The Impact of Artificial Intelligence Marketing on E-Commerce Sales
Abstract
:1. Introduction
2. Literature Review
2.1. AI Marketing Overview
2.2. E-Commerce Sales Metrics
2.3. Theoretical Frameworks
- Storming: Determining use cases, evaluating data, and preparing infrastructure
- Solving: Constructing and evaluating AI models
- Scoping: Standardizing data collection and extending AI to new domains
- Scaling: utilizing AI to automate tasks, integrating AI into processes, and expanding throughout the company
2.4. Ethical Implications
- Privacy Issues
- ◦
- AI technologies often depend on extensive data collection, which can encroach on consumer privacy. The ways in which personal data are collected and used in AI-driven marketing are facing increased scrutiny [66].
- ◦
- The risk of misuse of sensitive data highlights the need for stringent data protection measures to protect consumer rights [67].
- Transparency and Accountability
- ◦
- ◦
- Discrimination and Bias
- ◦
- ◦
- Addressing these biases is crucial for creating a marketing environment that is inclusive and respectful of all consumer demographics [67].
3. Research Methodology
- Language Filtering: Documents not published in English were excluded, reducing the dataset to 58 documents.
- Relevance Filtering: Each document’s title and abstract were reviewed to assess its relevance to AI marketing. Eight documents were excluded based on the criterion that they did not focus specifically on AI marketing strategies. The final sample for this review consisted of 50 documents that explicitly address AI marketing in the context of e-commerce.
4. Data Analysis
5. Findings
5.1. Technological Advancements
5.2. Emerging Trends and Consumer Perspectives
5.3. Advanced Applications and Practical Implications
6. Discussion
6.1. Comparative Analysis
6.2. Challenges and Limitations
7. Conclusions
- ✓
- AI-driven recommendation engines and personalized marketing efforts have led to notable improvements in sales performance, as evidenced by increased conversion rates and higher sales figures.
- ✓
- AI optimizes ad spend and automates customer interactions, resulting in reduced CAC. AI tools such as chatbots and automated CRM systems have streamlined customer acquisition processes, leading to cost savings.
- ✓
- AI’s ability to analyze customer data and anticipate needs has improved customer satisfaction and loyalty, boosting CLV.
- ✓
- AI analytics provide detailed insights into campaign performance, enabling more effective resource allocation and improved ROMI.
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalakota, R. Electronic Commerce: A Manager’s Guide; AddisonWesley Longman: Boston, MA, USA, 1997. [Google Scholar]
- Holsapple, C.W.; Singh, M. Electronic commerce: From a definitional taxonomy toward a knowledge-management view. J. Organ. Comput. Electron. Commer. 2000, 10, 149–170. [Google Scholar] [CrossRef]
- Kwilinski, A.; Volynets, R.; Berdnik, I.; Holovko, M.; Berzin, P. E-Commerce: Concept and legal regulation in modern economic conditions. J. Leg. Ethical Regul. Isses 2019, 22, 1. [Google Scholar]
- Tan, F.T.C.; Pan, S.L.; Zuo, M. Realising platform operational agility through information technology–enabled capabilities: A resource-interdependence perspective. Inf. Syst. J. 2019, 29, 582–608. [Google Scholar] [CrossRef]
- Gielens, K.; Steenkamp, J.-B.E. Branding in the era of digital (dis) intermediation. Int. J. Res. Mark. 2019, 36, 367–384. [Google Scholar] [CrossRef]
- Amit, R.; Zott, C. Value drivers of e-commerce business models. Creat. Value Win. New Bus. Environ. 2017, 13–43. [Google Scholar]
- Mazzarol, T. SMEs engagement with e-commerce, e-business and e-marketing. Small Enterp. Res. 2015, 22, 79–90. [Google Scholar] [CrossRef]
