New Energy-Driven Construction Industry: Digital Green Innovation Investment Project Selection of Photovoltaic Building Materials Enterprises Using an Integrated Fuzzy Decision Approach
Abstract
:1. Introduction
2. Theoretical Basis and Index System
2.1. Theoretical Basis
2.2. Index System
3. Methodology
3.1. Related Concepts of Intuitionistic Fuzzy Sets
- (i)
- ;
- (ii)
- (iii)
- (iv)
3.2. Integration Operator and Weight Vector Based on Interaction between Attributes
3.2.1. Intuitionistic Fuzzy Weighted Geometric Heronian Average Operator Based on the Interaction between Attributes
3.2.2. Time Sequence Weight Vector and Target Attribute Weight Vector Based on Time Entropy
3.3. Dynamic Intuitionistic Fuzzy Multi-Attribute Group Decision-Making Steps
4. Empirical Example Analysis
4.1. Application Background
4.2. The Experience Element
4.2.1. Formulation of Evaluation Criteria
4.2.2. Data and Scenarios
4.3. Results and Discussion
4.3.1. Results
4.3.2. Comparative Analysis of Evaluation Results
5. Conclusions and Implications
5.1. Conclusions
5.2. Implications
5.3. Deficiencies and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, Y.; Yin, S.; Zhang, A. Clean energy-based rural low carbon transformation considering the supply and demand of new energy under government participation: A three-participators game model. Energy Rep. 2022, 8, 12011–12025. [Google Scholar] [CrossRef]
- Li, B.; Huo, Y.; Yin, S. Sustainable financing efficiency and environmental value in China’s energy conservation and environmental protection industry under the double carbon target. Sustainability 2022, 14, 9604. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Yin, S.; Dong, T.; Li, B.; Gao, S. Developing a Conceptual Partner Selection Framework: Digital Green Innovation Management of Prefabricated Construction Enterprises for Sustainable Urban Development. Buildings 2022, 12, 721. [Google Scholar] [CrossRef]
- Rahla, K.M.; Mateus, R.; Bragança, L. Selection criteria for building materials and components in line with the circular economy principles in the built environment—A review of current trends. Infrastructures 2021, 6, 49. [Google Scholar] [CrossRef]
- Soni, A.; Das, P.K.; Hashmi, A.W.; Yusuf, M.; Kamyab, H.; Chelliapan, S. Challenges and opportunities of utilizing municipal solid waste as alternative building materials for sustainable development goals: A review. Sustain. Chem. Pharm. 2022, 27, 100706. [Google Scholar] [CrossRef]
- Zeng, X.; Li, S.; Yin, S.; Xing, Z. How Does the Government Promote the Collaborative Innovation of Green Building Projects? An Evolutionary Game Perspective. Buildings 2022, 12, 1179. [Google Scholar] [CrossRef]
- Ejaz, A.; Babar, H.; Ali, H.M.; Jamil, F.; Janjua, M.M.; Fattah, I.R.; Said, Z.; Li, C. Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustain. Energy Technol. Assess. 2021, 46, 101199. [Google Scholar] [CrossRef]
- Salah, W.A.; Abuhelwa, M.; Bashir, M.J. The key role of sustainable renewable energy technologies in facing shortage of energy supplies in Palestine: Current practice and future potential. J. Clean. Prod. 2021, 293, 125348. [Google Scholar] [CrossRef]
- Martín-Chivelet, N.; Kapsis, K.; Wilson, H.R.; Delisle, V.; Yang, R.; Olivier, L.; Polo, J.; Eisenlohr, J.; Roy, B.; Maturi, L.; et al. Building-Integrated Photovoltaic (BIPV) products and systems: A review of energy-related behavior. Energy Build. 2022, 262, 111998. [Google Scholar] [CrossRef]
- Lau, H.C.; Ramakrishna, S.; Zhang, K.; Radhamani, A.V. The role of carbon capture and storage in the energy transition. Energy Fuels 2021, 35, 7364–7386. [Google Scholar] [CrossRef]
