Spatiotemporal Synergistic Effect and Categorized Management Policy of CO2 and Air Pollutant Reduction and Economic Growth Under China’s Interregional Trade
Abstract
1. Introduction
2. Materials and Methods
2.1. Inventories of CO2 and Air Pollutant Emissions
2.2. Emissions and Value Added Derived from Interregional Trade
2.3. Coupling Coordination Degree Model
2.4. Structural Decomposition Analysis (SDA)
2.5. Data Sources
3. Results and Discussion
3.1. Spatiotemporal Characteristics of CO2 and Air Pollutant Emissions and Value Added Derived from Interregional Trade
3.2. Distribution Characteristics of Consumption-Based CO2 and Air Pollutant Emissions and Value Added in Various Industries
3.3. Spatiotemporal Characteristics of Synergistic Effect of CO2 and Air Pollution Reduction and Economic Growth
3.4. Driving Factors of Changes in CO2 and Air Pollutant Emissions and Value Added
3.5. Coordinated Management Strategies Based on Driving Factors
4. Conclusions and Policy Recommendations
4.1. Conclusions
4.2. Policy Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature Abbreviations | |
MRIO | multi-regional input–output |
SDA | structural decomposition analysis |
CO2 | carbon dioxide |
PM2.5 | 2.5-micrometer particulate matter |
SO2 | sulfur dioxide |
NOx | nitrogen oxides |
VOCs | volatile organic compounds |
IPCC | Intergovernmental Panel on Climate Change |
IDA | index decomposition analysis |
CEADs | China Emission Accounts and Datasets |
MEIC | Multi-Resolution Emission Inventory for China |
Symbols | |
ECO2 | CO2 emission |
Ai | energy consumption |
LCV | average low-calorific value |
CC | CO2 content per unit calorific value |
COR | rate of CO2 oxidation |
EPM2.5 | PM2.5 emission |
EF | PM2.5 emission factor |
X | total output matrix |
(I − A)−1 | Leontief inverse matrix |
Y | final demand matrix |
f | CO2 emission intensity coefficient |
er | region r CO2 emission |
xr | region r total output |
^ | diagonal matrix |
region r production-based emissions | |
region r consumption-based emissions | |
y | final product consumption |
C | degree of coupling |
U1 | carbon dioxide-abatement system |
U2 | air pollutant-abatement system |
U3 | economic growth system |
T | Composite Harmonization Index |
D | coupling coordination degree |
B | inverse Leontief matrix |
F | final demand matrix |
L | final demand level matrix |
M | final demand coefficient matrix |
N | final demand distribution matrix |
Δ | the change between the calculation period and the base period |
Regions and Provinces Abbreviations | |
Regions | Provinces |
Jing-Jin (JJ) | Beijing (BJ), Tianjin (TJ) |
North Coast (NC) | Hebei (HE), Shandong (SD) |
Northeast (NE) | Heilongjiang (HLJ), Jinlin (JL), Liaoning (LN) |
East Coast (EC) | Jiangsu (JS), Zhejiang (ZJ), Shanghai (SH) |
Central (C) | Shanxi (SX), Henan (HA), Anhui (AH), Hubei (HB), Hunan (HN), Jiangxi (JX) |
South Coast (SC) | Fujian (FJ), Guangdong (GD), Hainan (HI) |
Southwest (SW) | Sichuan (SI), Chongqing (CQ), Guangxi (GX), Guizhou (GZ), Yunnan (YN) |
Northwest (NW) | Inner Mongolia (IM), Xinjiang (XJ), Shaanxi (SN), Gansu (GS), Ningxia (NX), Qinghai (QH) |
References
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sust. Energ. Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Xiao, Q.; Geng, G.; Xue, T.; Liu, S.; Cai, C.; He, K.; Zhang, Q. Tracking PM2.5 and O3 pollution and the related health burden in China 2013–2020. Environ. Sci. Technol. 2021, 56, 6922–6932. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Xia, M.; Zhang, Y.; Xu, D.; Lu, S. A Study on the Heterogeneity of China’s Provincial Economic Growth Contribution to Carbon Emissions. Systems 2024, 12, 391. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhang, J.; Chen, J. Tax incentives, environmental regulation and firms’ emission reduction strategies: Evidence from China. J. Environ. Econ. Manag. 2023, 117, 102750. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Wang, H.; Gu, K.; Sun, H.; Xiao, H. Reconfirmation of the symbiosis on carbon emissions and air pollution: A spatial spillover perspective. Sci. Total Environ. 2023, 858, 159906. [Google Scholar] [CrossRef]
