Artificial Intelligence and Green Total Factor Productivity: The Moderating Effect of Slack Resources
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
2.1. Artificial Intelligence and Corporate GTFP
2.2. The Moderating Effect of Slack Resources
2.2.1. The Moderating Effect of Absorbed Slack Resources
2.2.2. The Moderating Effect of Unabsorbed Slack Resources
2.2.3. The Moderating Effect of Potentially Lack Resources
3. Methodology
3.1. Definition and Measurement of Variables
3.1.1. Dependent Variable
3.1.2. Independent Variable
3.1.3. Moderating Variables
3.1.4. Control Variables
3.2. Model Design
3.3. Sample Selection
4. Results
4.1. Descriptive Statistics
4.2. Correlation
4.3. Regression Results and Analysis
4.4. Robustness Test
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Implications
5.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1. | https://www.gtarsc.com. accessed on 10 March 2023. |
2. | https://www.wind.com.cn. accessed on 10 March 2023. |
3. | https://www.cnrds.com. accessed on 10 March 2023. |
References
- Fan, S.; Huang, H.; Mbanyele, W.; Guo, Z.; Zhang, C. Inclusive Green Growth for Sustainable Development of Cities in China: Spatiotemporal Differences and Influencing Factors. Environ. Sci. Pollut. Res. Int. 2023, 30, 11025–11045. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Cao, H.; Sun, J. Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect. Int. J. Environ. Res. Public Health 2022, 19, 14776. [Google Scholar] [CrossRef] [PubMed]
- Bilan, Y.; Mishchuk, H.; Roshchyk, I.; Kmecova, I. An Analysis of Intellecutal Potential and Its Impact on the Social and Economic Development of European Countries. J. Compet. 2020, 12, 22–38. [Google Scholar] [CrossRef]
- Cheng, Y.; Lv, K.; Zhu, S. How Does Digital Financial Inclusion Promote Green Total Factor Productivity in China? An Empirical Analysis from the Perspectives of Innovation and Entrepreneurship. Process Saf. Environ. Prot. 2023, 174, 403–413. [Google Scholar] [CrossRef]
- Hailu, A.; Veeman, T.S. Non-Parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry. Am. J. Agric. Econ. 2001, 83, 605–616. [Google Scholar] [CrossRef]
- Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W. Does Green Innovation Induce Green Total Factor Productivity? Novel Findings from Chinese City Level Data. Technol. Forecast. Soc. Chang. 2022, 185, 122021. [Google Scholar] [CrossRef]
- Sun, Y.; Razzaq, A.; Kizys, R.; Bao, Q. High-Speed Rail and Urban Green Productivity: The Mediating Role of Climatic Conditions in China. Technol. Forecast. Soc. Change 2022, 185, 122055. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Y.; Guo, Y.; Chai, J.; Yang, C.; Wu, H. Digitalization and Electricity Consumption: Does Internet Development Contribute to the Reduction in Electricity Intensity in China? Energy Policy 2022, 164, 112912. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, C. The Internal-Structural Effects of Different Types of Environmental Regulations on China’s Green Total-Factor Productivity. Energy Econ. 2022, 113, 106246. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How Do Environmental Regulation and Environmental Decentralization Affect Green Total Factor Energy Efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Johnson, P.C.; Laurell, C.; Ots, M.; Sandström, C. Digital Innovation and the Effects of Artificial Intelligence on Firms’ Research and Development—Automation or Augmentation, Exploration or Exploitation? Technol. Forecast. Soc. Change 2022, 179, 121636. [Google Scholar] [CrossRef]
