The Impact of Scientific and Technological Information Resource Utilization on Breakthrough Innovation in Enterprises: The Moderating Role of Strategic Aggressiveness
Abstract
:1. Introduction
- (1)
- How can Chinese enterprises effectively utilize scientific and technological information resources to enhance breakthrough innovation performance?
- (2)
- How does strategic aggressiveness moderate the relationship between the utilization of scientific and technological information resources and breakthrough innovation in enterprises?
2. Literature Review
2.1. Research on Scientific and Technological Information Resources
2.2. Research on Breakthrough Innovation
2.3. Research on Strategic Aggressiveness
3. Theoretical Analysis and Hypotheses
3.1. Analysis of the Impact of Scientific and Technological Information Resource Utilization on Enterprise Breakthrough Innovation
3.2. The Moderating Role of Strategic Aggressiveness
4. Data Sources and Research Methods
4.1. Data Sources and Processing
4.2. Main Research Variables
- (1)
- Independent Variable—Enterprise Scientific and Technological Information Resource Utilization (STIRA)
- (2)
- Dependent Variable—Enterprise Breakthrough Innovation Performance (BI)
- (3)
- Moderating Variable—Enterprise Strategic Aggressiveness (SA)
- (4)
- Control Variables
4.3. Research Methods
- (1)
- In the study of the impact of the utilization of enterprise scientific and technological information resources on the breakthrough innovation of enterprises, the model is:
- (2)
- In exploring the moderating effect of enterprise strategic aggressiveness on the relationship between the utilization of scientific and technological information resources and breakthrough innovation, the specific model is as follows:
5. Research Results
5.1. Descriptive Statistical Analysis of Enterprise Indicators
5.2. Correlation Analysis of Indicators
5.3. The Impact of Enterprise Scientific and Technological Information Resource Utilization on Breakthrough Innovation
5.4. Testing the Moderating Role of Strategic Aggressiveness
5.5. Endogeneity and Robustness Tests
5.6. Heterogeneity Analysis
6. Discussion
6.1. Relationship between Enterprise Utilization of Scientific and Technological Information Resources and Breakthrough Innovation
6.2. Moderating Role of Strategic Aggressiveness in the Relationship between Utilization of Scientific and Technological Information Resources and Breakthrough Innovation
6.3. Regional and Ownership Differences in the Utilization of Scientific and Technological Information Resources and Breakthrough Innovation
7. Conclusions and Implications
7.1. Conclusions
7.2. Implications
7.2.1. Theoretical Contributions
7.2.2. Managerial Implications
8. Research Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farhana, M.; Swietlicki, D. Dynamic capabilities impact on innovation: Niche market and startups. J. Technol. Manag. Innov. 2020, 15, 83–96. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Meyer, M. Does science push technology? Patents citing scientific literature. Res. Policy 2000, 29, 404–434. [Google Scholar] [CrossRef]
- Vicente-Gomila, J.M.; Artacho-Ramirez, M.A.; Ting, M.; Porter, A.L. Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case. Technol. Forecast. Soc. 2021, 169, 120826. [Google Scholar] [CrossRef]
- Wu, L.; Sun, L.; Chang, Q.; Zhang, D.; Qi, P. How do digitalization capabilities enable open innovation in manufacturing enterprises? A multiple case study based on resource integration perspective. Technol. Forecast. Soc. 2022, 184, 122019. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, Y.; Lin, Y.; Wang, F. Mining layered technological information in scientific papers: A semi-supervised method. J. Inf. Sci. 2019, 45, 779–793. [Google Scholar] [CrossRef]