- Bianco, V.; Cascetta, F.; Nardini, S. Analysis of technology diffusion policies for renewable energy. The case of the Italian solar photovoltaic sector. Sustain. Energy Technol. Assess. 2021, 46, 101250. [Google Scholar] [CrossRef]
- Zluwa, I.; Pitha, U. The combination of building greenery and photovoltaic energy production—A discussion of challenges and opportunities in design. Sustainability 2021, 13, 1537. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L.; Yettou, F.; Gama, A. A comprehensive review of different types of solar photovoltaic cells and their applications. Int. J. Ambient Energy 2021, 42, 1200–1217. [Google Scholar] [CrossRef]
- Mariano, J.R.L.; Lin, Y.C.; Liao, M.; Ay, H. Analysis of Power Generation for Solar Photovoltaic Module with Various Internal Cell Spacing. Sustainability 2021, 13, 6364. [Google Scholar] [CrossRef]
- Lee, H.; Song, H.J. Current status and perspective of colored photovoltaic modules. Wiley Interdiscip. Rev. Energy Environ. 2021, 10, e403. [Google Scholar] [CrossRef]
- Chandel, R.; Chandel, S.S.; Malik, P. Perspective of new distributed grid connected roof top solar photovoltaic power generation policy interventions in India. Energy Policy 2022, 168, 113122. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A.G. Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges. Sustain. Energy Technol. Assess. 2021, 45, 101151. [Google Scholar] [CrossRef]
- Al-Rawi, M.; Rajan, N.; Anand, S.S.; Pauly, T.; Thomas, N. Prototyping Roof Mounts for Photovoltaic (PV) Panels: Design, Construction and CFD Validation. CFD Lett. 2022, 14, 59–71. [Google Scholar] [CrossRef]
- Rababah, H.E.; Ghazali, A.; Mohd Isa, M.H. Building integrated photovoltaic (BIPV) in Southeast Asian countries: Review of effects and challenges. Sustainability 2021, 13, 12952. [Google Scholar] [CrossRef]
- Awuku, S.A.; Bennadji, A.; Muhammad-Sukki, F.; Sellami, N. Myth or gold? The power of aesthetics in the adoption of building integrated photovoltaics (BIPVs). Energy Nexus 2021, 4, 100021. [Google Scholar] [CrossRef]
- Elgendy, N.; Elragal, A.; Päivärinta, T. DECAS: A modern data-driven decision theory for big data and analytics. J. Decis. Syst. 2022, 31, 337–373. [Google Scholar] [CrossRef]
- Yu, H.F.; Hasanuzzaman, M.; Rahim, N.A.; Amin, N.; Nor Adzman, N. Global challenges and prospects of photovoltaic materials disposal and recycling: A comprehensive review. Sustainability 2022, 14, 8567. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhary, R.; Karthick, A. Review on the progress of building-applied/integrated photovoltaic system. Environ. Sci. Pollut. Res. 2021, 28, 47689–47724. [Google Scholar] [CrossRef]
- Hu, C.; Yang, H.; Yin, S. Insight into the Balancing Effect of a Digital Green Innovation (DGI) Network to Improve the Performance of DGI for Industry 5.0: Roles of Digital Empowerment and Green Organization Flexibility. Systems 2022, 10, 97. [Google Scholar] [CrossRef]
- Xia, W.; Li, B.; Yin, S. A prescription for urban sustainability transitions in China: Innovative partner selection management of green building materials industry in an integrated supply chain. Sustainability 2020, 12, 2581. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Current situation and solutions of internal control management of project investment finance in State-owned enterprises. Mod. Shopp. Malls 2022, 18, 147–149. [Google Scholar]
- Çoban, V. Solar energy plant project selection with AHP decision-making method based on hesitant fuzzy linguistic evaluation. Complex Intell. Syst. 2020, 6, 507–529. [Google Scholar] [CrossRef]