- Wei, L.; Lu, Z.; Wang, Y.; Liu, X.; Wang, W.; Wu, C.; Zhao, X.; Rahimi, S.; Xia, W.; Jiang, Y. Black carbon-climate interactions regulate dust burdens over India revealed during COVID-19. Nat. Commun. 2022, 13, 1839. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Song, J.; Akhter, Z.H.; Zhang, J. Understanding aerosol–climate–ecosystem interactions and the implications for terrestrial carbon sink using the Community Earth System Model. Agric. For. Meteorol. 2023, 340, 109625. [Google Scholar] [CrossRef]
- Deshmukh, R.; Weber, P.; Deschenes, O.; Hernandez-Cortes, D.; Kordell, T.; Lee, R.; Malloy, C.; Mangin, T.; Meng, M.; Sum, S.; et al. Equitable low-carbon transition pathways for California’s oil extraction. Nat. Energy 2023, 8, 597–609. [Google Scholar] [CrossRef]
- Nie, Y.; Deng, M.; Shan, M.; Yang, X. Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications. Energ. Policy 2023, 179, 113659. [Google Scholar] [CrossRef]
- Li, N.; Chen, W.; Rafaj, P.; Kiesewetter, G.; Schopp, W.; Wang, H.; Zhang, H.; Krey, V.; Riahi, K. Air quality improvement co-benefits of low-carbon pathways toward well below the 2 C climate target in China. Environ. Sci. Technol. 2019, 53, 5576–5584. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Xu, S.; Cao, J.; Ren, F.; Wei, W.; Meng, J.; Wu, L. Air pollution reduction and climate co-benefits in China’s industries. Nat. Sustain. 2021, 4, 417–425. [Google Scholar] [CrossRef]
- Xuan, X.; Zhang, F.; Deng, X.; Bai, Y. Measurement and spatio-temporal transfer of greenhouse gas emissions from agricultural sources in China: A food trade perspective. Resour. Conserv. Recycl. 2023, 197, 107100. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Geng, Y.; Zhang, B.; Yang, S.; Izikowitz, D.V.; Yin, H.; Wu, F.; Yu, H.; Liu, H.; Zhou, W. Examining industrial air pollution embodied in trade: Implications of a hypothetical China-UK FTA. Environ. Dev. Sustain. 2023, 25, 13253–13279. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Huang, Z. Low-carbon economic resilience: The inequality embodied in inter-regional trade. Cities 2024, 144, 104646. [Google Scholar] [CrossRef]
- Dong, J.; Li, S.; Xing, J.; Sun, Y.; Yang, J.; Ren, L.; Zeng, X.; Sahu, S.K. Air pollution control benefits in reducing inter-provincial trade-associated environmental inequality on PM2.5-related premature deaths in China. J. Cleaner Prod. 2022, 350, 131435. [Google Scholar] [CrossRef]
- Wang, F.; Liu, B.; Zhang, B. Embodied environmental damage in interregional trade: A MRIO-based assessment within China. J. Cleaner Prod. 2017, 140, 1236–1246. [Google Scholar] [CrossRef]
- Chen, J.; Lin, X.; Wang, X.; Peng, L.; Yu, A. Characteristics and transfer paths of CO2 emissions embodied in trade and China’s carbon reduction strategies. Environ. Sci. Pollut. Res. 2023, 30, 58077–58089. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report, the Fifth Assessment Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Zeng, Q.H.; He, L.Y. Study on the synergistic effect of air pollution prevention and carbon emission reduction in the context of “dual carbon”: Evidence from China’s transport sector. Energ. Policy 2023, 173, 113370. [Google Scholar] [CrossRef]
- Yang, T.; Yi, L.; Li, J.; Liang, Q. Have the pilot carbon markets achieved synergistic control of carbon abatement and pollution reduction? The quasi-experimental evidence from China. Energy Environ. 2023. [Google Scholar] [CrossRef]
- Li, M.; Zhang, D.; Li, C.T.; Selin, N.E.; Karplus, V.J. Co-benefits of China’s climate policy for air quality and human health in China and transboundary regions in 2030. Environ. Res. Lett. 2019, 14, 084006. [Google Scholar] [CrossRef]
- Chen, S.; Tan, Z.; Mu, S.; Wang, J.; Chen, Y.; He, X. Synergy level of pollution and carbon reduction in the Yangtze River Economic Belt: Spatial-temporal evolution characteristics and driving factors. Sustain. Cities Soc. 2023, 98, 104859. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Q.; Wang, K.; Liu, Y.; Shen, W. Spatial patterns and evolution trend of coupling coordination of pollution reduction and carbon reduction along the Yellow River Basin, China. Ecol. Indic. 2023, 154, 110797. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.; Zhao, H. Analysis of collaborative emission reduction of air pollutants and greenhouse gases under carbon neutrality target: A case study of Beijing, China. Clean Technol. Environ. Policy 2023, 1–14. [Google Scholar] [CrossRef]
