The Impact of the Digital Economy on Total-Factor Carbon Emission Efficiency in the Yellow River Basin from the Perspectives of Mediating and Moderating Roles
Abstract
:1. Introduction
2. Literature Review
2.1. Total-Factor Carbon Emission Efficiency
2.2. Digital Economy
2.3. Impact of the Digital Economy on Carbon Emission Efficiency
3. Theoretical Hypotheses
3.1. Direct Impact of Digital Economy on Total-Factor Carbon Emission Efficiency
3.2. Indirect Effects of the Digital Economy on Total-Factor Carbon Efficiency
3.3. The Moderating Role of Government Intervention
3.3.1. Digital Economy, Green Technology Innovation, and Government Intervention
3.3.2. Green Technology Innovation, Total-Factor Carbon Efficiency and Government Intervention
4. Methodology, Variables, and Data
4.1. Model Construction
4.1.1. Benchmark Regression Model
4.1.2. Mediation Effect Model
4.1.3. Moderated Mediation Effect Model
4.2. Variables
4.2.1. Total-Factor Carbon Emission Efficiency
- (1)
- Measurement of Total-Factor Carbon Emission Efficiency
- (2)
- Description of total-factor carbon emission efficiency indicators
4.2.2. Development Level of the Digital Economy
4.2.3. Mediation Variable
4.2.4. Moderator Variable
4.2.5. Control Variables
4.3. Data Sources
5. Results and Discussion
5.1. Temporal and Spatial Evolution
- (1)
- Temporal and spatial evolution of the digital economy
- (2)
- Temporal and spatial evolution of total-factor carbon emission efficiency
5.2. Baseline Regression
5.3. Robustness Test
5.4. Heterogeneity Test
5.4.1. Heterogeneity Test of Urban Locations
5.4.2. Heterogeneity Tests of Urban Nature
5.5. Mediation Effects
5.6. Analysis of Moderated Mediation Effects
6. Research Conclusions
6.1. Conclusions
6.2. Recommendations Based on Our Empirical Findings: Proposal of a Few Policy Recommendations
6.3. Research Limitations and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | The information comes from https://www.idf.pku.edu.cn/./zsbz/index.htm (accessed on 21 April 2021). |
2 | The information comes from https://www.wipo.int/classifications/ipc/green-inventory/home (accessed on 8 January 2024). |
3 | The information comes from https://www.idf.pku.edu.cn/./zsbz/index.htm (accessed on 21 April 2021). |
4 | The upper reaches includes Sichuan, Gansu, Qinghai Province and Ningxia Hui Autonomous Region; The middle reaches includes Shanxi Province, Inner Mongolia Autonomous Region and Shaanxi Province; The lower reaches includes Shandong Province and Henan Province. |
5 | Notice of the State Council on Printing and Distributing the National Plan for Sustainable Development of Resource-based Cities (https://www.gov.cn/zwgk/2013-12/03/content_2540070.htm (accessed on 3 December 2013)). |
References
- Wang, J.; Luo, X.; Zhu, J. Does the Digital Economy Contribute to Carbon Emissions Reduction? A City-Level Spatial Analysis in China. Chin. J. Popul. Resour. Environ. 2022, 20, 105–114. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, S.; Wang, J. Impact of Environmental Regulation Intensity on Green Innovation Efficiency in the Yellow River Basin, China. J. Clean. Prod. 2022, 373, 133789. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal Evolution of Ecological Vulnerability in the Yellow River Basin under Ecological Restoration Initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Wang, H.; Tao, J.; Xu, J.; Li, Z. Positive or Negative Coordination? Spatiotemporal Coupling Analysis between Economic Growth and Carbon Neutrality in the Yellow River Basin. Energy Rep. 2023, 9, 140–153. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Su, C. Spatial—Temporal Evolution and Driving Factors of Carbon Emission Efficiency of Cities in the Yellow River Basin. Energy Rep. 2023, 9, 1065–1070. [Google Scholar] [CrossRef]
- Dexeus, C.R. The Deepening Effects of the Digital Revolution. In The Future of Tourism; Springer: Cham, Switzerland, 2019; pp. 43–69. [Google Scholar] [CrossRef]
