Influence of Bone Definition and Finite Element Parameters in Bone and Dental Implants Stress: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Questions
2.2. Search Strategy
2.3. Study Selection
2.4. Inclusion and Exclusion Criteria
2.5. Study Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Relevant Data of Included Studies Regarding Dental Implants
3.3. Relevant Data of Finite Element Parameters
3.4. Stress on Bone and Dental Implant
3.5. Study Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Scortecci, G.; Misch, C.; Benner, K. Implants and Restorative Dentistry; Martin Dunitz: London, UK, 2001. [Google Scholar]
- Schwiedrzik, J.J.; Wolfram, U.; Zysset, P.K. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech. Model. Mechanobiol. 2013, 12, 1155–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prados-Privado, M.; Bea, J.A.; Rojo, R.; Gehrke, S.A.; Calvo-Guirado, J.L.; Prados-Frutos, J.C. A New Model to Study Fatigue in Dental Implants Based on Probabilistic Finite Elements and Cumulative Damage Model. Appl. Bionics Biomech. 2017, 2017, 37263611. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Frugis, V.L.; Shibli, J.A.; Fernandez, M.P.R.; Sánchez de Val, J.E.M.; Girardo, J.L.C.; Taschieri, S.; Corbella, S. Influence of Implant Design (Cylindrical and Conical) in the Load Transfer Surrounding Long (13 mm) and Short (7 mm) Length Implants: A Photoelastic Analysis. Open Dent. J. 2016, 10, 522–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prados-Privado, M.; Gehrke, S.; Rojo, R.; Prados-Frutos, J. Probability of Failure of Internal Hexagon and Morse Taper Implants with Different Bone Levels: A Mechanical Test and Probabilistic Fatigue. Int. J. Oral Maxillofac. Implant. 2018, 33, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Centre for Reviews and Dissemination. Systematic Reviews: CRD Guidance for Undertaking Reviews in Health Care; University of York: York, UK, 2009; ISBN 978-1-900640-47-3. [Google Scholar]
- Higgins, J.P.T.; Altman, D.G. Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Green, S., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 187–241. [Google Scholar]
- Aslam, A.; Hassan, S.H.; Aslam, H.M.; Khan, D.A. Effect of platform switching on peri-implant bone: A 3D finite element analysis. J. Prosthet. Dent. 2019, 121, 935–940. [Google Scholar] [CrossRef]
- dos Santos, M.B.F.; Meloto, G.D.O.; Bacchi, A.; Correr-Sobrinho, L. Stress distribution in cylindrical and conical implants under rotational micromovement with different boundary conditions and bone properties: 3-D FEA. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 893–900. [Google Scholar] [CrossRef]
- Tsouknidas, A.; Giannopoulos, D.; Savvakis, S.; Michailidis, N.; Lympoudi, E.; Fytanidis, D.; Pissiotis, A.; Michalakis, K. The Influence of Bone Quality on the Biomechanical Behavior of a Tooth-Implant Fixed Partial Denture: A Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2016, 31, e143–e154. [Google Scholar] [CrossRef] [Green Version]
- Oswal, M.; Amasi, U.; Oswal, M.; Bhagat, A. Influence of three different implant thread designs on stress distribution: A three-dimensional finite element analysis. J. Indian Prosthodont. Soc. 2016, 16, 359. [Google Scholar] [CrossRef]
