The System for Extracting Crime Elements and Predicting Excavation-Type Heritage Crimes Based on Deep Learning Models
Abstract
:1. Introduction
2. Research Aims
3. Related Works
3.1. Heritage Crime
3.2. Crime Prediction
4. The System for Extracting Crime Elements and Predicting Excavation-Type Heritage Crimes
4.1. Data
4.2. The Model of Extracting Crime Elements: Bi-LSTM + CRF Model
4.3. Analysis of Crime Elements
4.3.1. Temporal Characteristics of Excavation-Type Heritage Crimes
4.3.2. Spatial Characteristics of Excavation-Type Heritage Crimes
4.4. The Model of Crime Prediction: LSTM + SD (Special Day) Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Ogden, S. Understanding, Respect, and Collaboration in Cultural Heritage Preservation: A Conservator’s Developing Perspective. Libr. Trends 2007, 56, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Gill, D.W.J. Heritage Crime Matters. Antiquity 2015, 89, 991–993. [Google Scholar] [CrossRef]
- Jinsheng, M. Tomb Robbers in the Beijing Area during the Republican Period; Beijing Archives: Beijing, China, 2012; Volume 5, pp. 48–49. [Google Scholar]
- Xuebin, W. Raiders in a chaotic world: Tomb raiding and social governance in the northern areas of the republic of China (1912–1937). J. Dalian Univ. 2021, 4, 112–119. [Google Scholar]
- Liu, W. The Current Situation of Fighting and Preventing Cultural Relic Crimes in China and the Improvement of the System. J. Chin. Acad. Crim. Police 2021, 6, 21–30. [Google Scholar] [CrossRef]
- Stec, A.; Klabjan, D. Forecasting Crime with Deep Learning. arXiv 2018, arXiv:1806.01486. [Google Scholar] [CrossRef]
- Poyser, B. Threatened Pasts: Police Officers, Heritage Practitioners, and Victims of Heritage Crime; Nottingham Trent University: Nottingham, UK, 2020. [Google Scholar]
- Zhang, Y.; Cheng, T. Graph Deep Learning Model for Network-Based Predictive Hotspot Mapping of Sparse Spatio-Temporal Events. Comput. Environ. Urban Syst. 2020, 79, 101403. [Google Scholar] [CrossRef]
- Grove, L. Heritocide? Defining and exploring heritage crime. Public Archaeol. 2013, 12, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Bryant, R.; Kent, A.; Hills, J. Project 7708 Understanding Heritage Crime in Kent and Medway—A Data Analytical Approach. 2020. Available online: https://repository.canterbury.ac.uk/item/8wx70/project-7708-understanding-heritage-crime-in-kent-and-medway-a-data-analytical-approach (accessed on 10 April 2023).
- Manacorda, S.; Duncan, C. (Eds.) Crime in the Art and Antiquities World: Illegal Trafficking in Cultural Property; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Brodie, N. The criminal organization of the transnational trade in cultural objects: Two case studies. In The Palgrave Handbook on Art Crime; Palgrave Macmillan: London, UK, 2019; pp. 439–461. [Google Scholar]
- Weijun, L. The Current Situation and Countermeasures of Fighting and Preventing Crimes against Cultural Relics in China; People’s Public Security: Beijing, China, 2020.
- Balcells Magrans, M. Contemporary Archaeological Looting: A Criminological Analysis of Italian Tomb Robbers; CUNY Academic Works: New York, NY, USA, 2018. [Google Scholar]
- Gullotta, M.A. The Protection of Cultural Heritage: The Experience of the Italian Carabinieri Command. In Contested Holy Cities; Routledge: London, UK, 2019; pp. 184–196. [Google Scholar]
- Yumeng, X. Study on the Mechanism for Detecting Crimes of Excavation of Ancient Cultural Sites, Ancient Tombs. Ph.D. Thesis, People’s Public Security University of China, Beijing, China, 2019. [Google Scholar]
- Quetelet, L.A.J. A Treatise on Man and the Development of His Faculties; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Cohn, E.G. Weather and crime. Br. J. Criminol. 1990, 30, 51–64. [Google Scholar] [CrossRef]
- Peng, C.; Shu, X.; Yuan, H.; Li, D. Assessing Temporal and Weather Influences on Property Crime in Beijing, China. Crime Law Soc. Chang. 2011, 55, 1–13. [Google Scholar] [CrossRef]