- Li, C.; Lu, Y.; Meng, Y.; Zhao, W. Research on the Nexus between the Digital Economy and Carbon Emissions—Evidence at China’s Province Level. J. Clean. Prod. 2023, 413, 137484. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital Economy: An Innovation Driver for Total Factor Productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, K.; Cao, Y.; Sun, H. Digital Inclusive Finance and Consumption-Based Embodied Carbon Emissions: A Dual Perspective of Consumption and Industry Upgrading. J. Environ. Manag. 2023, 325, 116632. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of Digital Economy on Carbon Emission Reduction: New Evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Wu, R.; Hua, X.; Peng, L.; Liao, Y.; Yuan, Y. Nonlinear Effect of Digital Economy on Carbon Emission Intensity—Based on Dynamic Panel Threshold Model. Front. Environ. Sci. 2022, 10, 943177. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-Level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Yu, Z.; Cao, J. Effects of the Digital Economy on Carbon Emissions: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9450. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, S.; Zhu, Z. Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 11814. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Huang, C. How Does Urbanization Affect Carbon Emission Efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- Cai, B.; Guo, H.; Ma, Z.; Wang, Z.; Dhakal, S.; Cao, L. Benchmarking Carbon Emissions Efficiency in Chinese Cities: A Comparative Study Based on High-Resolution Gridded Data. Appl. Energy 2019, 242, 994–1009. [Google Scholar] [CrossRef]
- Xie, Q.; Hu, P.; Jiang, A.; Li, Y. Carbon Emissions Allocation Based on Satisfaction Perspective and Data Envelopment Analysis. Energy Policy 2019, 132, 254–264. [Google Scholar] [CrossRef]
- Wang, G.; Deng, X.; Wang, J.; Zhang, F.; Liang, S. Carbon emission efficiency in China: A spatial panel data analysis. China Econ. Rev. 2019, 56, 101313. [Google Scholar] [CrossRef]
- Fang, T.; Fang, D.; Yu, B. Carbon Emission Efficiency of Thermal Power Generation in China: Empirical Evidence from the Micro-Perspective of Power Plants. Energy Policy 2022, 165, 112955. [Google Scholar] [CrossRef]
- Teng, X.; Liu, F.; Chiu, Y. The Change in Energy and Carbon Emissions Efficiency after Afforestation in China by Applying a Modified Dynamic SBM Model. Energy 2021, 216, 119301. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial Structure, Technical Progress and Carbon Intensity in China’s Provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital Economy, Energy Efficiency, and Carbon Emissions: Evidence from Provincial Panel Data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef]
- Wang, J.; Tian, J.; Kang, Y.; Guo, K. Can Green Finance Development Abate Carbon Emissions: Evidence from China. Int. Rev. Econ. Financ. 2023, 88, 73–91. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Uddin, M.K.; Guo, S. Environmental Regulation, Foreign Investment Behavior, and Carbon Emissions for 30 Provinces in China. J. Clean. Prod. 2020, 248, 119208. [Google Scholar] [CrossRef]
- Huang, X.; Tian, P. How Does Heterogeneous Environmental Regulation Affect Net Carbon Emissions: Spatial and Threshold Analysis for China. J. Environ. Manag. 2023, 330, 117161. [Google Scholar] [CrossRef]
- Tapscott, D. The Digital Economy: Promise and Peril in the Age of Networked Intelligence. Educom Rev. 1996, 31, 52–54. [Google Scholar]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How Does Digital Economy Affect Carbon Emissions? Evidence from Global 60 Countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Wang, Y.; Zhang, H.; Liang, C.; Feng, Y.; Hu, F. Impact of the Digital Economy on High-Quality Urban Economic Development: Evidence from Chinese Cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, Y.; Luo, Y.; Hu, J. Fusions of Industrialisation and Digitalisation (FID) in the Digital Economy: Industrial System Digitalisation, Digital Technology Industrialisation, and Beyond. J. Digit. Econ. 2022, 1, 73–88. [Google Scholar] [CrossRef]