- Tsouknidas, A.; Lympoudi, E.; Michalakis, K.; Giannopoulos, D.; Michailidis, N.; Pissiotis, A.; Fytanidis, D.; Kugiumtzis, D. Influence of Alveolar Bone Loss and Different Alloys on the Biomechanical Behavior of Internal-and External-Connection Implants: A Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2015, 30, e30–e42. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-L.; Chen, C.-S.; Yeung, T.C.; Hsu, M.-L. Biomechanical effect of a zirconia dental implant-crown system: A three-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2012, 27, e49–e57. [Google Scholar]
- Lee, J.-S.; Lim, Y.-J. Three-dimensional numerical simulation of stress induced by different lengths of osseointegrated implants in the anterior maxilla. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.-J.; Shin, H.-S.; Han, C.-H.; Lee, S.-H. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int. J. Oral Maxillofac. Implant. 2006, 21, 195–202. [Google Scholar]
- Pirmoradian, M.; Naeeni, H.A.; Firouzbakht, M.; Toghraie, D.; Khabaz, M.K.; Darabi, R. Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch. Comput. Methods Programs Biomed. 2020, 187, 105258. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Chen, J.; Han, L.; Yang, J.; Huang, W.; Wu, D. Angled abutments result in increased or decreased stress on surrounding bone of single-unit dental implants: A finite element analysis. Med. Eng. Phys. 2012, 34, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.Y.-J.; Hsu, J.-T.; Chee, W.; Lin, Y.-T.; Fuh, L.-J.; Huang, H.-L. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses. J. Formos. Med. Assoc. 2016, 115, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Tang, C.; Yu, J.; Dai, W.; Bao, Y.; Hu, D. The effect of platform switching on stress distribution in implants and periimplant bone studied by nonlinear finite element analysis. J. Prosthet. Dent. 2014, 112, 1111–1118. [Google Scholar] [CrossRef]
- Koca, O.L.; Eskitascioglu, G.; Usumez, A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J. Prosthet. Dent. 2005, 93, 38–44. [Google Scholar] [CrossRef]
- Sevimay, M.; Turhan, F.; Kiliçarslan, M.A.; Eskitascioglu, G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J. Prosthet. Dent. 2005, 93, 227–234. [Google Scholar] [CrossRef]
- de Cos Juez, F.J.; Sánchez Lasheras, F.; García Nieto, P.J.; Álvarez-Arenal, A. Non-linear numerical analysis of a double-threaded titanium alloy dental implant by FEM. Appl. Math. Comput. 2008, 206, 952–967. [Google Scholar] [CrossRef]
- Ormianer, Z.; Palti, A.; Demiralp, B.; Heller, G.; Lewinstein, I.; Khayat, P.G. Implant-supported first molar restorations: Correlation of finite element analysis with clinical outcomes. Int. J. Oral Maxillofac. Implant. 2012, 27, e1–e12. [Google Scholar]
- Canullo, L.; Pace, F.; Coelho, P.; Sciubba, E.; Vozza, I. The influence of platform switching on the biomechanical aspects of the implant-abutment system. A three dimensional finite element study. Med. Oral Patol. Oral Cir. Bucal 2011, 16, e852–e856. [Google Scholar] [CrossRef] [PubMed]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef] [PubMed]
- Kattan, P.I. The Linear Tetrahedral (Solid) Element. In MATLAB Guide to Finite Elements; Springer: Berlin/Heidelberg, Germany, 2008; pp. 337–365. [Google Scholar]
- Dias Corpa Tardelli, J.; Bolfarini, C.; Cândido dos Reis, A. Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review. J. Trace Elem. Med. Biol. 2020, 62, 126618. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jansen, J.A.; Walboomers, X.F.; van den Beucken, J.J. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020, 103, 103574. [Google Scholar] [CrossRef]
