TriGCN: Graph Convolution Network Based on Tripartite Graph for Personalized Medicine Recommendation System
Abstract
:1. Introduction
2. Related Works
2.1. Bipartite Graph and Tripartite Graph
2.2. Graph Convolutional Network (GCN)
2.3. Recommendation System
2.4. Calibrated Label Ranking
3. The Proposed Model
3.1. Preprocessing of Data
3.1.1. Model Data Preprocessing
3.1.2. Recommendation System Data Preprocessing
3.2. TriGCN
3.2.1. Construction of Tripartite Graph
3.2.2. Propagation, Aggregation, and Update Operation of TriGCN Model
4. Personalized Recommendation System
4.1. Supplementary Data
4.2. Model Training and System Architecture
Algorithm 1 TriGCN and recommendation system |
Input: Tripartite graph , feature matrix , and , rating matrix , supplementary data set Output: Medicine recommendation list (Top 3, Top 5 or Top 10) , , for l = 0, 1, …, L do , , end , , compare with and if not equal to , , or , then return recommendation list else delete in recommendation list if not equal to , then return recommendation list else return recommendation list and food suggestion |
5. Experiment
5.1. Experimental Setup
5.2. Comparison and Discussion
5.3. Result Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Avanzo, M.; Porzio, M.; Lorenzon, L.; Milan, L.; Sghedoni, R.; Russo, G.; Massafra, R.; Fanizzi, A.; Barucci, A.; Ardu, V.; et al. Artificial Intelligence Applications in Medical Imaging: A Review of the Medical Physics Research in Italy. Phys. Med. 2021, 83, 221–241. [Google Scholar] [CrossRef]
- Mao, C.; Yao, L.; Luo, Y. MedGCN: Medication Recommendation and Lab Test Imputation via Graph Convolutional Networks. J. Biomed. Inform. 2022, 127, 104000. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, K.; Rong, H.; Bilal, K.; Yang, N.; Li, K. A Disease Diagnosis and Treatment Recommendation System Based on Big Data Mining and Cloud Computing. Inf. Sci. 2018, 435, 124–149. [Google Scholar] [CrossRef]
- Su, Y.; Shi, Y.; Lee, W.; Cheng, L.; Guo, H. TAHDNet: Time-Aware Hierarchical Dependency Network for Medication Recommendation. J. Biomed. Inform. 2022, 129, 104069. [Google Scholar] [CrossRef] [PubMed]
- Sebaa, A.; Chikh, F.; Nouicer, A.; Tari, A. Medical Big Data Warehouse: Architecture and System Design, a Case Study: Improving Healthcare Resources Distribution. J. Med. Syst. 2018, 42, 59. [Google Scholar] [CrossRef]
- Ricci, F.; Rokach, L.; Shapira, B. Recommender Systems: Introduction and Challenges. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Eds.; Springer: Boston, MA, USA, 2015; pp. 1–34. [Google Scholar]
- Gupta, A.; Matta, P.; Pant, B. Graph Neural Network: Current State of Art, Challenges and Applications. Mater. Today Proc. 2021, 46, 10927–10932. [Google Scholar] [CrossRef]
- Ullah, I.; Manzo, M.; Shah, M.; Madden, M.G. Graph Convolutional Networks: Analysis, Improvements and Results. Appl. Intell. 2022, 52, 9033–9044. [Google Scholar] [CrossRef]
- He, L.; Bai, L.; Yang, X.; Du, H.; Liang, J. High-Order Graph Attention Network. Inf. Sci. 2023, 630, 222–234. [Google Scholar] [CrossRef]
- Cui, Y.; Shao, C.; Luo, L.; Wang, L.; Gao, S.; Chen, L. Center Weighted Convolution and GraphSAGE Cooperative Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5508216. [Google Scholar] [CrossRef]