- Bruederle, A.; Jörg, P.; Gareth, R. Weather and Crime in South Africa; RWI—Leibniz-Institut für Wirtschaftsforschung: Essen, Germany, 2017. [Google Scholar]
- Ding, N.; Zhai, Y. Crime prevention of bus pickpocketing in Beijing, China: Does air quality affect crime? Secur. J. 2021, 34, 262–277. [Google Scholar] [CrossRef]
- Merleau-Ponty, M.; Wild, J.D. The Structure of Behavior; Beacon Press: Boston, MA, USA, 1963. [Google Scholar]
- Kang, Y.; Cai, Z.; Tan, C.-W.; Huang, Q.; Liu, H. Natural Language Processing (NLP) in Management Research: A Literature Review. J. Manag. Anal. 2020, 7, 139–172. [Google Scholar] [CrossRef]
- Ku, C.-H.; Leroy, G. A Decision Support System: Automated Crime Report Analysis and Classification for e-Government. Gov. Inf. Q. 2014, 31, 534–544. [Google Scholar] [CrossRef]
- Umair, A.; Sarfraz, M.S.; Ahmad, M.; Habib, U.; Ullah, M.H.; Mazzara, M. Spatiotemporal Analysis of Web News Archives for Crime Prediction. Appl. Sci. 2020, 10, 8220. [Google Scholar] [CrossRef]
- Jinqiao, X.; Chundong, G.; Tian, M.; Dong, J.; Mengmeng, H.; Shuai, C. Research on the spatial and temporal distribution of internet fraud in china at the county scale. Geoscience 2021, 6, 1079–1087. [Google Scholar]
- Han, X.; Hu, X.; Wu, H.; Shen, B.; Wu, J. Risk Prediction of Theft Crimes in Urban Communities: An Integrated Model of LSTM and ST-GCN. IEEE Access 2020, 8, 217222–217230. [Google Scholar] [CrossRef]
- Park, K.-T.; Baek, J.-G. Various Type of Wavelet Filters on Time Series Forecasting. In Proceedings of the 2017 IEEE 11th International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 30 January–1 February 2017; pp. 258–259. [Google Scholar]
- Zhang, C.; Zhao, X.; Cai, M.; Wang, D.; Cao, L. A New Model for Predicting the Attributes of Suspects. Comput. Sci. Inf. Syst. 2020, 17, 705–715. [Google Scholar] [CrossRef]
- Chen, P.; Yuan, H.; Shu, X. Forecasting Crime Using the ARIMA Model. In Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20 October 2008; Volume 5. [Google Scholar] [CrossRef]
- Feng, M.; Zheng, J.; Ren, J.; Hussain, A.; Li, X.; Xi, Y.; Liu, Q. Big Data Analytics and Mining for Effective Visualization and Trends Forecasting of Crime Data. IEEE Access 2019, 7, 106111–106123. [Google Scholar] [CrossRef]
- Shoesmith, G.L. Space–Time Autoregressive Models and Forecasting National, Regional and State Crime Rates. Int. J. Forecast. 2013, 29, 191–201. [Google Scholar] [CrossRef]
- Cortez, B.; Carrera, B.; Kim, Y.-J.; Jung, J.-Y. An Architecture for Emergency Event Prediction Using LSTM Recurrent Neural Networks. Expert Syst. Appl. 2018, 97, 315–324. [Google Scholar] [CrossRef]
- Jha, S.; Yang, E.; Almagrabi, A.O.; Bashir, A.K.; Joshi, G.P. Comparative Analysis of Time Series Model and Machine Testing Systems for Crime Forecasting. Neural Comput. Appl. 2021, 33, 10621–10636. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Yen, M.-F.; Yu, L.-C. Grid-Based Crime Prediction Using Geographical Features. SPRS Int. J. Geo-Inf. 2018, 7, 298. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Lan, M.; Song, G.; Xiao, L.; Chen, J. Interpretable machine learning models for crime prediction. Comput. Environ. Urban Syst. 2022, 94, 101789. [Google Scholar] [CrossRef]
- Du, Y.; Ding, N. A Systematic Review of Multi-Scale Spatio-Temporal Crime Prediction Methods. SPRS Int. J. Geo-Inf. 2023, 12, 209. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Y.; Su, Q.; Cheng, L. Spatial Variation of Multiple Air Pollutants and Their Potential Contributions to All-Cause, Respiratory, and Cardiovascular Mortality across China in 2015–2016. Atmos. Environ. 2017, 168, 23–35. [Google Scholar] [CrossRef]
- Zhou, M.; Duan, N.; Liu, S.; Shum, H.-Y. Progress in Neural NLP: Modeling, Learning, and Reasoning. Engineering 2020, 6, 275–290. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Wortley, R.; Mazerolle, L. (Eds.) Willan, Environmental Criminology and Crime Analysis: Situating the Theory, Analytic Approach and Application. In Environmental Criminology and Crime Analysis; Routledge: London, UK, 2013; pp. 23–40. ISBN 978-0-203-11821-4. [Google Scholar]