- Li, J.; Ma, S.; Qu, Y.; Wang, J. The Impact of Artificial Intelligence on Firms’ Energy and Resource Efficiency: Empirical Evidence from China. Resour. Policy 2023, 82, 103507. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Zheng, H.; Wang, Z.; Han, H.; Zeng, L. Artificial Intelligence, Resource Reallocation, and Corporate Innovation Efficiency: Evidence from China’s Listed Companies. Resour. Policy 2023, 81, 103324. [Google Scholar] [CrossRef]
- Bahoo, S.; Cucculelli, M.; Qamar, D. Artificial Intelligence and Corporate Innovation: A Review and Research Agenda. Technol. Forecast. Soc. Change 2023, 188, 122264. [Google Scholar] [CrossRef]
- Wagner, D.N. The Nature of the Artificially Intelligent Firm—An Economic Investigation into Changes That AI Brings to the Firm. Telecommun. Policy 2020, 44, 101954. [Google Scholar] [CrossRef]
- Valle-Cruz, D.; Fernandez-Cortez, V.; Gil-Garcia, J.R. From E-Budgeting to Smart Budgeting: Exploring the Potential of Artificial Intelligence in Government Decision-Making for Resource Allocation. Gov. Inf. Q. 2022, 39, 101644. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial Intelligence and Business Models in the Sustainable Development Goals Perspective: A Systematic Literature Review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Mikalef, P.; Conboy, K.; Lundström, J.E.; Popovič, A. Thinking Responsibly about Responsible AI and ‘the Dark Side’ of AI. Eur. J. Inf. Syst. 2022, 31, 257–268. [Google Scholar] [CrossRef]
- Sætra, H.S. AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System. Sustainability 2021, 13, 1738. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, B.; Wang, N. Non-Linear Relationship between Energy Consumption Transition and Green Total Factor Productivity: A Perspective on Different Technology Paths. Sustain. Prod. Consum. 2021, 28, 91–104. [Google Scholar] [CrossRef]
- Liu, B. Integration of Novel Uncertainty Model Construction of Green Supply Chain Management for Small and Medium-Sized Enterprises Using Artificial Intelligence. Optik 2023, 273, 170411. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef] [Green Version]
- Benzidia, S.; Makaoui, N.; Bentahar, O. The Impact of Big Data Analytics and Artificial Intelligence on Green Supply Chain Process Integration and Hospital Environmental Performance. Technol. Forecast. Soc. Change 2021, 165, 120557. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.-L.; Yang, Z. Can Artificial Intelligence Improve Green Economic Growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar] [CrossRef]
- Zhang, H.; Song, M.; Wang, Y. Does AI-Infused Operations Capability Enhance or Impede the Relationship between Information Technology Capability and Firm Performance? Technol. Forecast. Soc. Change 2023, 191, 122517. [Google Scholar] [CrossRef]
- Bosse, D.; Thompson, S.; Ekman, P. In Consilium Apparatus: Artificial Intelligence, Stakeholder Reciprocity, and Firm Performance. J. Bus. Res. 2023, 155, 113402. [Google Scholar] [CrossRef]
- Mustak, M.; Salminen, J.; Plé, L.; Wirtz, J. Artificial Intelligence in Marketing: Topic Modeling, Scientometric Analysis, and Research Agenda. J. Bus. Res. 2021, 124, 389–404. [Google Scholar] [CrossRef]
- Sun, Y.; Du, S.; Ding, Y. The Relationship between Slack Resources, Resource Bricolage, and Entrepreneurial Opportunity Identification—Based on Resource Opportunity Perspective. Sustainability 2020, 12, 1199. [Google Scholar] [CrossRef] [Green Version]
- Leuridan, G.; Demil, B. Exploring the Dynamics of Slack in Extreme Contexts: A Practice-Based View. Hum. Relat. 2022, 75, 1167–1193. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, P.; Tang, Z.; Tian, M. The Research Venation Analysis and Future Prospects of Organizational Slack. Sustainability 2022, 14, 12585. [Google Scholar] [CrossRef]
- Hernandez-Vivanco, A.; Bernardo, M. Are Certified Firms More Prone to Eco-Product Innovation? The Moderating Role of Slack Resources. J. Clean. Prod. 2022, 377, 134364. [Google Scholar] [CrossRef]