- Li, K.; Kim, D.J.; Lang, K.R.; Kauffman, R.J.; Naldi, M. How Should We Understand the Digital Economy in Asia? Critical Assessment and Research Agenda. Electron. Commer. Res. Appl. 2020, 44, 101004. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tao, C. Can Digital Transformation Promote Enterprise Performance?—From the Perspective of Public Policy and Innovation. J. Innov. Knowl. 2022, 7, 100198. [Google Scholar] [CrossRef]
- Li, S.; Gao, L.; Han, C.; Gupta, B.; Alhalabi, W.; Almakdi, S. Exploring the Effect of Digital Transformation on Firms’ Innovation Performance. J. Innov. Knowl. 2023, 8, 100317. [Google Scholar] [CrossRef]
- Chen, S.; Ding, D.; Shi, G.; Chen, G. Digital Economy, Industrial Structure, and Carbon Emissions: An Empirical Study Based on a Provincial Panel Data Set from China. Chin. J. Popul. Resour. Environ. 2022, 20, 316–323. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.; Wang, Q. How Does Information and Communication Technology Affect China’s Energy Intensity? A Three-Tier Structural Decomposition Analysis. Energy 2018, 151, 748–759. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.; Wang, Q.; Su, B. How Information and Communication Technology Drives Carbon Emissions: A Sector-Level Analysis for China. Energy Econ. 2019, 81, 380–392. [Google Scholar] [CrossRef]
- Balcerzak, A.P.; Pietrzak, B.M. Digital Economy in Visegrad Countries. Multiple-Criteria Decision Analysis at Regional Level in The Years 2012 and 2015. J. Compet. 2017, 9, 5–18. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The Digital Economy, Industrial Structure Upgrading, and Carbon Emission Intensity—Empirical Evidence from China’s Provinces. Energy Strategy Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, Y.; Wu, G.; Wang, W.; Zhang, J. Digitalization and Energy: How Could Digital Economy Eliminate Energy Poverty in China? Environ. Impact Assess. Rev. 2023, 103, 107243. [Google Scholar] [CrossRef]
- Rehman, F.U.; Islam, M.M.; Ullah, M.; Khan, S.; Rehman, M.Z. Information Digitalization and Renewable Electricity Generation: Evidence from South Asian Countries. Energy Rep. 2023, 9, 4721–4733. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, J. Artificial Intelligence and Emerging Digital Technologies in the Energy Sector. Appl. Energy 2021, 303, 117615. [Google Scholar] [CrossRef]
- Chen, P. Is the Digital Economy Driving Clean Energy Development?—New Evidence from 276 Cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The Impact of Digital Economy on Energy Transition across the Globe: The Mediating Role of Government Governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital Economy and Carbon Emission Performance: Evidence at China’s City Level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Wu, J.; Lin, K.; Sun, J. Improving Urban Energy Efficiency: What Role Does the Digital Economy Play? J. Clean. Prod. 2023, 418, 138104. [Google Scholar] [CrossRef]
- Schöggl, J.-P.; Rusch, M.; Stumpf, L.; Baumgartner, R.J. Implementation of Digital Technologies for a Circular Economy and Sustainability Management in the Manufacturing Sector. Sustain. Prod. Consum. 2023, 35, 401–420. [Google Scholar] [CrossRef]
- Zhang, J.; Lyu, Y.; Li, Y.; Geng, Y. Digital Economy: An Innovation Driving Factor for Low-Carbon Development. Environ. Impact Assess. Rev. 2022, 96, 106821. [Google Scholar] [CrossRef]
- Dian, J.; Song, T.; Li, S. Facilitating or Inhibiting? Spatial Effects of the Digital Economy Affecting Urban Green Technology Innovation. Energy Econ. 2024, 129, 107223. [Google Scholar] [CrossRef]
- Gamidullaeva, L.; Tolstykh, T.; Bystrov, A.; Radaykin, A.; Shmeleva, N. Cross-Sectoral Digital Platform as a Tool for Innovation Ecosystem Development. Sustainability 2021, 13, 11686. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Influence of Digital Finance and Green Technology Innovation on China’s Carbon Emission Efficiency: Empirical Analysis Based on Spatial Metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, X.; Huo, L. Digital Economy, Spatial Spillover and Industrial Green Innovation Efficiency: Empirical Evidence from China. Heliyon 2023, 9, e12875. [Google Scholar] [CrossRef]