- Dai, H.; Xiao, Q.; Yan, N.; Xu, X.; Tong, T. What influences online sales across different types of e-commerce platforms. Int. J. Electron. Commer. 2022, 26, 311–330. [Google Scholar]
- Thaichon, P.; Surachartkumtonkun, J.; Quach, S.; Weaven, S.; Palmatier, R.W. Hybrid sales structures in the age of e-commerce. J. Pers. Sell. Sales Manag. 2018, 38, 277–302. [Google Scholar]
- Tricahyadinata, I.; Za, S.Z. An Analysis on the use of Google AdWords to increase e-commerce sales. SZ Za I. Tricahyadinata 2017 Int. J. Soc. Sc. Manag. 2017, 4, 60–67. [Google Scholar]
- Liu, G.; Fei, S.; Yan, Z.; Wu, C.-H.; Tsai, S.-B. An Empirical Study on Response to Online Customer Reviews and E-Commerce Sales: From the Mobile Information System Perspective. Mob. Inf. Syst. 2020, 2020, 8864764. [Google Scholar] [CrossRef]
- Ullal, M.S.; Spulbar, C.; Hawaldar, I.T.; Popescu, V.; Birau, R. The impact of online reviews on e-commerce sales in India: A case study. Econ. Res.-Ekon. Istraživanja 2021, 34, 2408–2422. [Google Scholar] [CrossRef]
- Bawack, R.E.; Wamba, S.F.; Carillo, K.D.A.; Akter, S. Artificial intelligence in E-Commerce: A bibliometric study and literature review. Electron. Mark. 2022, 32, 297–338. [Google Scholar] [CrossRef]
- Kreutzer, R.T. Künstliche intelligenz im marketing. In Marketing Analytics: Perspektiven–Technologien–Anwendungsfelder; Haufe-Lexware: Breisgau, Germany, 2022; pp. 119–138. [Google Scholar]
- Castillo, M.J.; Taherdoost, H. The impact of AI technologies on e-business. Encyclopedia 2023, 3, 107–121. [Google Scholar] [CrossRef]
- Yau, K.-L.A.; Saad, N.M.; Chong, Y.-W. Artificial intelligence marketing (AIM) for enhancing customer relationships. Appl. Sci. 2021, 11, 8562. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Artificial intelligence and sentiment analysis: A review in competitive research. Computers 2023, 12, 37. [Google Scholar] [CrossRef]
- Patil, S.M.; Kharat, A.M.; Jain, S.; Tripathi, V.V.R.; Bisen, G.K.; Joshi, A. Investigating the Influence and Function of Artificial Intelligence in Contemporary Marketing Management: Marketing in the AI Era. In Proceedings of the 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 9–10 May 2024; pp. 1–5. [Google Scholar]
- Barat, A.; Gulati, K. Emergence of AI in Marketing and its Implications. Lloyd Bus. Rev. 2024, 3, 1–24. [Google Scholar] [CrossRef]
- Oueslati, K.; Ayari, S. A Bibliometric Analysis on Artificial Intelligence in Marketing: Implications for Scholars and Managers. J. Internet Commer. 2024, 23, 1–29. [Google Scholar] [CrossRef]
- Goti, A.; Querejeta-Lomas, L.; Almeida, A.; de la Puerta, J.G.; López-de-Ipiña, D. Artificial Intelligence in Business-to-Customer Fashion Retail: A Literature Review. Mathematics 2023, 11, 2943. [Google Scholar] [CrossRef]
- Lomas, L.Q.; Elordi, A.G.; Escondrillas, A.A.; De, D.L.D.I.G. A systematic literature review of artificial intelligence in fashion retail B2C. In Proceedings of the 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), Bol and Split, Croatia, 8–11 September 2021; pp. 1–6. [Google Scholar]
- Rico Gómez, R.; Lorentz, J.; Hartmann, T.; Goknil, A.; Pal Singh, I.; Halaç, T.G.; Boruzanlı Ekinci, G. An AI pipeline for garment price projection using computer vision. Neural Comput. Appl. 2024, 36, 15631–15651. [Google Scholar] [CrossRef]
- Kumar, V.; Ashraf, A.R.; Nadeem, W. AI-powered marketing: What, where, and how? Int. J. Inf. Manag. 2024, 77, 102783. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Qadri, M.A.; Singh, R.P.; Suman, R. Artificial intelligence (AI) applications for marketing: A literature-based study. Int. J. Intell. Netw. 2022, 3, 119–132. [Google Scholar] [CrossRef]
