Epidemic Dynamics via Wavelet Theory and Machine Learning with Applications to Covid-19
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemic Modelling via Wavelet Theory and Machine Learning
2.1. Wavelets
2.2. Epidemic-Fitted Wavelets and Modelling
3. Epidemic-Fitted (EF) Wavelets
3.1. Gaussian EF Wavelets
3.2. Log-Normal EF Wavelets
3.3. Further Examples of EF Wavelets
3.4. Choosing Suitable EF Wavelets
4. Data-Driven Numerical Forecasts
4.1. The Log-Normal Wavelet Model
4.2. Data and Smoothing
4.3. Projections and Validations for the Czech Republic, France, Germany and Italy
4.3.1. Projections from 25 October 2020
4.3.2. Updated Projections from 9 November 2020
4.4. Projections for Federal States in the United States
Updated Projections for Florida and New York from 10 November 2020
5. Comparing with Other Methods
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brauer, F.; van den Driessche, P.; Wu, J. (Eds.) Mathematical epidemiology. In Lecture Notes in Mathematics 1945, Mathematical Biosciences Subseries; Springer: Berlin, Germany, 2008. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. 1927, 115, 700–721. [Google Scholar]
- Wang, J. Mathematical models for COVID-19: Applications, limitations, and potentials. J. Public Health Emerg. 2020, 4. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.S. Deterministic and stochastic models for recurrent epidemics. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 23–25 December 1956; Volume 4, pp. 81–109. [Google Scholar]
- Bartlett, M.S. Measles periodicity and community size. J. R. Stat. Soc. A 1957, 120, 48–70. [Google Scholar] [CrossRef]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Soper, H.E. The interpretation of periodicity in disease prevalence. J. Roy. Stat. Soc. Ser. A 1929, 92, 34–61. [Google Scholar] [CrossRef]
- Krantz, P.P.; Polyakov, P.; Rao, A.S.R.S. True epidemic growth construction through harmonic analysis. J. Theor. Biol. 2020, 494, 110243. [Google Scholar] [CrossRef]
- Bertozzi, A.L.; Franco, E.; Mohler, G.; Short, M.B.; Sledge, D. The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 16732–16738. [Google Scholar] [CrossRef]
- Nishimoto1, Y.; Inoue, K. Curve-fitting approach for COVID-19 data and its physical background. medRxiv 2020. [Google Scholar] [CrossRef]
- Tuli, S.; Tuli, S.; Tuli, R.; Gill, S.S. Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet Things 2020, 11, 100222. [Google Scholar] [CrossRef]
- De Noni, A., Jr.; da Silva, B.A.; Dal-Pizzol, F.; Porto, L.M. A two-wave epidemiological model of COVID-19 outbreaks using MS-Excel. medRxiv 2020. [Google Scholar] [CrossRef]
- Chowell, G.; Tariq, A.; Hyman, J. A novel sub-epidemic modeling framework for short-term forecasting epidemic waves. BMC Med. 2019, 17, 164. [Google Scholar] [CrossRef] [Green Version]
- Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; Hyman, J.M.; Yan, P.; Chowell, G. Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infect. Dis. Model. 2020, 5, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Chowell, G.; Luo, R.; Sun, K.; Roosa, K.; Tariq, A.; Viboud, C. Real-time forecasting of epidemic trajectories using computational dynamic ensembles. Epidemics 2020, 30, 100379. [Google Scholar] [CrossRef] [PubMed]
- Kaxiras, E.; Neofotistos, G. Multiple Epidemic Wave Model of the COVID-19 Pandemic: Modeling Study. J. Med. Internet Res. 2020, 22, e20912. [Google Scholar] [CrossRef] [PubMed]
- Acuna-Zegarra, M.A.; Santana-Cibriancd, M.; Velasco-Hernandez, X.J. Modeling behavioral change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance. Math. Biosci. 2020, 325, 108370. [Google Scholar] [CrossRef]
- Aràndiga, F.; Baeza, A.; Cordero-Carrión, I.; Donat, R.; Martí, M.C.; Mulet, P.; Yáñez, D.F. A Spatial-Temporal Model for the Evolution of the COVID-19 Pandemic in Spain Including Mobility. Mathematics 2020, 8, 1677. [Google Scholar] [CrossRef]
- Arenas, A.; Cota, W.; Gomez-Gardenes, J.; Gomez, S.; Granell, C.; Matamalas, J.; Soriano, D.; Steinegger, B. A mathematical model for the spatiotemporal epidemic spreading of COVID19. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Cotta, R.M.; Naveira-Cotta, C.P.; Magal, P. Mathematical Parameters of the COVID-19 Epidemic in Brazil and Evaluation of the Impact of Different Public Health Measures. Biology 2020, 9, 220. [Google Scholar] [CrossRef]