- Ou, K.-L.; Weng, C.-C.; Lin, Y.-H.; Huang, M.-S. A promising of alloying modified beta-type Titanium-Niobium implant for biomedical applications: Microstructural characteristics, in vitro biocompatibility and antibacterial performance. J. Alloys Compd. 2017, 697, 231–238. [Google Scholar] [CrossRef]
- Sivaraman, K.; Chopra, A.; Narayan, A.I.; Balakrishnan, D. Is zirconia a viable alternative to titanium for oral implant? A critical review. J. Prosthodont. Res. 2018, 62, 121–133. [Google Scholar] [CrossRef]
- Andreiotelli, M.; Wenz, H.J.; Kohal, R.-J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin. Oral Implant. Res. 2009, 20, 32–47. [Google Scholar] [CrossRef]
- Falanga, A.; Laheurte, P.; Vahabi, H.; Tran, N.; Khamseh, S.; Saeidi, H.; Khodadadi, M.; Zarrintaj, P.; Saeb, M.R.; Mozafari, M. Niobium-Treated Titanium Implants with Improved Cellular and Molecular Activities at the Tissue–Implant Interface. Materials 2019, 12, 3861. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, D.; Cheng, J.; Tsoi, J.K.H.; Chen, J. Mechanical and biological properties of Ti–(0–25 wt%)Nb alloys for biomedical implants application. Regen. Biomater. 2020, 7, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Okulov, I.V.; Volegov, A.S.; Attar, H.; Bönisch, M.; Ehtemam-Haghighi, S.; Calin, M.; Eckert, J. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2017, 65, 866–871. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Liu, Y.; Cao, G.; Zhang, L.-C. Influence of Nb on the β → α″ martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater. Sci. Eng. C 2016, 60, 503–510. [Google Scholar] [CrossRef] [Green Version]
- McMahon, R.E.; Ma, J.; Verkhoturov, S.V.; Munoz-Pinto, D.; Karaman, I.; Rubitschek, F.; Maier, H.J.; Hahn, M.S. A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys. Acta Biomater. 2012, 8, 2863–2870. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gao, J.; Luo, L.; Wang, Y. Does Bruxism Contribute to Dental Implant Failure? A Systematic Review and Meta-Analysis. Clin. Implant Dent. Relat. Res. 2016, 18, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Lobbezoo, F.; Ahlberg, J.; Glaros, A.G.; Kato, T.; Koyano, K.; Lavigne, G.J.; de Leeuw, R.; Manfredini, D.; Svensson, P.; Winocur, E. Bruxism defined and graded: An international consensus. J. Oral Rehabil. 2013, 40, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.-H.; Pan, C.-Y.; Liu, P.-H.; Chou, M.M.C. Fracture Resistance of Monolithic Zirconia Crowns in Implant Prostheses in Patients with Bruxism. Materials 2019, 12, 1623. [Google Scholar] [CrossRef] [Green Version]
- Benaissa, A.; Merdji, A.; Bendjaballah, M.Z.; Ngan, P.; Mukdadi, O.M. Stress influence on orthodontic system components under simulated treatment loadings. Comput. Methods Programs Biomed. 2020, 195, 105569. [Google Scholar] [CrossRef]
- Ammar, H.H.; Ngan, P.; Crout, R.J.; Mucino, V.H.; Mukdadi, O.M. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e59–e71. [Google Scholar] [CrossRef]
- Liu, T.; Mu, Z.; Yu, T.; Wang, C.; Huang, Y. Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: A three-dimensional finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 585–594. [Google Scholar] [CrossRef]