- Labib, E. Artificial intelligence in marketing: Exploring current and future trends. Cogent Bus. Manag. 2024, 11, 2348728. [Google Scholar] [CrossRef]
- Hermann, E. Leveraging artificial intelligence in marketing for social good—An ethical perspective. J. Bus. Ethics 2022, 179, 43–61. [Google Scholar] [CrossRef]
- Chintalapati, S.; Pandey, S.K. Artificial intelligence in marketing: A systematic literature review. Int. J. Mark. Res. 2022, 64, 38–68. [Google Scholar] [CrossRef]
- Loureiro, S.M.C.; Guerreiro, J.; Tussyadiah, I. Artificial intelligence in business: State of the art and future research agenda. J. Bus. Res. 2021, 129, 911–926. [Google Scholar] [CrossRef]
- Davenport, T.H.; Ronanki, R. Artificial intelligence for the real world. Harv. Bus. Rev. 2018, 96, 108–116. [Google Scholar]
- Jarek, K.; Mazurek, G. Marketing and artificial intelligence. Cent. Eur. Bus. Rev. 2019, 8, 46–55. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, R.; Deb, S.; Maitra, D. Artificial intelligence in marketing: Systematic review and future research direction. Int. J. Inf. Manag. Data Insights 2021, 1, 100002. [Google Scholar] [CrossRef]
- Sundqvist, B.; Ohanisian, J. Utilization of AI in Digital Marketing: An Empirical Study of Artificial Intelligence and the Impact of Effectiveness, Ethics and Regulations. 2023. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1760891&dswid=7312 (accessed on 8 October 2024).
- Haidar, I. Applications of Artificial Intelligence in E-Commerce. J. Artif. Intell. Gen. Sci. 2024, 5, 32–38. [Google Scholar] [CrossRef]
- Detscher, S.; Stoll, M. Impact of AI on the Digital Sales Funnel in E-Commerce: A Comparative Analysis of German and US Fashion Online Stores. In Digitales Management und Marketing: So Nutzen Unternehmen die Marktchancen der Digitalisierung; Springer: Wiesbaden, Germany, 2021; pp. 425–443. [Google Scholar]
- Akshara, R.; Jain, A. Data to Decisions: Optimizing E-commerce Sales Potential with Analytics. Int. Res. J. Adv. Eng. Hub 2024, 2, 1087–1093. [Google Scholar] [CrossRef]
- Kasemrat, R.; Kraiwanit, T. Benchmarking Machine Learning Models for Predictive Analytics in E-Commerce; Elsevier BV: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Manoharan, G.; Sharma, A.; Vani, V.D.; Raj, V.H.; Jain, R.; Nijhawan, G. Predictive Analytics for Inventory Management in E-commerce Using Machine Learning Algorithms. In Proceedings of the 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 9–10 May 2024; pp. 1–5. [Google Scholar]
- Liu, C.B.; McCoy, E.J. Measuring E-commerce metric changes in online experiments. In Proceedings of the Companion Proceedings of the ACM Web Conference 2023, Austin, TX, USA, 30 April–4 May 2023; pp. 495–499. [Google Scholar]
- Berru Beltran, R.J.; Velásquez Lázaro, G.A.; Vilca Castro, D.E. E-Commerce Application to Improve the Sales Process of the Melatec Company; LACCEI: Boca Raton, FL, USA, 2023; Volume 1. [Google Scholar]
- Vidani, J. Evaluating the Influence of Social Media Advertising on E-Commerce Sales. J. Adv. Res. HR Organ. Manag. 2024, 11, 52–58. [Google Scholar] [CrossRef]
- Ellis-Chadwick, F.; Chaffey, D. Digital Marketing: Strategy, Implementation and Practice; Pearson: London, UK, 2012. [Google Scholar]
- Lemon, K.N.; Verhoef, P.C. Understanding customer experience throughout the customer journey. J. Mark. 2016, 80, 69–96. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Musa, H.G.; Fatmawati, I.; Nuryakin, N.; Suyanto, M. Marketing research trends using technology acceptance model (TAM): A comprehensive review of researches (2002–2022). Cogent Bus. Manag. 2024, 11, 2329375. [Google Scholar] [CrossRef]
- Sarp, S. Artificial Intelligence in advertisements: A conceptual framework based on the technology acceptance model. Econ. Bus. Organ. Res. 2023, 5, 161–174. [Google Scholar]