- Demongeot, J.; Griette, Q.; Magal, P. SI epidemic model applied to COVID-19 data in mainland China. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Q.; Li, M.; Wang, C.; Fang, Z.; Wang, P.; Tan, J.; Wu, S.; Xiao, Y. Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Xu, T.; Hu, H.; Wang, P.; Bai, Y. Prediction and Analysis of Corona Virus Disease 2019. PLoS ONE 2020, 15, e0239960. [Google Scholar] [CrossRef]
- Hern-Matamoros, A.; Fujita, H.; Hayashi, T.; Perez-Meana, H. Forecasting of COVID19 per regions using ARIMA models and polynomial functions. Appl. Soft Comput. 2020, 96, 106610. [Google Scholar] [CrossRef]
- Hernandez-Vargas, E.A.; Velasco-Hernandez, J.X. In-host Mathematical Modelling of COVID-19 in Humans. Annu. Rev. Control. 2020. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chen, Y.-H.; Ma, Y.; Kuo, P.-H. Multiple-Input Deep Convolutional Neural Network 2 Model for COVID-19 Forecasting in China. medRxiv 2020. [Google Scholar] [CrossRef]
- Iboi, E.; Sharomi, O.; Ngonghala, C.; Gumel, A.B. Mathematical Modeling and Analysis of COVID-19 pandemic in Nigeria. medRxiv 2020. [Google Scholar] [CrossRef]
- Kapoor, A.; Ben, X.; Liu, L.; Perozzi, B.; Barnes, M.; Blais, M.; O’Banion, S. Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks. arXiv 2020, arXiv:2007.03113. [Google Scholar]
- Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. Math. Biosci. Eng. 2020, 17, 3040–3051. [Google Scholar] [CrossRef]
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. A COVID-19 epidemic model with latency period. Infect. Dis. Model. 2020, 5, 323–337. [Google Scholar]
- Liu, Z.; Magal, P.; Webb, G. Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom. J. Theor. Biol. 2020, 509, 21. [Google Scholar] [CrossRef]
- Manevski, D.; Gorenjec, N.R.; Kejžar, N. Modeling COVID-19 pandemic using Bayesian analysis with application to Slovene data. Math. Biosci. 2020, 329, 108466. [Google Scholar] [CrossRef]
- Reiner, R.C.; Barber, R.M.; Collins, J.K. Modeling COVID-19 scenarios for the United States. Nat. Med. 2020. [Google Scholar] [CrossRef]
- Saqib, M. Forecasting COVID-19 outbreak progression using hybrid polynomial-Bayesian ridge regression model. Appl. Intell. 2020. [Google Scholar] [CrossRef]
- Soubeyr, S.; Demongeot, J.; Roques, L. Towards unified and real-time analyses of outbreaks at country-level during pandemics. One Health 2020, 100187. [Google Scholar] [CrossRef] [PubMed]
- Seligmann, H.; Vuillerme, N.; Demongeot, J. Summer COVID-19 third wave: Faster high altitude spread suggests high UV adaptation. medRxiv 2020. [Google Scholar] [CrossRef]
- Wang, L.; Adiga, A.; Venkatramanan, S.; Chen, J.; Lewis, B.; Marathe, M. Examining Deep Learning Models with Multiple Data Sources for COVID-19 Forecasting. arXiv 2020, arXiv:2010.14491. [Google Scholar]
- Xue, L.; Jing, S.; Miller, J.C.; Sun, W.; Li, H.; Estrada-Franco, J.G.; Hyman, J.M.; Zhu, H. A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy. Math. Biosci. 2020, 326, 108391. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.S.; Liang, W.; Zanin, M.; Liang, J. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. Thorac. Dis. 2020, 12, 165–174. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Y.X.; Yan, X. Inter-Series Attention Model for COVID-19 Forecasting. arXiv 2020, arXiv:2010.13006. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Meyer, Y.; Ryan, D. Wavelets: Algorithms and Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1996. [Google Scholar]
- Meyer, Y. Wavelets, Vibrations and Scalings; CRM Monograph Series; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Bohner, M.; Streipert, S.; Torres, D.F.M. Exact solution to a dynamic SIR model. Nonlinear Anal. Hybrid Syst. 2019, 32, 228–238. [Google Scholar]
- Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar]
- Johns Hopkins University Center, Covid-19 Data. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 9 November 2020).