- Fan, K. Research on investment decision of high-tech industry projects from the perspective of AHP-fuzzy comprehensive evaluation method. Financ. Account. Newsl. 2017, 12, 7–10. [Google Scholar]
- Ye, L. Application of TOPSIS model in investment decision-making of small and medium-sized enterprises under the background of Fujian Free Trade Zone. Bohai Rim Econ. Outlook 2017, 133–135. [Google Scholar] [CrossRef]
- Zhang, S.; Su, W. Evaluation of new energy vehicle venture capital projects based on G1-entropy-TOPSIS. World Sci. Technol. Res. Dev. 2018, 40, 172–181. [Google Scholar]
- Wu, F.; Jin, S.; You, M. Inter-interval intuitionistic fuzzy multi-attribute enterprise technology innovation project decision-making based on cross-entropy. Sci. Technol. Manag. Res. 2017, 37, 1–6. [Google Scholar]
- Liu, W. Research on dynamic application of economic benefit evaluation index of enterprise investment projects. Collect. Econ. China 2020, 22, 26–27. [Google Scholar]
- Abdullah, M.F.; Zainol, Z.; Thian, S.Y.; Ab Ghani, N.H.; Mat Jusoh, A.; Mat Amin, M.Z.; Mohamad, N.A. Big Data in Criteria Selection and Identification in Managing Flood Disaster Events Based on Macro Domain PESTEL Analysis: Case Study of Malaysia Adaptation Index. Big Data Cogn. Comput. 2022, 6, 25. [Google Scholar] [CrossRef]
- Birru, A.C.; Sudarmiatin, S.; Hermawan, A. Competitive Strategies in the Lodging Service Sector: Five Porter Analyses And Case Study SWOT Analysis. J. Bus. Manag. Rev. 2022, 3, 1–17. [Google Scholar] [CrossRef]
- Wernerfelt, B. A resource-based view of the firm. Strateg. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, N.; Xu, J. Information fusion for future COVID-19 prevention: Continuous mechanism of big data intelligent innovation for the emergency management of a public epidemic outbreak. J. Manag. Anal. 2021, 8, 391–423. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Wu, S.; Liu, F. A complex path model for low-carbon sustainable development of enterprise based on system dynamics. J. Clean. Prod. 2021, 321, 128934. [Google Scholar] [CrossRef]
- Yin, S.; Li, B. A stochastic differential game of low carbon technology sharing in collaborative innovation system of superior enterprises and inferior enterprises under uncertain environment. Open Math. 2018, 16, 607–622. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, B.; Di Maria, E.; Cygler, J. Do clusters matter for foreign subsidiaries in the Era of industry 4.0? The case of the aviation valley in Poland. Eur. Res. Manag. Bus. Econ. 2021, 27, 100150. [Google Scholar] [CrossRef]
- Ciriello, R.F.; Richter, A.; Schwabe, G. Digital innovation. Bus. Inf. Syst. Eng. 2018, 60, 563–569. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Shahzad, L.; Liu, B.; Ruan, Q. China’s quest for economic dominance and energy consumption: Can Asian economies provide natural resources for the success of One Belt One Road? Manag. Decis. Econ. 2021, 42, 570–587. [Google Scholar] [CrossRef]
- Ronaghi, M.H. A blockchain maturity model in agricultural supply chain. Inf. Process. Agric. 2021, 8, 398–408. [Google Scholar] [CrossRef]
- Tang, C.; Liu, X.; Zhou, D. Financial market resilience and financial development: A global perspective. J. Int. Financ. Mark. Inst. Money 2022, 80, 101650. [Google Scholar] [CrossRef]
- Qayyum, M.; Yu, Y.; Tu, T.; Nizamani, M.M.; Ahmad, A.; Ali, M. Relationship between economic liberalization and intellectual property protection with regional innovation in China. A case study of Chinese provinces. PLoS ONE 2022, 17, e0259170. [Google Scholar] [CrossRef]