- Azhir, E.; Jafari Navimipour, N.; Hosseinzadeh, M.; Sharifi, A.; Darwesh, A. An Automatic Clustering Technique for Query Plan Recommendation. Inf. Sci. 2021, 545, 620–632. [Google Scholar] [CrossRef]
- Wang, X.; Han, L.; Li, J.; Yan, H. A Conditional Random Field Recommendation Method Based on Tripartite Graph. Expert. Syst. Appl. 2024, 238, 121804. [Google Scholar] [CrossRef]
- Jia, N.; Tian, X.; Zhang, Y.; Wang, F. Semi-Supervised Node Classification with Discriminable Squeeze Excitation Graph Convolutional Networks. IEEE Access 2020, 8, 148226–148236. [Google Scholar] [CrossRef]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In Proceedings of the KDD ‘18: The 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 19–23 August 2018. [Google Scholar]
- Jin, R.; Xia, T.; Liu, X.; Murata, T.; Kim, K.-S. Predicting Emergency Medical Service Demand with Bipartite Graph Convolutional Networks. IEEE Access 2021, 9, 9903–9915. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, H.; Li, Y.; Rong, Y.; Cheng, H.; Huang, X. Exploiting Node-Feature Bipartite Graph in Graph Convolutional Networks. Inf. Sci. 2023, 628, 409–423. [Google Scholar] [CrossRef]
- Yang, Z.; Zhihan, Z.; Haiying, L.; Weiyi, Z.; Qian, D.; Mingjie, T. Research on Commodities Constraint Optimization Based on Graph Neural Network Prediction. IEEE Access 2023, 11, 90131–90142. [Google Scholar] [CrossRef]
- van den Berg, R.; Kipf, T.N.; Welling, M. Graph Convolutional Matrix Completion. arXiv 2017, arXiv:1706.02263. [Google Scholar]
- Fan, Y.; Chen, M.; Pan, X. GCRFLDA: Scoring lncRNA-Disease Associations Using Graph Convolution Matrix Completion with Conditional Random Field. Brief. Bioinform. 2022, 23, bbab361. [Google Scholar] [CrossRef]
- Resnick, P.; Varian, H.R. Recommender Systems. Commun. ACM 1997, 40, 56–58. [Google Scholar] [CrossRef]
- Davoodi, E.; Kianmehr, K.; Afsharchi, M. A Semantic Social Network-Based Expert Recommender System. Appl. Intell. 2013, 39, 1–13. [Google Scholar] [CrossRef]
- Mooney, R.J.; Roy, L. Content-Based Book Recommending Using Learning for Text Categorization. arXiv 1999, arXiv:9902011. [Google Scholar]
- Liu, L.; Lecue, F.; Mehandjiev, N. Semantic Content-Based Recommendation of Software Services Using Context. ACM Trans. Web 2013, 7, 1–10. [Google Scholar] [CrossRef]
- kumar, R.; Ganapathy, G.; Kang, J.-J. K-Means Clustering with Content Based Doctor Recommendation for Cancer. Int. J. Adv. Cult. Technol. 2020, 8, 167–176. [Google Scholar]
- Breese, J.S.; Heckerman, D.; Kadie, C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. arXiv 2013, arXiv:abs/1301.7363. [Google Scholar]
- Wang, H.; Shao, N.; Lian, D. Adversarial Binary Collaborative Filtering for Implicit Feedback. Proc. AAAI Conf. Artif. Intell. 2019, 33, 5248–5255. [Google Scholar] [CrossRef]
- Li, G.; Ou, W. Pairwise Probabilistic Matrix Factorization for Implicit Feedback Collaborative Filtering. Neurocomputing 2016, 204, 17–25. [Google Scholar] [CrossRef]
- Pan, W.; Xia, S.; Liu, Z.; Peng, X.; Ming, Z. Mixed Factorization for Collaborative Recommendation with Heterogeneous Explicit Feedbacks. Inf. Sci. 2016, 332, 84–93. [Google Scholar] [CrossRef]
- Pu, Q.; Hu, B. Intelligent Movie Recommendation System Based on Hybrid Recommendation Algorithms. In Proceedings of the 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), Ballari, India, 2–3 November 2023. [Google Scholar]