- Cheng, C.-F.; Huang, C.-C.; Lin, M.-C.; Chen, T.-C. Exploring Effectiveness of Relationship Marketing on Artificial Intelligence Adopting Intention. SAGE Open 2023, 13, 21582440231222760. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rana, N.P.; Dwivedi, Y.K.; Baabdullah, A.M. Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technol. Forecast. Soc. Chang. 2021, 170, 120880. [Google Scholar] [CrossRef]
- Wang, C.; Ahmad, S.F.; Ayassrah, A.Y.B.A.; Awwad, E.M.; Irshad, M.; Ali, Y.A.; Al-Razgan, M.; Khan, Y.; Han, H. An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon 2023, 9, e18349. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Li, J.-C.; Lin, Y.; Yang, Y.-C. Extending the theory of planned behavior model to explain people’s behavioral intentions to follow China’s AI generated content law. BMC Psychol. 2024, 12, 367. [Google Scholar] [CrossRef] [PubMed]
- Herari, N.; Yunus, U.; Swarnakar, S.; Darli, L.; Arya, S.; Mir, A.A.; Shihab, M.N.P.; Pant, L.; Upadhyaya, S.; Gupta, M. Advertising: Methods, Research and Practices; Sayak Pal: Kolkata, India, 2024. [Google Scholar]
- Kotler, P.; Keller, K.L.; Brady, M.; Goodman, M.; Hansen, T. Marketing Management 3rd edn PDF eBook; Pearson Higher Education: London, UK, 2016. [Google Scholar]
- Wind, A.; Constantinides, E.; de Vries, S. Marketing a transparent Artificial Intelligence (AI): A preliminary study on message design. In Proceedings of the 18th International Marketing Trends Conference 2019, Venice, Italy, 17–19 January 2019. [Google Scholar]
- Jiang, X.; Chiu, D.K.; Chan, C.T. Application of the AIDA model in social media promotion and community engagement for small cultural organizations: A case study of the Choi Chang Sau Qin Society. In Community Engagement in the Online Space; IGI Global: Hershey, PA, USA, 2023; pp. 48–70. [Google Scholar]
- Li, J.; Yu, H. An innovative marketing model based on AIDA:-A case from e-bank campus-marketing by China Construction Bank. I-Business 2013, 5, 47. [Google Scholar] [CrossRef]
- Magistretti, S.; Legnani, M.; Pham, C.T.A.; Dell’Era, C. The 4S Model for AI Adoption: Integrating Design Thinking and Technology Development. Res.-Technol. Manag. 2024, 67, 54–63. [Google Scholar] [CrossRef]
- Bettoni, A.; Matteri, D.; Montini, E.; Gładysz, B.; Carpanzano, E. An AI adoption model for SMEs: A conceptual framework. IFAC-PapersOnLine 2021, 54, 702–708. [Google Scholar] [CrossRef]
- Choudhary, S.; Kaushik, N.; Sivathanu, B.; Rana, N.P. Assessing Factors Influencing Customers’ Adoption of AI-Based Voice Assistants. J. Comput. Inf. Syst. 2024, 1–18. [Google Scholar] [CrossRef]
- Oyekunle, D.O.T.; Okwudili Matthew, U.; Preston, D.; Boohene, D. Trust beyond Technology Algorithms: A Theoretical Exploration of Consumer Trust and Behavior in Technological Consumption and AI Projects. J. Comput. Commun. 2024, 12, 10-4236. [Google Scholar] [CrossRef]
- Lambrecht, A.; Tucker, C. Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. Manag. Sci. 2019, 65, 2966–2981. [Google Scholar] [CrossRef]
- Lepri, B.; Oliver, N.; Letouzé, E.; Pentland, A.; Vinck, P. Fair, transparent, and accountable algorithmic decision-making processes: The premise, the proposed solutions, and the open challenges. Philos. Technol. 2018, 31, 611–627. [Google Scholar] [CrossRef]
- Eslami, M.; Karahalios, K.; Sandvig, C.; Vaccaro, K.; Rickman, A.; Hamilton, K.; Kirlik, A. First I “like” it, then I hide it: Folk Theories of Social Feeds. In Proceedings of the 2016 cHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 2371–2382. [Google Scholar]
- Zeng, D.; Chen, H.; Lusch, R.; Li, S.-H. Social media analytics and intelligence. IEEE Intell. Syst. 2010, 25, 13–16. [Google Scholar] [CrossRef]