- Cheah, S.L.Y.; Yuen-Ping, H.O. Commercialization performance of outbound open innovation projects in public research organizations: The roles of innovation potential and organizational capabilities. Ind. Mark. Manag. 2021, 94, 229–241. [Google Scholar] [CrossRef]
- Rahimi, M.; Hafezalkotob, A.; Asian, S.; Martínez, L. Environmental policy making in supply chains under ambiguity and competition: A fuzzy Stackelberg game approach. Sustainability 2021, 13, 2367. [Google Scholar] [CrossRef]
- Meng, Q.; Li, M.; Liu, W.; Li, Z.; Zhang, J. Pricing policies of dual-channel green supply chain: Considering government subsidies and consumers’ dual preferences. Sustain. Prod. Consum. 2021, 26, 1021–1030. [Google Scholar] [CrossRef]
- Lerman, L.V.; Benitez, G.B.; Müller, J.M.; de Sousa, P.R.; Frank, A.G. Smart green supply chain management: A configurational approach to enhance green performance through digital transformation. Supply Chain Manag. Int. J. 2022, 27, 147–176. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Ginting, Y.M.; Sinaga, A.M.R.; Nainggolan, R.D. Analysis the Influence of Digital Marketing, Product Differentiation, Customer Value, Service Quality to Purchase Decision and Repurchase Intention of Millenial Generation at Shopee Online Shop. SEIKO J. Manag. Bus. 2022, 4, 134–153. [Google Scholar]
- Krestel, R.; Chikkamath, R.; Hewel, C.; Risch, J. A survey on deep learning for patent analysis. World Pat. Inf. 2021, 65, 102035. [Google Scholar] [CrossRef]
- Bondarenko, S.; Halachenko, O.; Shmorgun, L.; Volokhova, I.; Khomutenko, A.; Krainov, V. The Effectiveness of Network Systems in Providing Project Maturity of Public Management. TEM J. 2021, 10, 358–367. [Google Scholar] [CrossRef]
- Yang, T.; Yi, X.; Lu, S.; Johansson, K.H.; Chai, T. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering 2021, 7, 1224–1230. [Google Scholar] [CrossRef]
- Shah, S.M.A.; Jiang, Y.; Wu, H.; Ahmed, Z.; Ullah, I.; Adebayo, T.S. Linking green human resource practices and environmental economics performance: The role of green economic organizational culture and green psychological climate. Int. J. Environ. Res. Public Health 2021, 18, 10953. [Google Scholar] [CrossRef] [PubMed]
- Krishen, A.S.; Dwivedi, Y.K.; Bindu, N.; Kumar, K.S. A broad overview of interactive digital marketing: A bibliometric network analysis. J. Bus. Res. 2021, 131, 183–195. [Google Scholar] [CrossRef]
- Lee, C.C.; Qin, S.; Li, Y. Does industrial robot application promote green technology innovation in the manufacturing industry? Technol. Forecast. Soc. Change 2022, 183, 121893. [Google Scholar] [CrossRef]
- Yin, S.; Li, B.; Zhang, X.; Zhang, M. How to improve the quality and speed of green new product development? Processes 2019, 7, 443. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.T.; Kim, B.K.; Jeong, E.S. Patent value and survival of patents. J. Open Innov. Technol. Mark. Complex. 2021, 7, 119. [Google Scholar] [CrossRef]
- Rashid, M.I.A.; Ismail, S.; Mohamed, Z.; Arof, K.Z.M. Project Resources Management: Selecting Contractor for Public Construction Projects in Malaysia. In Project Management Practices: The Malaysian Insights and Trends; B P International Hooghly: Bhanjipur, India, 2021; pp. 28–33. [Google Scholar]
- Pan, C.; Abbas, J.; Álvarez-Otero, S.; Khan, H.; Cai, C. Interplay between corporate social responsibility and organizational green culture and their role in employees’ responsible behavior towards the environment and society. J. Clean. Prod. 2022, 366, 132878. [Google Scholar] [CrossRef]