- Tan-Soo, J.S.; Li, L.; Qin, P.; Zhang, X.B. Do CO2 emissions trading schemes deliver co-benefits? Evidence from Shanghai. Clim. Policy 2022, 22, 64–76. [Google Scholar] [CrossRef]
- Wei, X.; Tong, Q.; Magill, I.; Vithayasrichareon, P.; Betz, R. Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China’s electricity sector. Energy Econ. 2020, 92, 104917. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X. Evolutionary game analysis of air pollution co-investment in emission reductions by steel enterprises under carbon quota trading mechanism. J. Environ. Manag. 2022, 317, 115376. [Google Scholar] [CrossRef]
- Guo, Z.; Bai, X.; Liu, S.; Luo, L.; Hao, Y.; Lv, Y.; Tian, H. Heterogeneous Variations on Historical and Future Trends of CO2 and Multiple Air Pollutants from the Cement Production Process in China: Emission Inventory, Spatial–Temporal Characteristics, and Scenario Projections. Environ. Sci. Technol. 2022, 56, 14306–14314. [Google Scholar] [CrossRef]
- Ercan, T.; Onat, N.C.; Keya, N.; Tatari, O.; Eluru, N.; Kucukvar, M. Autonomous electric vehicles can reduce carbon emissions and air pollution in cities. Transp. Res. Part D Transp. Environ. 2022, 112, 103472. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Chen, B.; Li, Y.X.; Zhou, S.L.; Zou, X.W.; Zhang, N.; Zhou, Y.R.; Chen, H.X.; Zou, J.; Zeng, X.H.; et al. The co-benefits of clean air and low-carbon policies on heavy metal emission reductions from coal-fired power plants in China. Resour. Conserv. Recycl. 2022, 181, 106258. [Google Scholar] [CrossRef]
- Xia, Q.; Han, M.; Wu, X. Evolution and drivers of energy embodied in intermediate and final trade between China and the world. Earth’s Future 2022, 10, e2022EF002968. [Google Scholar] [CrossRef]
- Chen, K.; Huang, T.; Zhang, X.; Liu, X.; Jian, X.; Zhu, R.; Wang, L.; Tao, S.; Liu, J.; Gao, H.; et al. Drivers of global methane emissions embodied in international beef trade. Environ. Sci. Technol. 2022, 56, 11256–11265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Han, X. Is decoupling embodied carbon emissions from economic output in Sino-US trade possible? Technol. Forecast. Social. Change 2021, 169, 120805. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Imbalance of carbon embodied in South-South trade: Evidence from China-India trade. Sci. Total Environ. 2020, 707, 134473. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy 2017, 107, 585–599. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Liu, H.; Wu, B.; Liu, S.; Shao, P.; Liu, X.; Zhu, C.; Wang, Y.; Wu, Y.; Xue, Y.; Gao, J.; et al. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China. Atmos. Environ. 2018, 181, 20–33. [Google Scholar] [CrossRef]
- Zheng, H.; Xu, L. Production and consumption-based primary PM2.5 emissions: Empirical analysis from China’s interprovincial trade. Resour. Conserv. Recycl. 2020, 155, 104661. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, H.; Chen, H.; Wang, R.; Zhang, Y.; Su, S.; Chen, Y.; Lin, N.; Zhuo, S.; Zhong, Q.; et al. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environ. Sci. Technol. 2014, 48, 13834–13843. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Hong, C.; Zhao, H.; Qin, Y.; Burney, J.A.; Pongratz, J.; Hartung, K.; Liu, Y.; Moore, F.C.; Jackson, R.B.; Zhang, Q.; et al. Land-use emissions embodied in international trade. Science 2022, 376, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Xie, R.; Su, B.; Wang, Q. CO2 terms of trade and its determinants based on input–output models with technical differences. Econ. Syst. Res. 2024, 1–29. [Google Scholar] [CrossRef]
- Zhao, H.; Geng, G.; Liu, Y.; Liu, Y.; Zheng, Y.; Xue, T.; Tian, H.; He, K.; Zhang, Q. Reduction of global life expectancy driven by trade-related transboundary air pollution. Environ. Sci. Technol. Lett. 2022, 9, 212–218. [Google Scholar] [CrossRef]