- Du, Y.; Kim, P.H.; Fourné, S.P.L.; Wang, X. In Times of Plenty: Slack Resources, R&D Investment, and Entrepreneurial Firms in Challenging Institutional Environments. J. Bus. Res. 2022, 145, 360–376. [Google Scholar] [CrossRef]
- Sener Tournus, P.; Didin-Sonmez, F.; Akben-Selcuk, E. How Does the Economic Policy Uncertainty Affect the Relationship between Financial Slack and Firm Performance in Emerging Countries? Manag. Decis. Econ. 2023, 44, 171–186. [Google Scholar] [CrossRef]
- Teirlinck, P. Engaging in New and More Research-Oriented R&D Projects: Interplay between Level of New Slack, Business Strategy and Slack Absorption. J. Bus. Res. 2020, 120, 181–194. [Google Scholar] [CrossRef]
- Han, J.; Chen, X.; Sun, Y. Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities? Sustainability 2021, 13, 10934. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Lv, X. Institutional Pressures and Firms’ Environmental Management Behavior: The Moderating Role of Slack Resources. J. Environ. Plan. Manag. 2022, 1–23. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. Does Renewable Energy Technological Innovation Matter for Green Total Factor Productivity? Empirical Evidence from Chinese Provinces. Sustain. Energy Technol. Assess. 2023, 55, 102966. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Feng, C. How Do Economic Freedom and Technological Innovation Affect Green Total-Factor Productivity? Cross-Country Evidence. Emerg. Mark. Finance Trade 2023, 59, 1426–1443. [Google Scholar] [CrossRef]
- Su, H.; Qu, X.; Tian, S.; Ma, Q.; Li, L.; Chen, Y. Artificial Intelligence Empowerment: The Impact of Research and Development Investment on Green Radical Innovation in High-Tech Enterprises. Syst. Res. Behav. Sci. 2022, 39, 489–502. [Google Scholar] [CrossRef]
- Yin, K.; Cai, F.; Huang, C. How Does Artificial Intelligence Development Affect Green Technology Innovation in China? Evidence from Dynamic Panel Data Analysis. Environ. Sci. Pollut. Res. 2023, 30, 28066–28090. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon Emission Reduction Effects of Industrial Robot Applications: Heterogeneity Characteristics and Influencing Mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Mai, Q. Robot Adoption and Green Productivity: Curse or Boon. Sustain. Prod. Consum. 2022, 34, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, H. Has the Digital Economy Changed the Urban Network Structure in China?—Based on the Analysis of China’s Top 500 New Economy Enterprises in 2020. Sustainability 2022, 14, 150. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, K.; Cui, Z.; Xu, J.; Zhao, X. Exploring the Impact of the Digital Economy on Green Total Factor Productivity in China: A Spatial Econometric Perspective. Front. Environ. Sci. 2023, 10, 1097944. [Google Scholar] [CrossRef]
- You, X.; Jia, S.; Dou, J.; Su, E. Is Organizational Slack Honey or Poison? Experimental Research Based on External Investors’ Perception. Emerg. Mark. Rev. 2020, 44, 100698. [Google Scholar] [CrossRef]
- Khan, S.J.; Mir, A.A. Ambidextrous Culture, Contextual Ambidexterity and New Product Innovations: The Role of Organizational Slack and Environmental Factors. Bus. Strategy Environ. 2019, 28, 652–663. [Google Scholar] [CrossRef]
- Weng, D.H.; Yang, K.-P. How Does Organizational Slack Influence Firm Performance? A Replication and Extension of Peng, Li, Xie, and Su (2010). Asia Pac. J. Manag. 2022, 1–30. [Google Scholar] [CrossRef]
- Lefebvre, V. A Bird in the Hand Is Better than Two in the Bush: Investigating the Relationship between Financial Slack and Profitability in Business Groups. BRQ Bus. Res. Q. 2021, 23409444211054510. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X.; Yuan, C.; Fan, W. Boundedly Rational Decisions on Exploration Versus Exploitation in Alliance Portfolios: Problemistic and Slack Searches Under CEO Overconfidence. Br. J. Manag. 2023. [Google Scholar] [CrossRef]