- Benjelloun, A.; Kabak, S. Ethical Challenges and Managerial Implications of Artificial Intelligence in Digital Marketing. In Proceedings of the Congress on Intelligent Systems; Springer: Singapore, 2023; pp. 439–445. [Google Scholar]
- Singh, J.P.; Mishra, N. Rise of Artificial Intelligence in Marketing: Strategies for Ethical Implementation. In Ethical AI and Data Management Strategies in Marketing; IGI Global: Hershey, PA, USA, 2024; pp. 171–189. [Google Scholar]
- Rakova, B.; Yang, J.; Cramer, H.; Chowdhury, R. Where responsible AI meets reality: Practitioner perspectives on enablers for shifting organizational practices. Proc. ACM Hum.-Comput. Interact. 2021, 5, 1–23. [Google Scholar] [CrossRef]
- Akter, S.; Dwivedi, Y.K.; Sajib, S.; Biswas, K.; Bandara, R.J.; Michael, K. Algorithmic bias in machine learning-based marketing models. J. Bus. Res. 2022, 144, 201–216. [Google Scholar] [CrossRef]
- Adomavicius, G.; Yang, M. Integrating behavioral, economic, and technical insights to understand and address algorithmic bias: A human-centric perspective. ACM Trans. Manag. Inf. Syst. 2022, 13, 1–27. [Google Scholar] [CrossRef]
- Huang, M.H.; Rust, R.T. A strategic framework for artificial intelligence in marketing. J. Acad. Mark. Sci. 2021, 49, 30–50. [Google Scholar] [CrossRef]
- Liu-Thompkins, Y.; Okazaki, S.; Li, H. Artificial empathy in marketing interactions: Bridging the human-AI gap in affective and social customer experience. J. Acad. Mark. Sci. 2022, 50, 1198–1218. [Google Scholar] [CrossRef]
- Mostafa, R.B.; Kasamani, T. Antecedents and consequences of chatbot initial trust. Eur. J. Mark. 2022, 56, 1748–1771. [Google Scholar] [CrossRef]
- Yin, J.; Qiu, X. Ai technology and online purchase intention: Structural equation model based on perceived value. Sustainability 2021, 13, 5671. [Google Scholar] [CrossRef]
- Arsenijevic, U.; Jovic, M. Artificial Intelligence Marketing: Chatbots. In Proceedings of the Proceedings—2019 International Conference on Artificial Intelligence: Applications and Innovations, IC-AIAI 2019, Belgrade, Serbia, 30 September–4 October 2019; pp. 19–22. [Google Scholar]
- Chen, H.; Chan-Olmsted, S.; Kim, J.; Mayor Sanabria, I. Consumers’ perception on artificial intelligence applications in marketing communication. Qual. Mark. Res. 2022, 25, 125–142. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H. Artificial intelligence-enabled personalization in interactive marketing: A customer journey perspective. J. Res. Interact. Mark. 2023, 17, 663–680. [Google Scholar] [CrossRef]
- Forrest, E.; Hoanca, B. Artificial intelligence: Marketing’s game changer. In Trends and Innovations in Marketing Information Systems; IGI Global: Hershey, PA, USA, 2015; pp. 45–64. [Google Scholar]
- Ho, S.P.S.; Chow, M.Y.C. The role of artificial intelligence in consumers’ brand preference for retail banks in Hong Kong. J. Financ. Serv. Mark. 2024, 29, 292–305. [Google Scholar] [CrossRef]
- Skirpan, M.; Fiesler, C. Ad empathy: A design fiction. In Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work, Sanibel Island, FL, USA, 7–10 January 2018; pp. 267–273. [Google Scholar]
- Nivetha, P.; Sudhamathi, S. Marketing trends using latest technology. Int. J. Recent Technol. Eng. 2019, 8, 700–703. [Google Scholar] [CrossRef]
- Kulkarni, P.; Bhoj, R.; Rajapure, S.; Gujar, S.; Verma, D.; Ranjan, R. Camelot: AI-Powered Campaign Management System. In Proceedings of the 2021 2nd Global Conference for Advancement in Technology, GCAT 2021, Bangalore, India, 1–3 October 2021. [Google Scholar]
- Kovanova, E.S.; Momotova, O.N.; Batchaev, I.Z.; Sklyarova, I.V.; Ponomareva, E.A. Prospects for marketing management in the context of artificial intelligence development. Adv. Res. Russ. Bus. Manag. 2021, 2021, 583–590. [Google Scholar]