- Yu, F.; Zeng, A.; Gillard, S.; Medo, M. Network-Based Recommendation Algorithms: A Review. Phys. A Stat. Mech. Its Appl. 2016, 452, 192–208. [Google Scholar] [CrossRef]
- Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; Yin, D. Graph Neural Networks for Social Recommendation. arXiv 2019, arXiv:1902.07243. [Google Scholar]
- Zhao, Z.; Zhang, X.; Zhou, H.; Li, C.; Gong, M.; Wang, Y. HetNERec: Heterogeneous Network Embedding Based Recommendation. Knowl. Based Syst. 2020, 204, 106218. [Google Scholar] [CrossRef]
- Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph Neural Networks in Recommender Systems: A Survey. arXiv 2022, arXiv:2011.02260. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, S.; Gao, M.; Jiang, X.; Xu, K.; Wang, L. Personalized Graph Neural Networks with Attention Mechanism for Session-Aware Recommendation. IEEE Trans. Knowl. Data Eng. 2022, 34, 3946–3957. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, H.; Li, J.; Zhang, Q.; Tang, Y. CKGAT: Collaborative Knowledge-Aware Graph Attention Network for Top-N Recommendation. Appl. Sci. 2022, 12, 1669. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, C.; Li, D.; Zhang, Z.; Lin, K.; Shen, X.; Xiong, N.N.; Wang, J. Multi-Perspective Social Recommendation Method with Graph Representation Learning. Neurocomputing 2022, 468, 469–481. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, M.; Xie, X.; Li, W.; Guo, M. Knowledge Graph Convolutional Networks for Recommender Systems. In Proceedings of the 2019 World Wide Web Conference (WWW ’19), San Francisco, CA, USA, 13–17 May 2019; pp. 3307–3313. [Google Scholar]
- Fürnkranz, J.; Hüllermeier, E.; Loza Mencía, E.; Brinker, K. Multilabel Classification via Calibrated Label Ranking. Mach. Learn. 2008, 73, 133–153. [Google Scholar] [CrossRef]
- Drugs.com—Prescription Drug Information. Available online: https://www.drugs.com/ (accessed on 9 March 2024).
- Drug Interaction Checker: Quickly Check Your Meds. Available online: https://www.drugs.com/drug_interactions.html (accessed on 9 March 2024).
- Pregnancy and Breastfeeding Warnings from Drugs.com. Available online: https://www.drugs.com/pregnancy/ (accessed on 9 March 2024).
- Drugs & Medications A to Z—Drugs.com. Available online: https://www.drugs.com/drug_information.html (accessed on 9 March 2024).
- Kaushik, A.C.; Mehmood, A.; Dai, X.; Wei, D.-Q. A Comparative Chemogenic Analysis for Predicting Drug-Target Pair via Machine Learning Approaches. Sci. Rep. 2020, 10, 6870. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Osuna, E.; Freund, R.; Girosi, F. An Improved Training Algorithm for Support Vector Machines. In Neural Networks for Signal Processing VII, Proceedings of the 1997 IEEE Signal Processing Society Workshop, Amelia Island, FL, USA, 24–26 September 1997; IEEE: Amelia Island, FL, USA, 1997; pp. 276–285. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Temoshok, L.; Diclemente, R.J.; Sweet, D.M.; Blois, M.S.; Sagebiel, R.W. Factors Related to Patient Delay in Seeking Medical Attention for Cutaneous Malignant Melanoma. Cancer 1984, 54, 3048–3053. [Google Scholar] [CrossRef]
- Xue, R.; Liao, J.; Shao, X.; Han, K.; Long, J.; Shao, L.; Ai, N.; Fan, X. Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model. Chem. Res. Toxicol. 2020, 33, 202–210. [Google Scholar] [CrossRef]
PATIENT_ID | DISEASE_ID | DISEASE_NAME | MEDICINE_ID | MEDICINE_NAME |