- Xu, L.; Fan, M.; Yang, L.; Shao, S. Heterogeneous Green Innovations and Carbon Emission Performance: Evidence at China’s City Level. Energy Econ. 2021, 99, 105269. [Google Scholar] [CrossRef]
- Knowles, S.; Ozanne, A. Government Intervention and Economic Performance in East Asia. Econ. Dev. Cult. Chang. 2003, 51, 451–477. [Google Scholar] [CrossRef]
- Que, W.; Zhang, Y.; Schulze, G. Is Public Spending Behavior Important for Chinese Official Promotion? Evidence from City-Level. China Econ. Rev. 2019, 54, 403–417. [Google Scholar] [CrossRef]
- Jiang, Z.; Shi, J. Government Intervention and Technological Innovation in the Wind Power Industry in China: The Role of Industrial Environmental Turbulence. Appl. Energy 2023, 344, 121265. [Google Scholar] [CrossRef]
- Wu, W.; Hu, Y.; Wu, Q. Subsidies and Tax Incentives—Does It Make a Difference on TFP? Evidences from China’s Photovoltaic and Wind Listed Companies. Renew. Energy 2023, 208, 645–656. [Google Scholar] [CrossRef]
- Wang, X.; Su, Z.; Mao, J. How Does Haze Pollution Affect Green Technology Innovation? A Tale of the Government Economic and Environmental Target Constraints. J. Environ. Manag. 2023, 334, 117473. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Lhuillery, S.; Parrotta, P.; Sala, D. Additionality or Crowding-out? An Overall Evaluation of Public R&D Subsidy on Private R&D Expenditure. Res. Policy 2016, 45, 1715–1730. [Google Scholar] [CrossRef]
- Lu, H.; Liu, M.; Song, W. Place-Based Policies, Government Intervention, and Regional Innovation: Evidence from China’s Resource-Exhausted City Program. Resour. Policy 2022, 75, 102438. [Google Scholar] [CrossRef]
- Kou, J.; Xu, X. Does Internet Infrastructure Improve or Reduce Carbon Emission Performance?—A Dual Perspective Based on Local Government Intervention and Market Segmentation. J. Clean. Prod. 2022, 379, 134789. [Google Scholar] [CrossRef]
- Li, L.; Hang, R.; Qin, L.; Liu, H.; Liu, H.; Hu, F.; Huang, L. Relationship between Stress Response and Depression in Vocational Medical School Students in the COVID-19 Epidemic: A Moderated Mediation Model. Acta Psychol. 2022, 227, 103617. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 Emission Performance in Electricity Generation: A Non-Radial Directional Distance Function Approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A Comparative Study of Dynamic Changes in CO2 Emission Performance of Fossil Fuel Power Plants in China and Korea. Energy Policy 2013, 62, 324–332. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Choi, Y. Energy Efficiency, CO2 Emission Performance and Technology Gaps in Fossil Fuel Electricity Generation in Korea: A Meta-Frontier Non-Radial Directional Distance Functionanalysis. Energy Policy 2013, 56, 653–662. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Y.; Guo, X.; Cheong, T.S. Convergence of Carbon Dioxide Emissions in Chinese Cities: A Continuous Dynamic Distribution Approach. Energy Policy 2016, 91, 207–219. [Google Scholar] [CrossRef]
- Jing, S.; Wu, F.; Shi, E.; Wu, X.; Du, M. Does the Digital Economy Promote the Reduction of Urban Carbon Emission Intensity? Int. J. Environ. Res. Public Health 2023, 20, 3680. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Xu, Y.; Hao, Y.; Wu, H.; Xue, Y. What Is the Role of Telecommunications Infrastructure Construction in Green Technology Innovation? A Firm-Level Analysis for China. Energy Econ. 2021, 103, 105576. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, P.; Hu, D. Influences of the Ongoing Digital Transformation of the Chinese Economy on Innovation of Sustainable Green Technologies. Sci. Total Environ. 2023, 875, 162708. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Cui, H.; Bi, Y. The Impact and Channel Effects of Banking Competition and Government Intervention on Carbon Emissions: Evidence from China. Energy Policy 2023, 175, 113476. [Google Scholar] [CrossRef]