- Yang, L.; Qin, H.; Xia, W.; Gan, Q.; Li, L.; Su, J.; Yu, X. Resource Slack, Environmental Management Maturity and Enterprise Environmental Protection Investment: An Enterprise Life Cycle Adjustment Perspective. J. Clean. Prod. 2021, 309, 127339. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, W.; Zhou, W. The Multiple Mediation Effect of Absorptive Capacity on the Organizational Slack and Innovation Performance of High-Tech Manufacturing Firms: Evidence from Chinese Firms. Int. J. Prod. Econ. 2020, 229, 107754. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S. Does Slack Buffer? Market Performance after Environmental Shock. Sustainability 2021, 13, 9493. [Google Scholar] [CrossRef]
- Agustí, M.; Galán, J.L.; Acedo, F.J. The Effect of Slack Configurations on Company Performance from a Dynamic Perspective. Eur. Manag. Rev. 2022, 20, 170–187. [Google Scholar] [CrossRef]
- Lee, T.; Liu, W.; Yu, J. Does TMT Composition Matter to Environmental Policy and Firm Performance? The Role of Organizational Slack. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 196–213. [Google Scholar] [CrossRef]
- Shang, L.; Zhou, Y.; Hu, X.; Zhang, Z. How Does the Absorbed Slack Impact Corporate Social Responsibility? Exploring the Nonlinear Effect and Condition in China. Asian Bus. Manag. 2023, 22, 857–877. [Google Scholar] [CrossRef]
- Tabesh, P.; Vera, D.; Keller, R.T. Unabsorbed Slack Resource Deployment and Exploratory and Exploitative Innovation: How Much Does CEO Expertise Matter? J. Bus. Res. 2019, 94, 65–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Sun, M. Unabsorbed Slack Resources and Enterprise Innovation: The Moderating Effect of Environmental Uncertainty and Managerial Ability. Sustainability 2022, 14, 3782. [Google Scholar] [CrossRef]
- Kim, K.; Ok, C.; Kang, S.-C.; Bae, J.; Kwon, K. High-Performance Work Systems with Internal and External Contingencies: The Moderating Roles of Organizational Slack and Industry Instability. Hum. Resour. Manage. 2021, 60, 415–433. [Google Scholar] [CrossRef]
- Zuo, L.; Fisher, G.J.; Yang, Z. Organizational Learning and Technological Innovation: The Distinct Dimensions of Novelty and Meaningfulness That Impact Firm Performance. J. Acad. Mark. Sci. 2019, 47, 1166–1183. [Google Scholar] [CrossRef]
- Agusti-Perez, M.; Galan, J.L.; Acedo, F.J. Relationship between Slack Resources and Performance: Temporal Symmetry and Duration of Effects. Eur. J. Manag. Bus. Econ. 2020, 29, 255–275. [Google Scholar] [CrossRef]
- Carnes, C.M.; Xu, K.; Sirmon, D.G.; Karadag, R. How Competitive Action Mediates the Resource Slack–Performance Relationship: A Meta-Analytic Approach. J. Manag. Stud. 2019, 56, 57–90. [Google Scholar] [CrossRef] [Green Version]
- Mithani, M.A.; Gopalakrishnan, S.; Santoro, M.D. Does Exposure to a Traumatic Event Make Organizations Resilient? Long Range Plann. 2021, 54, 102031. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, M. The Relationship between Discretionary Slack and Growth in Small Firms. Int. Entrep. Manag. J. 2020, 16, 195–219. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, L.; Wang, A.; Wang, S.; Ma, H. Analysis of Regional Social Capital, Enterprise Green Innovation and Green Total Factor Productivity—Based on Chinese A-Share Listed Companies from 2011 to 2019. Sustainability 2023, 15, 34. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Wang, X.; Thatcher, J.B. Strategic Directions for Ai: The Role of Cios and Boards of Directors. MIS Q. 2021, 45, 1603–1643. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Guo, F. Digital Transformation and Environmental Performance: Evidence from Chinese Resource-Based Enterprises. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 1816–1840. [Google Scholar] [CrossRef]