- Yan, J.; Hou, M. Predicting time series of theft crimes based on LSTM network. Data Anal. Knowl. Discov. 2020, 4, 84–91. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, G.; Zhao, X.; Feng, Y.; Huang, J. CSAN: A Neural Network Benchmark Model for Crime Forecasting in Spatio-Temporal Scale. Knowl.-Based Syst. 2020, 189, 105120. [Google Scholar] [CrossRef]
- Wang, Z. History of Chinese Tomb Raiding; Jiuzhou press: Beijing, China, 2011. [Google Scholar]
- Towers, S.; Chen, S.; Malik, A.; Ebert, D. Factors Influencing Temporal Patterns in Crime in a Large American City: A Predictive Analytics Perspective. PLoS ONE 2018, 13, e0205151. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.; While, D.; Flynn, S.; Ibrahim, S.; Kapur, N.; Appleby, L.; Shaw, J. Do Homicide Rates Increase during Weekends and National Holidays? J. Forensic Psychiatry Psychol. 2019, 30, 367–380. [Google Scholar] [CrossRef]
- Wang, B.; Yin, P.; Bertozzi, A.L.; Brantingham, P.J.; Osher, S.J.; Xin, J. Deep Learning for Real-Time Crime Forecasting and Its Ternarization. Chin. Ann. Math. Ser. B 2019, 40, 949–966. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.E.; Felson, M. Social Change and Crime Rate Trends: A Routine Activity Approach. Am. Sociol. Rev. 1979, 44, 588. [Google Scholar] [CrossRef]
- Düzgün, H.S.; Polat, E. A Spatio-Temporal Crime Prediction Model for Crime Prevention. In Counter Terrorism in Diverse Communities; IOS Press: Amsterdam, The Netherlands, 2011; pp. 116–135. [Google Scholar]
- Hu, K.; Li, L.; Liu, J.; Sun, D. DuroNet: A Dual-Robust Enhanced Spatial-Temporal Learning Network for Urban Crime Prediction. ACM Trans. Internet Technol. 2021, 21, 1–24. [Google Scholar] [CrossRef]
- Levitt, S.D.; Miles, T.J. Economic Contributions to the Understanding of Crime. Annu. Rev. Law Soc. Sci. 2006, 2, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Malleson, N.; Andresen, M.A. Exploring the Impact of Ambient Population Measures on London Crime Hotspots. J. Crim. Justice 2016, 46, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Stewart, K.; Fan, J. Incorporating Space and Time into Random Forest Models for Analyzing Geospatial Patterns of Drug-Related Crime Incidents in a Major US Metropolitan Area. Comput. Environ. Urban Syst. 2021, 87, 101599. [Google Scholar] [CrossRef]
Model | RMSE | MAE |
---|---|---|
ARIMA | 0.544 | 0.122 |
Random Forest | 0.516 | 0.114 |
SVR | 0.517 | 0.166 |
BP Neural Networks | 0.518 | 0.109 |
LSTM | 0.515 | 0.113 |
Feature Variables | RMSE | Improvement of RMSE | MAE | Improvement of MAE |
---|---|---|---|---|
None | 0.515 | / | 0.113 | / |
Rain and snow | 0.482 | 6.4% | 0.06 | 46.9% |
Holiday | 0.482 | 6.4% | 0.059 | 47.8% |
Lunar Calendar | 0.484 | 6% | 0.064 | 43.4% |
All | 0.482 | 6.4% | 0.062 | 45.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Ding, N.; Zhai, Y.; Du, Y.; Xie, F. The System for Extracting Crime Elements and Predicting Excavation-Type Heritage Crimes Based on Deep Learning Models. Systems 2023, 11, 289. https://doi.org/10.3390/systems11060289
Lv H, Ding N, Zhai Y, Du Y, Xie F. The System for Extracting Crime Elements and Predicting Excavation-Type Heritage Crimes Based on Deep Learning Models. Systems. 2023; 11(6):289. https://doi.org/10.3390/systems11060289
Chicago/Turabian StyleLv, Hongyu, Ning Ding, Yiming Zhai, Yingjie Du, and Feng Xie. 2023. "The System for Extracting Crime Elements and Predicting Excavation-Type Heritage Crimes Based on Deep Learning Models" Systems 11, no. 6: 289. https://doi.org/10.3390/systems11060289
APA StyleLv, H., Ding, N., Zhai, Y., Du, Y., & Xie, F. (2023). The System for Extracting Crime Elements and Predicting Excavation-Type Heritage Crimes Based on Deep Learning Models. Systems, 11(6), 289. https://doi.org/10.3390/systems11060289