- Anayat, S.; Rasool, G. Artificial intelligence marketing (AIM): Connecting-the-dots using bibliometrics. J. Mark. Theory Pract. 2022, 32, 114–135. [Google Scholar] [CrossRef]
- Wu, C.W.; Monfort, A. Role of artificial intelligence in marketing strategies and performance. Psychol. Mark. 2023, 40, 484–496. [Google Scholar] [CrossRef]
- Chandra, K.V.; Sudha Rani, K.; Singh, P.; Rambabu, C.V.; Vidya Sagar, K.; Billa, P. Artificial Intelligence Techniques to Revolutionize the Marketing Strategies for Enormous Business Expansion. In Proceedings of the 2023 1st International Conference on Advances in Electrical, Electronics and Computational Intelligence, ICAEECI 2023, Tiruchengode, India, 19–20 October 2023. [Google Scholar]
- Durai, S.; Manoharan, G.; Priya, T.S.; Jayanthi, R.; Razak, A.; Ashtikar, S.P. Quantifying the impacts of artificial intelligence implementations in marketing. In Smart and Sustainable Interactive Marketing; IGI Global: Hershey, PA, USA, 2024; pp. 120–144. [Google Scholar]
- Li, Y.; Liang, Z.; Wang, Y.; Chang, Y. The negative effect of service robots’ affective human-likeness on consumer satisfaction in frontline service encounters. Int. J. Hosp. Manag. 2023, 115, 103603. [Google Scholar] [CrossRef]
- Gonçalves, A.R.; Pinto, D.C.; Rita, P.; Pires, T. Artificial Intelligence and Its Ethical Implications for Marketing. Emerg. Sci. J. 2023, 7, 313–327. [Google Scholar] [CrossRef]
- Makhlooqa, A.; Mubarakb, M.A. Artificial intelligence and marketing: Challenges and opportunities. In Technological Innovations for Business, Education and Sustainability; Emerald Publishing Limited: Leeds, UK, 2024; pp. 3–16. [Google Scholar]
- Todorova, A.; Antonova, D. Smart Marketing Solutions: Applications with Artificial Intelligence to Increase the Effectiveness of Marketing Operations. In Proceedings of the 7th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2023—Proceedings, Ankara, Turkiye, 26–28 October 2023. [Google Scholar]
- Nguyen, L.T.; Dang, T.Q.; Duc, D.T.V. The Dark Sides of AI Advertising: The Integration of Cognitive Appraisal Theory and Information Quality Theory. Soc. Sci. Comput. Rev. 2024. [Google Scholar] [CrossRef]
- Shukla, D.; Dwivedi, S.K. A Comparative Study of Text-Based Emotion Detection Techniques for Emotion Recognition on Social Media Data. In Proceedings of the 2023 IEEE 7th Conference on Information and Communication Technology, CICT 2023, Jabalpur, India, 15–17 December 2023. [Google Scholar]
- Jatmika, R.T.D.; Ratnasari, V.; Nadlifatin, R. Empowering Micro-Entrepreneurs through Artificial Intelligence: A Conceptual Framework for AI-Based Marketing. Procedia Comput. Sci. 2024, 234, 1087–1094. [Google Scholar] [CrossRef]
- Pugna, I.B.; Popescu, I.C.; Henson, M. AI and New Forms of Market Interaction to Enhance Customer Experience—A Management Perspective. In Proceedings of the Springer Proceedings in Business and Economics; Springer: Cham, Switzerland, 2024; pp. 35–47. [Google Scholar]
- Alenezi, A.M.; Alsmairat, M.A.K.; Ljepava, N. Integrating the Triple Pillar: AI Marketing’s Pathway to Enhancing Industry 5.0 Through Sustainability, Resilience, and Customer Engagement. In Proceedings of the 2nd International Conference on Cyber Resilience, ICCR 2024, Dubai, United Arab Emirates, 26–28 February 2024. [Google Scholar]
- Lv, L.; Huang, M. Can Personalized Recommendations in Charity Advertising Boost Donation? The Role of Perceived Autonomy. J. Advert. 2024, 53, 36–53. [Google Scholar] [CrossRef]
- Reddy, K.V.; Sreenivas, T.; Lavanya, G. AI Marketing: How to use Artificial Intelligence for Cause-Related Marketing. AIP Conf. Proc. 2023, 2821, 020006. [Google Scholar]