- Xue, M.; Cao, X.; Feng, X.; Gu, B.; Zhang, Y. Is College Education Less Necessary with AI? Evidence from Firm-Level Labor Structure Changes. J. Manag. Inf. Syst. 2022, 39, 865–905. [Google Scholar] [CrossRef]
- Jin, L.; Choi, J.H.; Kim, S.; Cho, K. Slack Resources, Corporate Performance, and COVID-19 Pandemic: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 14354. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, L.; Sun, C. How Does Urban Environmental Legislation Guide the Green Transition of Enterprises? Based on the Perspective of Enterprises’ Green Total Factor Productivity. Energy Econ. 2022, 110, 106032. [Google Scholar] [CrossRef]
- Liu, P.; Wang, T. The Impact of Senior Executives’ Military Experience on Corporate GTFP. Discrete Dyn. Nat. Soc. 2023, 2023, e2851816. [Google Scholar] [CrossRef]
- Zhang, D.; Vigne, S.A. How Does Innovation Efficiency Contribute to Green Productivity? A Financial Constraint Perspective. J. Clean. Prod. 2021, 280, 124000. [Google Scholar] [CrossRef]
- Roberts, H.; Cowls, J.; Morley, J.; Taddeo, M.; Wang, V.; Floridi, L. The Chinese Approach to Artificial Intelligence: An Analysis of Policy, Ethics, and Regulation; SSRN: Rochester, NY, USA, 2019. [Google Scholar]
- Liu, M.; Li, C.; Wang, S.; Li, Q. Digital Transformation, Risk-Taking, and Innovation: Evidence from Data on Listed Enterprises in China. J. Innov. Knowl. 2023, 8, 100332. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z. Corporate Digital Transformation and Trade Credit Financing. J. Bus. Res. 2023, 160, 113793. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, S. Corporate Environmental Protection Behavior and Sustainable Development: The Moderating Role of Green Investors and Green Executive Cognition. Int. J. Environ. Res. Public Health 2023, 20, 4179. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, W.; Wu, H. How Does Digital Transformation Drive Green Total Factor Productivity? Evidence from Chinese Listed Enterprises. J. Clean. Prod. 2023, 406, 136954. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Qiao, Y.; Li, X.; Li, S. Does Improvement of Environmental Information Transparency Boost Firms’ Green Innovation? Evidence from the Air Quality Monitoring and Disclosure Program in China. J. Clean. Prod. 2022, 357, 131921. [Google Scholar] [CrossRef]
- Hao, X.; Wen, S.; Xue, Y.; Wu, H.; Hao, Y. How to Improve Environment, Resources and Economic Efficiency in the Digital Era? Resour. Policy 2023, 80, 103198. [Google Scholar] [CrossRef]
- Chiarini, A. Industry 4.0 Technologies in the Manufacturing Sector: Are We Sure They Are All Relevant for Environmental Performance? Bus. Strategy Environ. 2021, 30, 3194–3207. [Google Scholar] [CrossRef]
- Waltersmann, L.; Kiemel, S.; Stuhlsatz, J.; Sauer, A.; Miehe, R. Artificial Intelligence Applications for Increasing Resource Efficiency in Manufacturing Companies—A Comprehensive Review. Sustainability 2021, 13, 6689. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; Skitmore, M.; Ballesteros-Pérez, P. A Critical Review of the Current Research Mainstreams and the Influencing Factors of Green Total Factor Productivity. Environ. Sci. Pollut. Res. 2021, 28, 35392–35405. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xia, Q.; Li, Z. Green Innovation and Enterprise Green Total Factor Productivity at a Micro Level: A Perspective of Technical Distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Jiakui, C.; Abbas, J.; Najam, H.; Liu, J.; Abbas, J. Green Technological Innovation, Green Finance, and Financial Development and Their Role in Green Total Factor Productivity: Empirical Insights from China. J. Clean. Prod. 2023, 382, 135131. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, S.; Zhang, Y.; He, Y. Environmental Regulation Effect on Green Total Factor Productivity in the Yangtze River Economic Belt. J. Environ. Manage. 2023, 325, 116465. [Google Scholar] [CrossRef]