- Klein, M.; Schiegnitz, E.; Al-Nawas, B. Systematic Review on Success of Narrow-Diameter Dental Implants. Int. J. Oral Maxillofac. Implant. 2014, 29, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Chrcanovic, B.R.; Kisch, J.; Albrektsson, T.; Wennerberg, A. Factors influencing the fracture of dental implants. Clin. Implant Dent. Relat. Res. 2018, 20, 58–67. [Google Scholar] [CrossRef]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Smoking and dental implants: A systematic review and meta-analysis. J. Dent. 2015, 43, 487–498. [Google Scholar] [CrossRef] [PubMed]
Database | Search Strategy | Search Data |
---|---|---|
MEDLINE/PubMed | finite element AND (bone AND dental implant*) AND stress AND (anisotropic OR orthotopic OR isotropic) NOT (review) | 1 July 2020 |
Science Direct | finite element AND (bone AND dental implant) AND stress AND (anisotropic OR orthotopic OR isotropic) NOT (review) | 1 July 2020 |
LILACS | finite element AND (bone AND dental implant*) AND stress NOT (review) | 1 July 2020 |
Authors | Title | Material /Properties (Young’s Modulus [GPa]/Poisson’s Ratio) | Geometric Characteristic (Diameter/Length [mm]) | Manufacturer | Connection |
---|---|---|---|---|---|
Aslam et al. [8] | Effect of Platform Switching on Peri-Implant Bone: A 3D Finite Element Analysis | Titanium/110/0.35 | 4.5/11 | - | - |
Dos Santos et al. [9] | Stress distribution in cylindrical and conical implants under rotational micromovement with different boundary conditions and bone properties: 3-D FEA | Titanium/110/0.35 | 4.1/11 | - | - |
Tsouknidas et al. [10] | The Influence of Bone Quality on the Biomechanical Behavior of a Tooth-Implant Fixed Partial Denture: A Three-Dimensional Finite Element Analysis | Titanium/110/0.3 | - | Biomed 3i | - |
Oswal et al. [11] | Influence of three different implant thread designs on stress distribution: A three-dimensional finite element analysis | Titanium/110/0.3 | 4/12 | - | - |
Tsouknidas et al. [12] | Influence of Alveolar Bone Loss and Different Alloys on the Biomechanical Behavior of Internal-and External-Connection Implants: A Three-Dimensional Finite Element Analysis | Titanium/110 and 116/0.3 | 4/13 | Biomed 3i | External and internal |
Chang et al. [13] | Biomechanical Effect of a Zirconia Dental Implant-Crown System: A Three-Dimensional Finite Element Analysis | Zirconia/110/0.35 | 4.1/- | Biomed 3i | - |
Lee et al. [14] | Three-dimensional numerical simulation of stress induced by different lengths of osseointegrated implants in the anterior maxilla | Titanium/115/0.35 | 4.0/(8.5, 10.0, 11.5, 13.0, 15.0) | Nobel Biocare | External |
Chun et al. [15] | Influence of Implant Abutment Type on Stress Distribution in Bone Under Various Loading Conditions Using Finite Element Analysis | Titanium/114/0.37 | 4.3/11.5 | Warantec | 1-body; internal hex; external hex |
Pirmoradian et al. [16] | Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch | Titanium/110/0.35 | 4.1/8.5; 10; 11.5; 13 | - | - |
Tian et al. [17] | Angled abutments result in increased or decreased stress on surrounding bone of single-unit dental implants: A finite element analysis | Titanium/110/0.3 | 4.1/10 | - | - |
Wu et al. [18] | Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses | Titanium/104/0.3 | - | - | External |
Liu et al. [19] | The effect of platform switching on stress distribution in implants and periimplant bone studied by nonlinear finite element analysis | Titanium/110/0.33 | - | Ankylos and Anthogyr | Internal |
Koca et al. [20] | Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor | Titanium/110/0.35 | 4.1/10 | ITI | - |