- Song, M.; Pan, H.; Vardanyan, M.; Shen, Z. Evaluating the Energy Efficiency-Enhancing Potential of the Digital Economy: Evidence from China. J. Environ. Manag. 2023, 344, 118408. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Ning, X.; Li, L. Gauging the Impacts of Urbanization on CO2 Emissions from the Construction Industry: Evidence from China. J. Environ. Manag. 2021, 288, 112440. [Google Scholar] [CrossRef]
- Özbuğday, F.C.; Erbas, B.C. How Effective Are Energy Efficiency and Renewable Energy in Curbing CO2 Emissions in the Long Run? A Heterogeneous Panel Data Analysis. Energy 2015, 82, 734–745. [Google Scholar] [CrossRef]
- Pan, M.; Zhao, X.; Lv, K.; Rosak-Szyrocka, J.; Mentel, G.; Truskolaski, T. Internet Development and Carbon Emission-Reduction in the Era of Digitalization: Where Will Resource-Based Cities Go? Resour. Policy 2023, 81, 103345. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, Y.; Zheng, R.; Wang, Y. Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency in the Yellow River Basin of China: Comparative Analysis of Resource and Non-Resource-Based Cities. Int. J. Environ. Res. Public Health 2022, 19, 11625. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Jiang, T. Does the Development of the Digital Economy Improve Carbon Emission Efficiency? Front. Ecol. Evol. 2022, 10, 1031722. [Google Scholar] [CrossRef]
- Lyu, K.; Yang, S.; Zheng, K.; Zhang, Y. How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain. Energies 2023, 16, 761. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Gong, X.; Li, M.; Li, X.; Ren, D.; Jiang, P. Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities. Int. J. Environ. Res. Public Health 2022, 19, 14838. [Google Scholar] [CrossRef]
- Xie, N.-Y.; Zhang, Y. The Impact of Digital Economy on Industrial Carbon Emission Efficiency: Evidence from Chinese Provincial Data. Math. Probl. Eng. 2022, 2022, e6583809. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy Structure, Digital Economy, and Carbon Emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Peng, H.; Lu, Y.; Wang, Q. How Does Heterogeneous Industrial Agglomeration Affect the Total Factor Energy Efficiency of China’s Digital Economy. Energy 2023, 268, 126654. [Google Scholar] [CrossRef]
First-Grade Index | Second-Grade Index | Third-Grade Index | Description of Indicators |
---|---|---|---|
Total-factor carbon efficiency | Input indicators | Labor | Number of employees by the end of the year in the city (10,000 people) |
Capital | Fixed capital stock (10,000 yuan) | ||
Energy | Energy consumption (10,000 tons) | ||
Output indicators | Expected outputs | GDP (10,000 yuan) | |
Non-expected outputs | Carbon dioxide (10,000 tons) |
Target Level | Standardized Layer | Indicator Layer | Description of Indicators | Unit |
---|---|---|---|---|
Digital economy | Internet development | Internet penetration | Number of Internet broadband access subscribers per 100 people | Household |
Relevant practitioners | Share of employees in computer services and software industry in urban units | -- | ||
Status of related outputs | Total telecommunication services per capita | Yuan | ||
Cell phone penetration rate | Number of cell phone subscribers per 100 people | Household | ||
Digital Financial Inclusion | Digital Inclusive Finance Index | Digital Inclusive Finance Index | -- |
Variables Name | Symbol | Unit | Obs | Mean | Sd | Min | Max |
---|---|---|---|---|---|---|---|
Total-factor carbon efficiency | tcpi | -- | 970 | 0.298 | 0.200 | 0.029 | 1 |
Digital Economy Index | dige | -- | 970 | 0.111 | 0.062 | 0.018 | 0.412 |
Size of population | lnpeo | 10,000 people | 970 | 5.781 | 0.709 | 3.148 | 7.647 |
Industrial structure | industry | -- | 970 | 0.917 | 0.487 | 0.204 | 4.107 |