- Hao, X.; Wang, X.; Wu, H.; Hao, Y. Path to Sustainable Development: Does Digital Economy Matter in Manufacturing Green Total Factor Productivity? Sustain. Dev. 2023, 31, 360–378. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How Does Digital Economy Affect Green Total Factor Productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef]
- Tariq, A.; Ehsan, S.; Badir, Y.F.; Memon, M.A.; Khan Sumbal, M.S.U. Does Green Process Innovation Affect a Firm’s Financial Risk? The Moderating Role of Slack Resources and Competitive Intensity. Eur. J. Innov. Manag. 2022, 26, 1168–1185. [Google Scholar] [CrossRef]
- Pakurár, M.; Khan, M.A.; Benedek, A.; Oláh, J. The Impact of Green Practices, Cooperation and Innovation on the Performance of Supply Chains Using Statistical Method of Meta-Analysis. J. Int. Stud. 2020, 13, 111–128. [Google Scholar] [CrossRef]
AI | Business Intelligence | Image Understanding |
---|---|---|
Investment decision support system | Intelligent data analysis | Intelligent robot |
Machine learning | Deep learning | Semantic search |
Biometric identification technology | Face recognition | Speech recognition |
Authentication of identity | Autonomous driving | Natural language processing |
Variables | Symbol | Definitions | |
---|---|---|---|
Dependent variable | Green total factor productivity | GTFP | Super-SBM model |
Independent variable | AI | AI | Frequency of AI keywords in the annual report/total number of words in the annual report |
Moderating variables | Absorbed slack | AS | SG&A expense ratio = (administrative expenses + selling expenses)/sales revenue |
Unabsorbed slack | UAS | Current ratio = current assets/current liabilities | |
Potential slack | PS | Equity to debt ratio = net assets/total liabilities | |
Control variables | Size of enterprise | Size | Logarithm of total assets |
Size of board | Board | Logarithm of the number of board members | |
Net profit rate on total assets | ROA | Net profit/average balance of total assets | |
Nature of enterprise property right | SOE | It is 1 for state-owned enterprises and 0 otherwise | |
Cash flow ratio | Cashflow | Net cash flow from operating activities/total assets | |
Year of listing | ListAge | Logarithm of the year of listing plus 1 | |
Dummy variable of industry | Industry | Belonging to the industry is 1 and 0 otherwise | |
Dummy variable of year | Year | Belonging to the year is 1 and 0 otherwise |
Variables | N | Mean | SD | Min | Median | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
GTFP | 8511 | −0.81 | 0.519 | −2.1027 | −0.7846 | 0.7431 | 0.0479 | 3.3058 |
AI | 8511 | 0.02 | 0.043 | 0.0000 | 0.0000 | 0.1429 | 1.9365 | 5.4033 |
AS | 8511 | −2.13 | 0.753 | −4.2230 | −2.1083 | −0.4944 | −0.2365 | 3.0217 |
UAS | 8511 | 0.52 | 0.675 | −1.2103 | 0.4571 | 2.5380 | 0.3860 | 3.6602 |
PS | 8511 | 0.30 | 0.951 | −1.9796 | 0.2635 | 2.7114 | 0.1238 | 2.8214 |
Size | 8511 | 22.54 | 1.304 | 19.5511 | 22.3420 | 26.3978 | 0.6501 | 3.1580 |
ROA | 8511 | 0.04 | 0.051 | −0.1224 | 0.0330 | 0.1669 | −0.3344 | 4.8416 |
Board | 8511 | 2.14 | 0.194 | 1.6094 | 2.1972 | 2.7080 | −0.2649 | 3.9718 |
SOE | 8511 | 0.39 | 0.488 | 0.0000 | 0.0000 | 1.0000 | 0.4553 | 1.2073 |
ListAge | 8511 | 2.44 | 0.574 | 0.6931 | 2.4849 | 3.3322 | −0.5364 | 2.6238 |
Cashflow | 8511 | 0.05 | 0.064 | −0.1965 | 0.0475 | 0.2568 | −0.0215 | 4.0417 |
GTFP | AI | AS | UAS | PS | Size | ROA | Board | SOE | ListAge | Cashflow | |