---|---|---|---|---|
1 | 1 | ASTHMA | 38 | BENRALIZUMAB |
31 | 1 | ASTHMA | 83 | DEXAMETHASONE |
509 | 2 | DIABETES_TYPE_2 | 52 | CANAGLIFLOZIN |
3909 | 3 | ANXIETY | 15 | ALPRAZOLAM |
10,999 | 5 | ANGINA | 253 | RANOLAZINE |
MEDICINE_NAME | INTERACTION_MEDICINE |
---|---|
ACETAMINOPHEN | AMOBARBITAL |
AMPHETAMINE | COBICISTAT |
AMITRIPTYLINE | ABIRATERONE |
HYDROXYCHLOROQUINE | PROPOXYPHENE |
IBUPROFEN | MIFEPRISTONE |
MEDICINE_NAME | INTERACTION_DISEASE |
---|---|
ACETAMINOPHEN | ALCOHOLISM |
AMPHETAMINE | GLAUCOMA |
CEPHALEXIN | LIVER DISEASE |
FENTANYL | FEVER |
HYDROXYCHLOROQUINE | BONE MARROW SUPPRESSION |
MEDICINE_NAME | INTERACTION_FOOD |
---|---|
ACETAMINOPHEN | ALCOHOL |
CIPROFLOXACIN | CAFFEINE |
AMLODIPINE | GRAPEFRUIT JUICE |
DOXYCYCLINE | MULTIVITAMINS WITH MINERALS |
DULOZETINE | SNRI ANTIDEPRESSANTS |
MEDICINE_AVOID_BREASTFEEDING_NAME |
---|
AMIODARONE |
CHLORAMPHENICOL |
ERGOTAMINE |
PHENINDIONE |
RETINOIDS |
MEDICINE_AVOID_PREGNANCY_NAME |
---|
LEVOTHYROXINE |
LIOTHYRONINE |
AMOXICILLIN |
AMLODIPINE |
SIMVASTATIN |
DISEASE_NAME | MEDICINE_NAME | RANK | FOOD_SUGGESTION |
---|---|---|---|
DIABETES_TYPE_2 | DAPAGLIFLOZIN AND METFORMIN | 1 | NO ALCOHOL |
REPAGLINIDE | 2 | NO ALCOHOL AND NO GRAPE JUICE | |
LIRAGLUTIDE | 3 | NO ALCOHOL |
DISEASE_NAME | MEDICINE_NAME | RANK | FOOD_SUGGESTION |
---|---|---|---|
HYPERTENSION | AMLODIPINE AND OLMESARTAN | 1 | NO MULTIVITAMINS |
BISOPROLOL | 2 | NO ALCOHOL AND NO MULTIVITAMINS | |
ALISKIREN | 3 | NOT SPECIFIED | |
ATENOLOL | 4 | NO ALCOHOL AND NO MULTIVITAMINS | |
OLMESARTAN | 5 | NOT SPECIFIED |
DISEASE_NAME | MEDICINE_NAME | RANK | FOOD_SUGGESTION |
---|---|---|---|
INSOMNIA | ESTAZOLAM | 1 | NO ALCOHOL |
FLURAZEPAM | 2 | NOT SPECIFIED | |
TRIAZOLAM | 3 | NOT SPECIFIED | |
LORAZEPAM | 4 | NOT SPECIFIED | |
ZOLPIDEM | 5 | NOT SPECIFIED | |
AMITRIPTYLINE | 6 | NO ALCOHOL | |
TEMAZEPAM | 7 | NO ALCOHOL | |
DOXYLAMINE | 8 | NOT SPECIFIED | |
ACETAMINOPHEN AND DIPHENHYDRAMINE | 9 | NO ALCOHOL | |
DOXEPIN | 10 | NO ALCOHOL |
Method | Accuracy | ||||
---|---|---|---|---|---|
Training:Test | |||||
1:1 | 2:1 | 3:1 | 4:1 | 9:1 | |
SVM | 81.95 | 82.88 | 84.32 | 85.67 | 87.30 |
Random Forest | 82.49 | 82.03 | 81.91 | 80.76 | 78.11 |
GNN | 73.41 | 77.65 | 81.85 | 84.37 | 87.58 |
GCN | 82.94 | 80.14 | 82.77 | 82.67 | 85.57 |
BGGCN | 83.89 | 83.97 | 86.06 | 87.97 | 87.40 |
TriGCN | 84.78 | 84.87 | 86.81 | 87.50 | 88.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Liao, S.; Guo, F. TriGCN: Graph Convolution Network Based on Tripartite Graph for Personalized Medicine Recommendation System. Systems 2024, 12, 398. https://doi.org/10.3390/systems12100398
Zhou H, Liao S, Guo F. TriGCN: Graph Convolution Network Based on Tripartite Graph for Personalized Medicine Recommendation System. Systems. 2024; 12(10):398. https://doi.org/10.3390/systems12100398
Chicago/Turabian StyleZhou, Huan, Sisi Liao, and Fanying Guo. 2024. "TriGCN: Graph Convolution Network Based on Tripartite Graph for Personalized Medicine Recommendation System" Systems 12, no. 10: 398. https://doi.org/10.3390/systems12100398
APA StyleZhou, H., Liao, S., & Guo, F. (2024). TriGCN: Graph Convolution Network Based on Tripartite Graph for Personalized Medicine Recommendation System. Systems, 12(10), 398. https://doi.org/10.3390/systems12100398