- Yam, R.C.; Lo, W.; Tang, E.P.; Lau, A.K. Analysis of sources of innovation, technological innovation capabilities, and performance: An empirical study of Hong Kong manufacturing industries. Res. Policy 2011, 40, 391–402. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Vanhaverbeke, W. The influence of scope, depth, and orientation of external technology sources on the innovative performance of Chinese firms. Technovation 2011, 31, 362–373. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, S.; Xi, Y.; Liu, N.; Xu, X. Relating science and technology resources integration and polarization effect to innovation ability in emerging economies: An empirical study of Chinese enterprises. Technol. Forecast. Soc. 2018, 135, 188–198. [Google Scholar] [CrossRef]
- Gómez, J.; Salazar, I.; Vargas, P. Does information technology improve open innovation performance? An examination of manufacturers in Spain. Inform. Syst. Res. 2017, 28, 661–675. [Google Scholar] [CrossRef]
- Jemala, M. Long-term research on technology innovation in the form of new technology patents. Int. J. Innov. Stud. 2021, 5, 148–160. [Google Scholar] [CrossRef]
- Jin, P.; Mangla, S.K.; Song, M. The power of innovation diffusion: How patent transfer affects urban innovation quality. J. Bus. Res. 2022, 145, 414–425. [Google Scholar] [CrossRef]
- Weinzimmer, L.; Esken, C.A.; Michel, E.J.; McDowell, W.C.; Mahto, R.V. The differential impact of strategic aggressiveness on firm performance: The role of firm size. J. Bus. Res. 2023, 158, 113623. [Google Scholar] [CrossRef]
- Wang, J.; Cao, H. Improving competitive strategic decisions of Chinese coal companies toward green transformation: A hybrid multi-criteria decision-making model. Resour. Policy 2022, 75, 102483. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, X.; Yang, J. Synergies of Technological and Institutional Innovation Driving Manufacturing Transformation: Insights from Northeast China. J. Knowl. Econ. 2024, 16, 1–35. [Google Scholar] [CrossRef]
- Fan, P.; Watanabe, C. Promoting industrial development through technology policy: Lessons from Japan and China. Technol. Soc. 2006, 28, 303–320. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, Y.; Gu, F.; Guo, J. A collaborative evaluation method of the quality of patent scientific and technological resources. World Pat. Inf. 2021, 67, 102074. [Google Scholar] [CrossRef]
- Yonghui, G.; Jie, L. Policymakers and Policy Evolution of Scientific and Technological Resource Integration in China. J. Knowl. Econ. 2023, 15, 1–25. [Google Scholar] [CrossRef]
- Horton, F.W. Information Resources Management; Nanjing University Publication: Nanjing, China, 1985. [Google Scholar]
- Syuntyurenko, O.V. Determinants of the ineffective use of information resources in scientific and technological activities. Sci. Tech. Inf. Process 2017, 44, 159–169. [Google Scholar] [CrossRef]
- Omona, W.; Ikoja-Odongo, R. Application of information and communication technology (ICT) in health information access and dissemination in Uganda. J. Libr. Inf. Sci. 2006, 38, 45–55. [Google Scholar] [CrossRef]
- Leonardi, P.M. When does technology use enable network change in organizations? A comparative study of feature use and shared affordances. Mis Quart. 2013, 37, 749–775. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.L.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technol. Forecast. Soc. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Duncan, N.B. Capturing flexibility of information technology infrastructure: A study of resource characteristics and their measure. J. Manag. Inform. Syst. 1995, 12, 37–57. [Google Scholar] [CrossRef]
- Coccia, M. Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technol. Soc. 2020, 60, 101198. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, R.; Wang, S. How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression. J. Clean. Prod. 2021, 307, 127133. [Google Scholar] [CrossRef]
- Ezinwa Nwagwu, W. Creating science and technology information databases for developing and sustaining sub-Saharan Africa’s indigenous knowledge. J. Inf. Sci. 2007, 33, 737–751. [Google Scholar] [CrossRef]
- Lypak, H.; Rzheuskyi, A.; Kunanets, N.; Pasichnyk, V. Formation of a consolidated information resource by means of cloud technologies. In Proceedings of the 2018 International Scientific-Practical Conference Problems of Infocommunications, Kharkiv, Ukraine, 9–12 October 2018; Science and Technology (PIC S&T): Kharkiv, Ukraine, 2018; pp. 157–160. [Google Scholar]