Sevimay et al. [21] | Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown | Titanium/110/0.35 | 4.1/10 | ITI | - |
de Cos Juez et al. [22] | Non-linear numerical analysis of a double-threaded titanium alloy dental implant by FEM | Titanium/110/0.33 | - | - | - |
Ormianer et al. [23] | Implant-supported first molar restorations: correlation of finite element analysis with clinical outcomes | Titanium/110/0.34 | 3.7, 4.7, and 6.0/- | - | - |
Canullo et al. [24] | The influence of platform switching on the biomechanical aspects of the implant-abutment system. A three-dimensional finite element study | - | 3.8 and 5.5/- | - | - |
Authors | Mesh (Nodes/Elements) | Mesh Element | Software | Bone Type Model (Density) | Cortical Bone Young’s Modulus (GPa)/Poisson’s Ratio | Cancellous Bone Young’s Modulus (Gpa)/Poisson’s Ratio | Loading Conditions | Boundary Conditions | Convergence Criterion |
---|---|---|---|---|---|---|---|---|---|
Aslam et al. [8] | 76,150/44,208 | - | ANSYS Workbench 16 | Anisotropic (-) | Ex: 12.6/0.3 and 0.253 Ey: 12.6/0.253 and 0.3 Ez: 19.4/0.39 and 0.39 | Ex: 1.15/0.055 and 0.01 Ey: 0.21/ 0.322 and 0.01 Ez: 1.15/0.055 and 0.322 | Vertical: 200 to 800 N. Oblique: 50 to 150 N | 100% osseointegration. Assembly: constrained in the x, y, and z planes. | - |
Dos Santos et al. [9] | 75,463/42,740 | Tetrahedral with 10 nodes | ANSYS Workbench 11 | Isotropic and anisotropic (D2) | Ex = 12.6/0.3 Ey = 12.6/0.3 Ez = 19.4/0.253 | Ex = 1.148/0.055 Ey = 0.21/0.01 Ez = 1.148/0.32 | - | 100% osseointegration. Border of the models: constrained in all directions. | 6% |
Tsouknidas et al. [10] | -/704,068 | Tetrahedral | ANSYS | Isotropic (-) | 13.7/0.33 | 1.37/0.3 | Axial: 200 N in premolar and 230 in molar | 100% osseointegration. Bottom surface fixed. | - |
Oswal et al. [11] | 14,805/72,545 | - | ANSYS | Isotropic (-) | 13.7/0.30 | 1.370/0.30 | Vertical: 100 N | 100% osseointegration. Mandible fixed. | - |
Tsouknidas et al. [12] | - | - | ANSYS 15 | Isotropic (-) | 13.7/0.33 | 1.37/0.3 | 200 N/50° | - | - |
Chang et al. [13] | 47,408 /194,978 | Hexahedral | ANSYS 11 | Anisotropic (-) | Ey = 12.5 Ex = 17.9 Ez = 26.6 νyx = 0.18 νyz = 0.31 νxz = 0.28 | Ey = 0.021 Ex = 1.148 Ez = 1.148 νyx = 0.055 νyz = 0.055 νxz = 0.322 | Vertical: 200 N Horizontal: 40 N | 100% osteointegration. Symmetric boundary conditions. Mesial surface: constrained in all directions. | - |
Lee et al. [14] | -/182,921 | - | AMMEDYSA version 2009 | Isotropic (D3) | 13.7/0.3 | 1.37/0.3 | 176 N/120° | Mesial and distal surfaces: fixed in all dimension. | - |
Chun et al. [15] | - | Eight nodes | - | Isotropic (-) | 14/0.3 | 1.5/0.3 | 100 N/15°,30°,60° | Nonlinear contact friction. Outer surface of bone fixed. | - |
Pirmoradian et al. [16] | -/153,048 | 10-node quadratic tetrahedron | ABAQUS (6.14.2) | Isotropic (-) | 13.7/0.3 | 1.37/0.3 | 180 N/45° | 100% osseointegration. | - |
Tian et al. [17] | 116,428/75,182 | SOLID 187 | ANSYS 9.0 | Isotropic (-) | 13.7/0.3 | 1.37/0.3 | 100 N | Good osseointegration. The lower surface, the medial and distal planes: completely constrained. | - |
Wu et al. [18] | - | SOLID 187 | ANSYS Workbench 10.0 | Isotropic (-) | 16.7/0.3 | 0.759/0.3 | 190 N/30° | Contact coefficient abutment-implant: 0.323. Contact coefficient implant- cortical bone: 0.4. Contact cortical-cancellous: 0.8. The mesial and distal surfaces: constrained. | - |