- Yin, S.; Yu, Y. An adoption-implementation framework of digital green knowledge to improve the performance of digital green innovation practices for industry 5.0. J. Clean. Prod. 2022, 363, 132608. [Google Scholar] [CrossRef]
- Pratiwi, A.; Hadiani, F.; Pratiwi, L.N. Return on Assets pada Perusahaan Makanan dan Minuman yang terdaftar di BEI: Studi Pengaruh Current Ratio dan Debt to Equity Ratio. Indones. J. Econ. Manag. 2022, 2, 397–408. [Google Scholar] [CrossRef]
- Zimon, G.; Tarighi, H. Effects of the COVID-19 global crisis on the working capital management policy: Evidence from Poland. J. Risk Financ. Manag. 2021, 14, 169. [Google Scholar] [CrossRef]
- Yanto, E.; Christy, I.; Cakranegara, P.A. The influences of return on asset, return on equity, net profit margin, debt equity ratio and current ratio toward stock price. Int. J. Sci. Technol. Manag. 2021, 2, 300–312. [Google Scholar] [CrossRef]
- Kurniawan, A. Analysis of the effect of return on asset, debt to equity ratio, and total asset turnover on share return. J. Ind. Eng. Manag. Res. 2021, 2, 64–72. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Chen, S.M.; Tan, J.M. Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 1994, 67, 163–172. [Google Scholar] [CrossRef]
- Hong, D.H.; Choi, C.H. Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 2000, 114, 103–113. [Google Scholar] [CrossRef]
- Xu, Z.S. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177, 2363–2379. [Google Scholar] [CrossRef]
- Xu, Z.S. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl.-Based Syst. 2011, 24, 749–760. [Google Scholar] [CrossRef]
- Xu, Z.H.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Yu, X.; Xu, Z.S. Prioritized intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar] [CrossRef]
- Xu, Z.S.; Yager, R.R. Dynamic intuitionistic fuzzy multi-attribute decison making. Int. J. Approx. Reason. 2008, 48, 246–262. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Li, B.; Dong, H. A novel dynamic multi-attribute decision-making method based on the improved weights function and score function, and its application. J. Intell. Fuzzy Syst. 2018, 35, 6217–6227. [Google Scholar] [CrossRef]
- Gao, M.; Sun, T.; Zhao, T.; Dai, H. Dynamic multi-attribute fuzzy Decision making based on interval Intuitionistic fuzzy entropy and time entropy. Fuzzy Syst. Math. 2016, 30, 31–41. [Google Scholar]
- Yin, S.; Li, B.; Dong, H.; Xing, Z. A new dynamic multicriteria decision-making approach for green supplier selection in construction projects under time sequence. Math. Probl. Eng. 2017, 2017, 7954784. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yang, Z.L.; Zhou, W.; Chen, H. Dynamic Intuitionistic fuzzy multi-attribute Compromise Decision making based on time degree. Oper. Res. Manag. 2016, 25, 83–89. [Google Scholar]
- Xia, M.; Xu, Z. Generalized point operators for aggregating intuitionistic fuzzy information. Int. J. Intell. Syst. 2010, 25, 1061–1080. [Google Scholar] [CrossRef]
Factors | Specific Applications | Reference Source |
---|---|---|
Analytic hierarchy process (AHP) | Investment decision for solar projects | [28] |
AHP-fuzzy comprehensive evaluation method | Investment decision of high-tech industry project | [29] |
TOPSIS | Project investment decision of small and medium enterprises | [30] |
G1- entropy -TOPSIS evaluation method | New energy vehicle investment project evaluation | [31] |
The aspects of profit and risk | Enterprise technology innovation project decision | [32] |