- Makinde, O.B.M.; Jiyane, G.V.; Mugwisi, T. Information resources importance and format inclination of Science and Technology researchers. Int. J. Inf. Sci. Manag. 2020, 18, 83–96. [Google Scholar]
- Fry, J. Scholarly research and information practices: A domain analytic approach. Inform. Process Manag. 2006, 42, 299–316. [Google Scholar] [CrossRef]
- Mikhaylova, A.A.; Mikhaylov, A.S.; Savchina, O.V.; Plotnikova, A.P. Innovation landscape of the Baltic region. Adm. Public. Manag. Rev. 2019, 33, 165–180. [Google Scholar] [CrossRef]
- Jonscher, C. Information resources and economic productivity. Inf. Econ. Policy 1983, 1, 13–35. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L. System Dynamics Modeling and Simulation for Information Resources Allocation in R&D Cooperation. Data Anal. Knowl. Discov. 2011, 27, 54–61. [Google Scholar]
- Popoola, S.O. The use of information sources and services and its effect on the research output of social scientists in Nigerian universities. Libr. Philos. Pract. 2008, 183, 1–10. [Google Scholar]
- Sutrisno, S.; Ausat, A.M.A.; Permana, B.; Harahap, M.A.K. Do Information Technology and Human Resources Create Business Performance: A Review. Int. J. Prof. Bus. Rev. 2023, 8, 14. [Google Scholar] [CrossRef]
- Zhao, J. Dual innovation: The road to sustainable development of enterprises. Int. J. Inov. Sci. 2021, 13, 423–436. [Google Scholar] [CrossRef]
- Laplane, A.; Mazzucato, M.; Laplane, A.; Mazzucato, M. Socializing the risks and rewards of public investments: Economic, policy, and legal issues. Res. Policy 2020, 49, 100008. [Google Scholar] [CrossRef]
- Kolade, O.; Adegbile, A.; Sarpong, D. Can university-industry-government collaborations drive a 3D printing revolution in Africa? A triple helix model of technological leapfrogging in additive manufacturing. Technol. Soc. 2022, 69, 101960. [Google Scholar] [CrossRef]
- Lüdeke Freund, F. Sustainable entrepreneurship, innovation, and business models: Integrative framework and propositions for future research. Bus. Strateg. Environ. 2020, 29, 665–681. [Google Scholar] [CrossRef]
- Xia, Q.H.; Zhu, Q. Group Analysis and Paradigm Choice of Breakthrough Innovation for "Specialized, Specialized and New" Enterprises. Foreign Econ. Manag. 2023, 45, 20–34. [Google Scholar]
- Zhang, J.C.; Long, J. How Digital Technology Adoption Drives Breakthrough Innovation in Business. J. Shanxi Univ. Financ. Econ. 2022, 44, 69–83. [Google Scholar]
- Bahemia, H.; Sillince, J.; Vanhaverbeke, W. The Timing of Openness in a Radical Innovation Project, a Temporal and Loose Coupling Perspective. Res. Policy 2018, 47, 2066–2076. [Google Scholar] [CrossRef]
- Wang, Y.J.; Xie, W.H.; Wang, T.H.; Cheng, M.H. A Study of the Relationship between Strengths and Weaknesses and Breakthrough Innovation—The Mediating Role of Absorptive Capacity and the Moderating Effects of Environmental Dynamics. Manag. Rev. 2016, 28, 111–122. [Google Scholar]
- Bi, X.F.; Liu, S.Y.; Fu, S.Z.; Xing, X.H. Does Surplus Smoothing Affect Firms’ Breakthrough Innovation—An External Stakeholder Evaluation Perspective. Account. Res. 2022, 60, 91–102. [Google Scholar]
- Dess, G.G.; Lumpkin, G.T. Emerging issues in strategy process research. Blackwell Handb. Strateg. Manag. 2005, 1, 1–32. [Google Scholar]
- Chen, C.S.; Li, D.Y.; Li, C.W.; Yi, C.J. Overseas Chinese Networks, Corporate Strategic Aggressiveness and OFDI; Huaqiao University: Fujian, China, 2023. [Google Scholar]
- Al-Mamary, Y.H.; Alshallaqi, M. Impact of autonomy, innovativeness, risk-taking, proactiveness, and competitive aggressiveness on students’ intention to start a new venture. J. Innov. Knowl. 2022, 7, 100239. [Google Scholar] [CrossRef]
- Luiz, J.M.; Magada, T.; Mukumbuzi, R. Strategic responses to institutional voids (rationalization, aggression, and defensiveness): Institutional complementarity and why the home country matters. Manag. Int. Rev. 2021, 61, 681–711. [Google Scholar] [CrossRef]