- Ghaith, R.E.A.; Al-Hawary, S.I.S.; Mohammad, L.S.; Singh, D.; Mohammad, A.A.S.; Al-Adamat, A.M.; Lemoun, A.A.A.; Alqahtani, M.M. Impact of Artificial Intelligence Technologies on Marketing Performance. In Contributions to Management Science; Springer: Singapore, 2023; Volume Part F1640, pp. 49–60. [Google Scholar]
- Shukla, R.P.; Juneja, D.; Monga, S. Predictive Analytics in Marketing Using Artificial Intelligence. In Proceedings of the Lecture Notes in Networks and Systems; Springer: Singapore, 2024; pp. 213–224. [Google Scholar]
- Armutcu, B.; Tan, A.; Ho, S.P.S.; Chow, M.Y.C.; Gleason, K.C. The effect of bank artificial intelligence on consumer purchase intentions. Kybernetes, 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Keegan, B.J.; Iredale, S.; Naudé, P. Examining the dark force consequences of AI as a new actor in B2B relationships. Ind. Mark. Manag. 2023, 115, 228–239. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, F.; Fan, X.; Liu, F. Artificial intelligence psychological anthropomorphism: Scale development and validation. Serv. Ind. J. 2024. [Google Scholar] [CrossRef]
- Moutinho, L.; Menezes, K.; Menezes, S. Using neuroscience to understand consumers. In Biometrics and Neuroscience Research in Business and Management: Advances and Applications; Verlag Max Niemeyer: Halle, Germany, 2024; pp. 245–277. [Google Scholar]
Purpose | Description | AI Tools Involved | References |
---|---|---|---|
Personalized Product Recommendations | AI algorithms analyze customer preferences and behavior to provide customized product recommendations | Recommendation Systems | [25,28] |
Predictive Analytics | AI models optimize marketing campaigns, identify potential prospects, and forecast customer churn | Predictive Models | [27,28] |
Automated Content Generation | AI-powered tools generate personalized content at scale, including product descriptions and social media posts | Content Generation Tools | [25,26] |
Chatbots and Virtual Assistants | AI-driven chatbots offer round-the-clock customer service, address inquiries, and assist in purchasing | Chatbots, Virtual Assistants | [27,28] |
Study | Year | Source Title | Citations | Document Type |
---|---|---|---|---|
[71] | 2021 | Journal of the Academy of Marketing Science | 449 | Article |
[72] | 2022 | Journal of the Academy of Marketing Science | 72 | Article |
[73] | 2022 | European Journal of Marketing | 69 | Article |
[74] | 2021 | Sustainability (Switzerland) | 57 | Article |
[75] | 2019 | Proceedings—2019 International Conference on Artificial Intelligence: Applications and Innovations, IC-AIAI 2019 | 57 | Conference paper |
[76] | 2022 | Qualitative Market Research | 30 | Article |
[77] | 2023 | Journal of Research in Interactive Marketing | 28 | Article |
[16] | 2021 | Applied Sciences (Switzerland) | 25 | Review |
[78] | 2015 | Trends and Innovations in Marketing Information Systems | 22 | Book chapter |
[79] | 2024 | Journal of Financial Services Marketing | 18 | Article |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madanchian, M. The Impact of Artificial Intelligence Marketing on E-Commerce Sales. Systems 2024, 12, 429. https://doi.org/10.3390/systems12100429
Madanchian M. The Impact of Artificial Intelligence Marketing on E-Commerce Sales. Systems. 2024; 12(10):429. https://doi.org/10.3390/systems12100429
Chicago/Turabian StyleMadanchian, Mitra. 2024. "The Impact of Artificial Intelligence Marketing on E-Commerce Sales" Systems 12, no. 10: 429. https://doi.org/10.3390/systems12100429
APA StyleMadanchian, M. (2024). The Impact of Artificial Intelligence Marketing on E-Commerce Sales. Systems, 12(10), 429. https://doi.org/10.3390/systems12100429