology 2020, 9, 450. https://doi.org/10.3390/biology9120450
Sciubba F, Chronopoulou L, Pizzichini D, Lionetti V, Fontana C, Aromolo R, Socciarelli S, Gambelli L, Bartolacci B, Finotti E, et al. Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology. 2020; 9(12):450. https://doi.org/10.3390/biology9120450
Chicago/Turabian StyleSciubba, Fabio, Laura Chronopoulou, Daniele Pizzichini, Vincenzo Lionetti, Claudia Fontana, Rita Aromolo, Silvia Socciarelli, Loretta Gambelli, Barbara Bartolacci, Enrico Finotti, and et al. 2020. "Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens" Biology 9, no. 12: 450. https://doi.org/10.3390/biology9120450
APA StyleSciubba, F., Chronopoulou, L., Pizzichini, D., Lionetti, V., Fontana, C., Aromolo, R., Socciarelli, S., Gambelli, L., Bartolacci, B., Finotti, E., Benedetti, A., Miccheli, A., Neri, U., Palocci, C., & Bellincampi, D. (2020). Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology, 9(12), 450. https://doi.org/10.3390/biology9120450