- Chih-Yi, S.; Bou-Wen, L. Attack and defense in patent-based competition: A new paradigm of strategic decision-making in the era of the fourth industrial revolution. Technol. Forecast. Soc. 2021, 167, 120670. [Google Scholar] [CrossRef]
- Al-Mamary, Y.H.; Alwaheeb, M.A.; Alshammari, N.G.M.; Abdulrab, M.; Balhareth, H.; Soltane, H.B. The effect of entrepreneurial orientation on financial and non-financial performance in Saudi SMES: A review. J. Crit. Rev. 2020, 7, 270–278. [Google Scholar]
- Zhou, J.; Li, J.; Jiao, H.; Qiu, H.; Liu, Z. The more funding the better? The moderating role of knowledge stock on the effects of different government-funded research projects on firm innovation in Chinese cultural and creative industries. Technovation 2020, 92, 102059. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Dezi, L.; Gregori, G.; Calo, E. Smart environments and techno-centric and human-centric innovations for Industry and Society 5.0: A quintuple helix innovation system view towards smart, sustainable, and inclusive solutions. J. Knowl. Econ. 2022, 13, 926–955. [Google Scholar] [CrossRef]
- Liu, W.; Tan, R.; Li, Z.; Cao, G.; Yu, F. A patent-based method for monitoring the development of technological innovations based on knowledge diffusion. J. Knowl. Manag. 2021, 25, 380–401. [Google Scholar] [CrossRef]
- Chiu, M.L.; Cheng, T.S.; Lin, C.N. Driving Open Innovation Capability Through New Knowledge Diffusion of Integrating Intrinsic and Extrinsic Motivations in Organizations: Moderator of Individual Absorptive Capacity. J. Knowl. Econ. 2023, 15, 3685–3717. [Google Scholar] [CrossRef]
- Bierly III, P.E.; Damanpour, F.; Santoro, M.D. The application of external knowledge: Organizational conditions for exploration and exploitation. J. Manag. Stud. 2009, 46, 481–509. [Google Scholar] [CrossRef]
- Carnabuci, G.; Bruggeman, J. Knowledge specialization, knowledge brokerage and the uneven growth of technology domains. Soc. Forces 2009, 88, 607–641. [Google Scholar] [CrossRef]
- Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Uzzi, B.; et al. Science of science. Science 2018, 359, eaao0185. [Google Scholar] [CrossRef] [PubMed]
- Dolata, U. Technological innovations and sectoral change: Transformative capacity, adaptability, patterns of change: An analytical framework. Res. Policy 2009, 38, 1066–1076. [Google Scholar] [CrossRef]
- Fang, H.; Huo, Q.; Hatim, K. Can Digital Services Trade Liberalization Improve the Quality of Green Innovation of Enterprises? Evidence from China. Sustainability 2023, 15, 6674. [Google Scholar] [CrossRef]
- Tijssen, R.J. Global and domestic utilization of industrial relevant science: Patent citation analysis of science–technology interactions and knowledge flows. Res. Policy 2001, 30, 35–54. [Google Scholar] [CrossRef]
- Kapoor, R.; Adner, R. What firms make vs. what they know: How firms’ production and knowledge boundaries affect competitive advantage in the face of technological chang. Organ. Sci. 2012, 23, 1227–1248. [Google Scholar] [CrossRef]
- Akpan, I.J.; Soopramanien, D.; Kwak, D.H. Cutting-edge technologies for small business and innovation in the era of COVID-19 global health pandemic. J. Small Bus. Entrep. 2021, 33, 607–617. [Google Scholar] [CrossRef]
- Teece, D.J. Technological innovation and the theory of the firm: The role of enterprise-level knowledge, complementarities, and (dynamic) capabilities. Handb. Econ. Innov. 2010, 1, 679–730. [Google Scholar]
- Wang, C.; Chin, T.; Lin, J.H. Openness and firm innovation performance: The moderating effect of ambidextrous knowledge search strategy. J. Knowl. Manag. 2020, 24, 301–323. [Google Scholar] [CrossRef]
- Xue, J. Understanding knowledge networks and knowledge flows in high technology clusters: The role of heterogeneity of knowledge contents. Innovation 2018, 20, 139–163. [Google Scholar] [CrossRef]
- Lindelöf, P.; Löfsten, H. Proximity as a resource base for competitive advantage: University–industry links for technology transfer. J. Technol. Transf. 2004, 29, 311–326. [Google Scholar] [CrossRef]