---|---|---|---|---|---|---|---|---|---|---|---|
GTFP | 1 | ||||||||||
AI | 0.081 *** | 1 | |||||||||
AS | −0.219 *** | 0.035 *** | 1 | ||||||||
UAS | −0.040 *** | 0.066 *** | 0.359 *** | 1 | |||||||
PS | −0.181 *** | 0.028 ** | 0.399 *** | 0.769 *** | 1 | ||||||
Size | 0.278 *** | 0.048 *** | −0.445 *** | −0.427 *** | −0.541 *** | 1 | |||||
ROA | 0.069 *** | −0.0110 | −0.00300 | 0.281 *** | 0.329 *** | 0.044 *** | 1 | ||||
Board | 0.024 ** | −0.075 *** | −0.144 *** | −0.174 *** | −0.160 *** | 0.264 *** | 0.033 *** | 1 | |||
SOE | 0.055 *** | −0.090 *** | −0.271 *** | −0.269 *** | −0.293 *** | 0.345 *** | −0.089 *** | 0.247 *** | 1 | ||
ListAge | 0.104 *** | 0.062 *** | −0.238 *** | −0.308 *** | −0.349 *** | 0.400 *** | −0.091 *** | 0.142 *** | 0.448 *** | 1 | |
Cashflow | −0.022 ** | −0.0120 | −0.059 *** | −0.005 | 0.153 *** | 0.061 *** | 0.404 *** | 0.055 *** | −0.0140 | 0.023 ** | 1 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
GTFP | GTFP | GTFP | GTFP | |
AI | 0.6346 *** | 0.5419 *** | 0.5450 *** | 0.6120 *** |
(3.9551) | (3.4217) | (3.4474) | (3.8659) | |
AS | −0.1760 *** | |||
(−8.5976) | ||||
UAS | −0.0420 ** | |||
(−2.2119) | ||||
PS | −0.0584 *** | |||
(−3.9321) | ||||
AI × AS | 0.5087 ** | |||
(2.4866) | ||||
AI × UAS | 0.8740 *** | |||
(3.5667) | ||||
AI × PS | 0.3438 * | |||
(1.9610) | ||||
Size | 0.1151 *** | 0.0838 *** | 0.1066 *** | 0.0908 *** |
(6.0726) | (4.4910) | (5.5251) | (4.7013) | |
ROA | 0.5356 *** | 0.1683 | 0.6119 *** | 0.7086 *** |
(3.7515) | (1.1461) | (4.2237) | (4.8220) | |
Board | −0.0601 | −0.0628 | −0.0623 | −0.0566 |
(−1.2350) | (−1.3039) | (−1.2847) | (−1.1718) | |
SOE | −0.1076 ** | −0.0921 * | −0.1022 * | −0.1083 ** |
(−2.0070) | (−1.7566) | (−1.8989) | (−2.0152) | |
ListAge | 0.2853 *** | 0.2485 *** | 0.2392 *** | 0.2321 *** |
(6.3954) | (5.6847) | (5.4139) | (5.1927) | |
Cashflow | 0.1559 | 0.1018 | 0.1500 | 0.1604 |
(1.5193) | (1.0168) | (1.4610) | (1.5638) | |
Constant | −3.8400 *** | −3.5517 *** | −3.5131 *** | −3.1854 *** |
(−9.0264) | (−8.6202) | (−8.0221) | (−7.2384) | |
Industry FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Observations | 8511 | 8511 | 8511 | 8511 |
R-squared | 0.124 | 0.143 | 0.116 | 0.116 |
Variables | First Stage | Second Stage |
---|---|---|
AI | GTFP | |
AIt−1 | 0.2460 *** | |
(15.2450) | ||
AI | 1.6366 ** | |
(2.1896) | ||
Size | 0.0046 *** | 0.1138 *** |
(2.6388) | (5.5304) | |
ROA | −0.0078 | 0.4930 *** |
(−0.5624) | (3.1105) | |
Board | 0.0135 ** | −0.0795 |
(2.3191) | (−1.1890) | |
SOE | −0.0114 ** | −0.0401 |
(−2.4737) | (−0.7512) | |
ListAge | 0.0046 | 0.1155 * |
(0.8221) | (1.7967) | |
Cashflow | 0.0127 | 0.3686 *** |
(1.2119) | (3.0669) | |
Constant | −0.1338 *** | |
(−2.9658) | ||
Industry FE | YES | YES |
Year FE | YES | YES |
Observations | 5106 | 5106 |
R-squared | 0.224 | 0.101 |
Underidentification test p-value | 0.000 232.409 | |
Cragg-Donald Wald F statistic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, Y.; Cui, X.; Jin, S. Artificial Intelligence and Green Total Factor Productivity: The Moderating Effect of Slack Resources. Systems 2023, 11, 356. https://doi.org/10.3390/systems11070356
Ying Y, Cui X, Jin S. Artificial Intelligence and Green Total Factor Productivity: The Moderating Effect of Slack Resources. Systems. 2023; 11(7):356. https://doi.org/10.3390/systems11070356
Chicago/Turabian StyleYing, Ying, Xiaoyan Cui, and Shanyue Jin. 2023. "Artificial Intelligence and Green Total Factor Productivity: The Moderating Effect of Slack Resources" Systems 11, no. 7: 356. https://doi.org/10.3390/systems11070356
APA StyleYing, Y., Cui, X., & Jin, S. (2023). Artificial Intelligence and Green Total Factor Productivity: The Moderating Effect of Slack Resources. Systems, 11(7), 356. https://doi.org/10.3390/systems11070356