- Cavataio, J.; Schnell, S. Interpreting SARS-CoV-2 fatality rate estimates—A case for introducing standardized reporting to improve communication. SSRN 2020. [Google Scholar] [CrossRef]
- Harris, J.E. Overcoming Reporting Delays Is Critical to Timely Epidemic Monitoring: The Case of COVID-19 in New York City. medRxiv 2020. [Google Scholar] [CrossRef]
- Makridakis, S.; Wheelwright, S.C.; Hyndman, R.J. Forecasting: Methods and Applications, 3rd ed.; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Hyndman, R.J. Moving Averages. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Simonoff, J.S. Smoothing Methods in Statistics, 2nd ed.; Springer: New York, NY, USA, 1996. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
Czechia | ||||
---|---|---|---|---|
Day | Real Data | Smoothing | Prediction | Error |
20 October | 11,984 | 11,173 | 10,730 | 3.96% |
21 October | 14,969 | 11,710 | 11,161 | 4.68% |
22 October | 14,150 | 12,030 | 11,564 | 3.87% |
23 October | 15,258 | 12,689 | 11,934 | 5.95% |
24 October | 12,474 | 12,830 | 12,269 | 4.37% |
25 October | 7300 | 12,295 | 12,564 | 2.18% |
Germany | ||||
Day | Real Data | Smoothing | Prediction | Error |
20 October | 8523 | 9472 | 8346 | 11.88% |
21 October | 12,331 | 10,019 | 8763 | 12.53% |
22 October | 5952 | 9861 | 9164 | 7.06% |
23 October | 22,236 | 10,105 | 9545 | 5.54% |
24 October | 8688 | 10,421 | 9902 | 4.98% |
25 October | 2900 | 9944 | 10,231 | 2.88% |
Italy | ||||
Day | Real Data | Smoothing | Prediction | Error |
20 October | 10,871 | 13,322 | 13,000 | 2.41% |
21 October | 15,199 | 14,567 | 14,080 | 3.34% |
22 October | 16,078 | 15,934 | 15,203 | 4.58% |
23 October | 19,143 | 17,034 | 16,364 | 3.93% |
24 October | 19,640 | 18,266 | 17,557 | 3.88% |
25 October | 21,273 | 19,033 | 18,777 | 1.34% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tat Dat, T.; Frédéric, P.; Hang, N.T.T.; Jules, M.; Duc Thang, N.; Piffault, C.; Willy, R.; Susely, F.; Lê, H.V.; Tuschmann, W.; et al. Epidemic Dynamics via Wavelet Theory and Machine Learning with Applications to Covid-19. Biology 2020, 9, 477. https://doi.org/10.3390/biology9120477
Tat Dat T, Frédéric P, Hang NTT, Jules M, Duc Thang N, Piffault C, Willy R, Susely F, Lê HV, Tuschmann W, et al. Epidemic Dynamics via Wavelet Theory and Machine Learning with Applications to Covid-19. Biology. 2020; 9(12):477. https://doi.org/10.3390/biology9120477
Chicago/Turabian StyleTat Dat, Tô, Protin Frédéric, Nguyen T. T. Hang, Martel Jules, Nguyen Duc Thang, Charles Piffault, Rodríguez Willy, Figueroa Susely, Hông Vân Lê, Wilderich Tuschmann, and et al. 2020. "Epidemic Dynamics via Wavelet Theory and Machine Learning with Applications to Covid-19" Biology 9, no. 12: 477. https://doi.org/10.3390/biology9120477
APA StyleTat Dat, T., Frédéric, P., Hang, N. T. T., Jules, M., Duc Thang, N., Piffault, C., Willy, R., Susely, F., Lê, H. V., Tuschmann, W., & Tien Zung, N. (2020). Epidemic Dynamics via Wavelet Theory and Machine Learning with Applications to Covid-19. Biology, 9(12), 477. https://doi.org/10.3390/biology9120477