Liu et al. [19] | 38,744/187,569 | - | - | Isotropic (-) | 13.4/0.3 | 1.37/0.3 | Vertical: 50, 100 or 150 N Horizontal: 50 and 100 N | - | - |
Koca et al. [20] | - | - | Pro/Engineer 2000i | Isotropic (D3) | 13.4/0.3 | 1.37/0.3 | 300 N | x-axis for each design: fixed. | - |
Sevimay et al. [21] | 32,083/180,884 | - | Pro/Engineer 2000i | Isotropic (D1, D2, D3, D4) | 13.7/0.3 | D1 to D3: 1.37/0.3 D4: 1.1/0.3 | 300 N | x-axis for each design: fixed. | - |
de Cos Juez et al. [22] | 109,696/295,700 | SOLID187 | - | Anisotropy (-) | E1 = 12.5 E2 = 17.9 E3 = 26.6 ν12 = 0.18 ν13 = 0.31 ν23 = 0.28 | E1 = 0.21 E2 = 1.148 E3 = 1.148 ν12 = 0.055 ν13 = 0.055 ν23 = 0.322 | Vertical: 150 N Horizontal: 15 N | The friction between implant and cancellous bone interface was considered to be 0.72. | <0.5%. |
Ormianer et al. [23] | - | - | ANSYS Workbench 11 | Isotropic (-) | 15/- | 1.5/- | 222 N/30° | Bone implant contact between 8 and 100%. | - |
Canullo et al. [24] | 100,000/60,000 | - | - | Isotropic (-) | 15/0.35 | 1.5/0.3 | Vertical: 130 N Horizontal: 90 N | - | - |
Author | Stress in Dental Implant [MPa]/Criterion | Stress in Bone [MPa]/Criterion |
---|---|---|
Aslam et al. [8] | Axial load: 178.75/- Oblique: 176.15/ von Mises | Axial load: 300; Oblique: 234/ von Mises |
Dos Santos et al. [9] | Isotropic bone: 879.96/- Anisotropic bone 1122.70/- | Isotropic bone: 1076.50; Anisotropic bone: 1433.20/maximum principal stress |
Tsouknidas et al. [10] | 702/- | 42/von Mises |
Oswal et al. [11] | 21.83/- | Cortical: 3.8909 Cancellous: 1.016/- |
Tsouknidas et al. [12] | 400–1250/- | 5.68–1284/- |
Chang et al. [13] | 144.69/von Mises | 105.52/von Mises |
Lee et al. [14] | 55.1–59.6/- | 4.9–6.9/- |
Chun et al. [15] | 240–710/- | 10–35/von Mises |
Pirmoradian et al. [16] | 278/von Mises | 89.6–93.17/maximum stress |
Tian et al. [17] | 55/von Mises | 55/von Mises |
Wu et al. [18] | 180/von Mises | 90/von Mises |
Liu et al. [19] | 330/von Mises | 8/von Mises |
Koca et al. [20] | 155/von Mises | 50/von Mises |
Sevimay et al. [21] | 532/- | D3 and D4: 163 and 180/von Mises D1 and D2: 150 and 152/von Mises |
de Cos Juez et al. [22] | 17.65/von Mises | 5.6/von Mises |
Ormianer et al. [23] | 13–41/- | 11–37/- |
Canullo et al. [24] | 0.064–190/- | 0.067 and 52/maximum stress |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prados-Privado, M.; Martínez-Martínez, C.; Gehrke, S.A.; Prados-Frutos, J.C. Influence of Bone Definition and Finite Element Parameters in Bone and Dental Implants Stress: A Literature Review. Biology 2020, 9, 224. https://doi.org/10.3390/biology9080224
Prados-Privado M, Martínez-Martínez C, Gehrke SA, Prados-Frutos JC. Influence of Bone Definition and Finite Element Parameters in Bone and Dental Implants Stress: A Literature Review. Biology. 2020; 9(8):224. https://doi.org/10.3390/biology9080224
Chicago/Turabian StylePrados-Privado, María, Carlos Martínez-Martínez, Sergio A. Gehrke, and Juan Carlos Prados-Frutos. 2020. "Influence of Bone Definition and Finite Element Parameters in Bone and Dental Implants Stress: A Literature Review" Biology 9, no. 8: 224. https://doi.org/10.3390/biology9080224
APA StylePrados-Privado, M., Martínez-Martínez, C., Gehrke, S. A., & Prados-Frutos, J. C. (2020). Influence of Bone Definition and Finite Element Parameters in Bone and Dental Implants Stress: A Literature Review. Biology, 9(8), 224. https://doi.org/10.3390/biology9080224