Cash flow and discount rate | Enterprise investment project economic income evaluation | [33] |
Resource-based view | The unique resources of the project itself | [34,35,36] |
Project-related industry clustering advantage | The project is influenced by the advantages of industrial agglomeration | [37,38,39,40] |
Social digital innovation environment | Project agency costs and information advantages | [41,42] |
Financial market environment | The market environment for borrowing money and financing, dealing with various instruments and securities trading activities | [43,44,45] |
Commercialization expectation | Whether the project has a market and competitiveness | [46] |
Green market competition | The competitive situation of the project entering the green market needs attention | [47,48,49,50] |
Digital service differentiation degree | Bring a competitive edge to the project | [51] |
T1 | C1 | C2 | C3 | C4 |
A1 | <0.3, 0.4> | <0.2, 0.4> | <0.3, 0.4> | <0.4, 0.5> |
A2 | <0.4, 0.5> | <0.5, 0.1> | <0.6, 0.3> | <0.1, 0.8> |
A3 | <0.4, 0.6> | <0.1, 0.3> | <0.4, 0.6> | <0.6, 0.2> |
A4 | <0.1, 0.4> | <0.4, 0.5> | <0.6, 0.4> | <0.5, 0.4> |
T2 | C1 | C2 | C3 | C4 |
A1 | <0.5, 0.4> | <0.6, 0.4> | <0.2, 0.4> | <0.4, 0.5> |
A2 | <0.4, 0.6> | <0.7, 0.3> | <0.5, 0.5> | <0.6, 0.4> |
A3 | <0.7, 0.2> | <0.4, 0.5> | <0.4, 0.6> | <0.4, 0.3> |
A4 | <0.4, 0.5> | <0.3, 0.4> | <0.1, 0.4> | <0.4, 0.6> |
T3 | C1 | C2 | C3 | C4 |
A1 | <0.3, 0.5> | <0.6, 0.4> | <0.2, 0.4> | <0.4, 0.5> |
A2 | <0.5, 0.2> | <0.1, 0.3> | <0.2, 0.5> | <0.1, 0.2> |
A3 | <0.4, 0.4> | <0.4, 0.2> | <0.4, 0.1> | <0.4, 0.4> |
A4 | <0.6, 0.4> | <0.3, 0.5> | <0.6, 0.3> | <0.4, 0.4> |
S | H | Ranking | |
---|---|---|---|
A1 | 0.6331 | 0.9036 | 3 |
A2 | 0.6095 | 0.8713 | 4 |
A3 | 0.6894 | 0.9073 | 1 |
A4 | 0.6469 | 0.9122 | 2 |
IFGWHM Operator | IFWA Operator | |||||
---|---|---|---|---|---|---|
Time | S | H | Ranking | S | H | Ranking |
A1 | 0.6331 | 0.9036 | 3 | −0.0504 | 0.8210 | 4 |
A2 | 0.6095 | 0.8713 | 4 | 0.0198 | 0.7317 | 2 |
A3 | 0.6894 | 0.9073 | 1 | 0.1307 | 0.7467 | 1 |
A4 | 0.6469 | 0.9122 | 2 | −0.0025 | 0.8449 | 3 |
SUM Function | S | H | Ranking | S | H | Ranking |
A1 | 0.6352 | 0.9071 | 3 | −0.0422 | 0.8327 | 4 |
A2 | 0.6171 | 0.8474 | 4 | 0.0247 | 0.6945 | 2 |
A3 | 0.6826 | 0.9023 | 1 | 0.1302 | 0.7198 | 1 |
A4 | 0.6549 | 0.9170 | 2 | 0.0087 | 0.8450 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.; Yin, S.; Zhang, N. New Energy-Driven Construction Industry: Digital Green Innovation Investment Project Selection of Photovoltaic Building Materials Enterprises Using an Integrated Fuzzy Decision Approach. Systems 2023, 11, 11. https://doi.org/10.3390/systems11010011
Dong T, Yin S, Zhang N. New Energy-Driven Construction Industry: Digital Green Innovation Investment Project Selection of Photovoltaic Building Materials Enterprises Using an Integrated Fuzzy Decision Approach. Systems. 2023; 11(1):11. https://doi.org/10.3390/systems11010011
Chicago/Turabian StyleDong, Tong, Shi Yin, and Nan Zhang. 2023. "New Energy-Driven Construction Industry: Digital Green Innovation Investment Project Selection of Photovoltaic Building Materials Enterprises Using an Integrated Fuzzy Decision Approach" Systems 11, no. 1: 11. https://doi.org/10.3390/systems11010011
APA StyleDong, T., Yin, S., & Zhang, N. (2023). New Energy-Driven Construction Industry: Digital Green Innovation Investment Project Selection of Photovoltaic Building Materials Enterprises Using an Integrated Fuzzy Decision Approach. Systems, 11(1), 11. https://doi.org/10.3390/systems11010011