Employment density | ED | 10,000 people/square kilometer | 970 | 0.005 | 0.006 | 5.29 × 10−4 | 0.048 |
Environmental regulation | ER | -- | 970 | 0.575 | 0.093 | 0.273 | 0.813 |
Green technology innovation | inov | 10,000 patents | 970 | 0.043 | 0.111 | 0.1 × 10−3 | 1.203 |
Government intervention | gov | - | 970 | 0.210 | 0.119 | 0.067 | 0.916 |
Variables | (1) tcpi | (2) tcpi |
---|---|---|
dige | 0.334 ** (0.140) | 0.350 ** (0.142) |
lnpeo | 0.150 * (0.084) | |
industry | −0.004 (0.021 | |
ED | −0.132 *** (0.032) | |
ER | 0.037 (0.083) | |
Constant | 0.368 (0.496) | −0.553 (0.496) |
City FE | YES | YES |
Year FE | YES | YES |
R2 | 0.253 | 0.257 |
Observations | 970 | 970 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Replaced the Explanatory Variable | Replaced the Explained Variable | Bilateral Indentation | Lagged Effects Estimation |
dige | 0.787 *** | 0.285 ** | 0.386 *** | 0.256 * |
(0.244) | (0.137) | (0.152) | (0.155) | |
Constant | 0.897 | −0.321 | −0.649 | −0.377 |
(0.768) | (0.480) | (0.520) | (0.470) | |
Control | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Observations | 970 | 970 | 970 | 873 |
R-squared | 0.220 | 0.259 | 0.258 | 0.256 |
Variables | (1) Upper Region | (2) Middle Region | (3) Lower Region |
---|---|---|---|
dige | 0.715 *** | −0.522 * | 0.599 ** |
(0.244) | (0.286) | (0.234) | |
Constant | −1.935 *** | 0.416 | −4.186 ** |
(0.735) | (0.530) | (1.840) | |
Control | YES | YES | YES |
City FE | YES | YES | YES |
Year FE | YES | YES | YES |
Observations | 350 | 290 | 330 |
R-squared | 0.229 | 0.376 | 0.295 |
Variables | (1) Resource-Based Cities | (2) Non-Resource-Based Cities |
---|---|---|
dige | 0.657 *** | 0.100 |
(0.224) | (0.181) | |
Constant | −0.639 | 0.416 |
(0.793) | (0.530) | |
Control | YES | YES |
City FE | YES | YES |
Year FE | YES | YES |
Observations | 490 | 480 |
R-squared | 0.256 | 0.305 |
Variables | (1) tcpi | (2) inov | (3) tcpi |
---|---|---|---|
dige | 0.350 ** | 0.199 *** | 0.320 ** |
(0.142) | (0.057) | (0.143) | |
inov | 0.152 * | ||
(0.085) | |||
Constant | −0.553 | −0.732 *** | −0.442 |
(0.496) | (0.198) | (0.500) | |
Control | YES | YES | YES |
City FE | YES | YES | YES |
Year FE | YES | YES | YES |
Observations | 970 | 970 | 970 |
R-squared | 0.257 | 0.304 | 0.260 |
Variables | (1) | (2) | (3) |
---|---|---|---|
tcpi | inov | tcpi | |
dige | 0.293 ** | 0.172 *** | 0.248 * |
(0.142) | (0.057) | (0.143) | |
gov | −0.417 *** | −0.030 | −0.230 |
(0.139) | (0.055) | (0.169) | |
inov | 0.535 ** | ||
(0.232) | |||
dige | −2.455 ** | −1.630 *** | −2.431 ** |
(1.132) | (0.451) | (1.143) | |
inov | 5.660 * | ||
(3.001) | |||
Constant | −0.301 | −0.680 *** | −0.220 |
(0.498) | (0.199) | (0.501) | |
Control | YES | YES | YES |
City FE | YES | YES | YES |
Year FE | YES | YES | YES |
Observations | 970 | 970 | 970 |
R-squared | 0.268 | 0.314 | 0.273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.; Bao, X.; Song, S.; Wu, Z. The Impact of the Digital Economy on Total-Factor Carbon Emission Efficiency in the Yellow River Basin from the Perspectives of Mediating and Moderating Roles. Systems 2024, 12, 99. https://doi.org/10.3390/systems12030099
Nie L, Bao X, Song S, Wu Z. The Impact of the Digital Economy on Total-Factor Carbon Emission Efficiency in the Yellow River Basin from the Perspectives of Mediating and Moderating Roles. Systems. 2024; 12(3):99. https://doi.org/10.3390/systems12030099
Chicago/Turabian StyleNie, Lei, Xueli Bao, Shunfeng Song, and Zhifang Wu. 2024. "The Impact of the Digital Economy on Total-Factor Carbon Emission Efficiency in the Yellow River Basin from the Perspectives of Mediating and Moderating Roles" Systems 12, no. 3: 99. https://doi.org/10.3390/systems12030099
APA StyleNie, L., Bao, X., Song, S., & Wu, Z. (2024). The Impact of the Digital Economy on Total-Factor Carbon Emission Efficiency in the Yellow River Basin from the Perspectives of Mediating and Moderating Roles. Systems, 12(3), 99. https://doi.org/10.3390/systems12030099