- Wang, S.J.; Kong, W.; Ren, L.; Zhi, D.D. Research on misuses and modification of coupling coordination degree model in China. J. Nat. Resour. 2021, 36, 793–810. [Google Scholar] [CrossRef]
- Yang, J.; Dong, H.; Jiang, T. Structural emission reduction in China’s industrial systems and energy systems: An input-output analysis. Environ. Sci. Pollut. Res. 2022, 29, 6010–6025. [Google Scholar] [CrossRef]
- Zhang, G.X.; Han, J.L.; Su, B. Contributions of cleaner production and end-of-pipe treatment to NOx emissions and intensity reductions in China, 1997–2018. J. Environ. Manag. 2023, 326, 116822. [Google Scholar] [CrossRef]
- Zheng, H.R.; Bai, Y.C.; Wei, W.D.; Meng, J.; Zhang, Z.K.; Song, M.L.; Guan, D.B. Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Sci. Data 2021, 8, 244. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 1–14. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- He, W.; Zhao, H.; Cheng, J.; Liu, Y.; He, K.; Zhang, Q. Trade-driven changes in China’s air pollutant emissions during 2012–2017. Sci. Total Environ. 2023, 875, 162659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Feng, K.; Hubacek, K.; Wang, J.; Liu, M.; Jing, L.; Jiang, H.; Liu, N.; Zhang, P.; et al. Revealing environmental inequality hidden in China’s inter-regional trade. Environ. Sci. Technol. 2018, 52, 7171–7181. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef]
- Feng, Y.; Ning, M.; Lei, Y.; Sun, Y.; Liu, W.; Wang, J. Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [Google Scholar] [CrossRef]
Energy Sources | LCV (kJ/kg) | CC (tC/TJ) | COR |
---|---|---|---|
Raw coal | 20,908 | 26.37 | 0.94 |
Coke | 28,435 | 29.5 | 0.93 |
Crude oil | 41,816 | 20.1 | 0.98 |
Fuel oil | 41,816 | 21.1 | 0.98 |
Gasoline | 43,070 | 18.9 | 0.98 |
Kerosene | 43,070 | 19.5 | 0.98 |
Diesel oil | 42,652 | 20.2 | 0.98 |
Natural gas | 38,931 | 15.3 | 0.99 |
Cleaned coal | 26,344 | 25.4 | 1 |
Other washed coal | 13,591 | 25.4 | 1 |
Briquette | 15,473 | 33.6 | 0.90 |
Coke oven gas | 179,813 | 13.6 | 0.99 |
Other coal gas | 52,278 | 13.6 | 0.99 |
Other coking products | 33,779 | 29.5 | 0.93 |
Other petroleum products | 40,980 | 20.0 | 0.98 |
Energy Sources | Emission Factors |
---|---|
Raw coal | 10.00 (g kg−1) |
Coke | 0.14 (g kg−1) |
Crude oil | 0.27 (g kg−1) |
Fuel oil | 1.34 (g kg−1) |
Gasoline | 0.27 (g kg−1) |
Kerosene | 0.90 (g kg−1) |
Diesel oil | 0.94 (g kg−1) |
Natural gas | 0.17 (g m−3) |
Cleaned coal | 1.65 (g kg−1) |
Other washed coal | 1.65 (g kg−1) |
Briquette | 0.625 (g kg−1) |
Coke oven gas | 0.14 (g m−3) |
Other coal gas | 0.14 (g m−3) |
Other coking products | 0.14 (g kg−1) |
Other petroleum products | 1.34 (g kg−1) |
Year | JJ | NC | NE | EC | C | SC | SW | NW |
---|---|---|---|---|---|---|---|---|
2012 | 0.700 | 0.455 | 0.654 | 0.686 | 0.649 | 0.532 | 0.657 | 0.558 |
2015 | 0.720 | 0.469 | 0.674 | 0.686 | 0.672 | 0.635 | 0.692 | 0.603 |
2017 | 0.709 | 0.572 | 0.667 | 0.669 | 0.673 | 0.563 | 0.709 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Dong, L.; Li, Q.; Qu, Z.; Li, F. Spatiotemporal Synergistic Effect and Categorized Management Policy of CO2 and Air Pollutant Reduction and Economic Growth Under China’s Interregional Trade. Systems 2024, 12, 520. https://doi.org/10.3390/systems12120520
Bai L, Dong L, Li Q, Qu Z, Li F. Spatiotemporal Synergistic Effect and Categorized Management Policy of CO2 and Air Pollutant Reduction and Economic Growth Under China’s Interregional Trade. Systems. 2024; 12(12):520. https://doi.org/10.3390/systems12120520
Chicago/Turabian StyleBai, Luzhen, Long Dong, Qian Li, Zhiguang Qu, and Fei Li. 2024. "Spatiotemporal Synergistic Effect and Categorized Management Policy of CO2 and Air Pollutant Reduction and Economic Growth Under China’s Interregional Trade" Systems 12, no. 12: 520. https://doi.org/10.3390/systems12120520
APA StyleBai, L., Dong, L., Li, Q., Qu, Z., & Li, F. (2024). Spatiotemporal Synergistic Effect and Categorized Management Policy of CO2 and Air Pollutant Reduction and Economic Growth Under China’s Interregional Trade. Systems, 12(12), 520. https://doi.org/10.3390/systems12120520