- Tohãnean, D.; Buzatu, A.I.; Baba, C.A.; Georgescu, B. Business model innovation through the use of digital technologies: Managing risks and creating sustainability. Amfiteatru Econ. 2020, 22, 758–774. [Google Scholar]
- Wang, S.H.; Wang, Z.J.; Tian, Y. A study of the relationship between managerial overconfidence and firms’ investment in technological innovation. Res. Manag. 2013, 34, 1–9. [Google Scholar]
- Ràfols, I. S&T indicators in the wild: Contextualization and participation for responsible metrics. Res. Eval. 2019, 28, 7–22. [Google Scholar]
- Cao, Q.; Li, Y.; Peng, H. From university basic research to firm innovation: Diffusion mechanism and boundary conditions under a U-shaped relationship. Technovation 2023, 123, 102718. [Google Scholar] [CrossRef]
- Cotropia, C.A.; Lemley, M.A.; Sampat, B. Do applicant patent citations matter? Res. Policy 2013, 42, 844–854. [Google Scholar] [CrossRef]
- Chen, L. Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations. J. Informetr. 2017, 11, 63–79. [Google Scholar] [CrossRef]
- Lin, R.H.; Wang, L. The Impact of Knowledge Integration Capability on Breakthrough Innovation Based on Exploratory Innovation—The Moderating Role of Firm Absorptive Capacity and Openness to Innovation. Sci. Technol. Manag. Res. 2023, 43, 19–27. [Google Scholar]
- Jiang, S.Y.; Zhuang, Y.M.; Ding, L. Industry-University-Research Basic Research Cooperation, Financial and Tax Incentive Options, and Firms’ Breakthrough Innovation. Res. Manag. 2021, 42, 40–47. [Google Scholar]
- Ahuja, G.; Lampert, C.M. Entrepreneurship in the Large Corporation: A Longitudinal Study of How Established Firms Create Breakthrough Inventions. Strateg. Manag. J. 2001, 21, 267–294. [Google Scholar] [CrossRef]
- Bentley, K.A.; Omer, T.C.; Sharp, N.Y. Business strategy, financial reporting irregularities, and audit effort. Contemp. Account. Res. 2013, 30, 780–817. [Google Scholar] [CrossRef]
- Zhang, D.L.; Xu, S.S.; Xue, F.; Wang, H.C. Strategic Aggressiveness and CSR Fulfillment—A Resource Acquisition-Based Perspective. China Soft Sci. 2022, 8, 111–123. [Google Scholar]
- Song, M.; Wang, S.; Zhang, H. Could environmental regulation and R&D tax incentives affect green product innovation? J. Clean. Prod. 2020, 258, 120849. [Google Scholar]
- Chen, C.Y.; Lin, S.H.; Chou, L.C.; Chen, K.D. A comparative study of production efficiency in coastal region and non-coastal region in Mainland China: An application of metafrontier model. J. Int. Trade Econ. Dev. 2018, 27, 901–916. [Google Scholar] [CrossRef]
- Nana Yaw Simpson, S. Boards and governance of state-owned enterprises. Corp. Gov. 2014, 14, 238–251. [Google Scholar] [CrossRef]
- Doh, J.P.; Teegen, H. Nongovernmental organizations as institutional actors in international business: Theory and implications. International Business Review. Int. Bus. Rev. 2022, 11, 665–684. [Google Scholar] [CrossRef]
- Wynarczyk, P.; Piperopoulos, P.; McAdam, M. Open innovation in small and medium-sized enterprises: An overview. Int. Small Bus. J. 2013, 31, 240–255. [Google Scholar] [CrossRef]
- Wang, Y.C.; Phillips, F.; Yang, C. Bridging innovation and commercialization to create value: An open innovation study. J. Bus. Res. 2021, 123, 255–266. [Google Scholar] [CrossRef]
- Zou, L.; Cao, X.Z.; Zhu, Y.W. Research on Regional High-Tech Innovation Efficiency and Influence Factors: Evidence from Yangtze River Economic Belt in China. Complexity 2021, 2021, 9946098. [Google Scholar] [CrossRef]
- Meng, M.; Lei, J.; Jiao, J.; Tao, Q. How does strategic flexibility affect bricolage: The moderating role of environmental turbulence. PLoS ONE 2020, 15, e0238030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, B.; Zhu, L. Digital technology usage, strategic flexibility, and business model innovation in traditional manufacturing firms: The moderating role of the institutional environment. Technol. Forecast. Social. Change 2023, 194, 122726. [Google Scholar] [CrossRef]
- Müller, J.M.; Buliga, O.; Voigt, K.I. The role of absorptive capacity and innovation strategy in the design of industry 4.0 business Models-A comparison between SMEs and large enterprises. Eur. Manag. J. 2021, 39, 333–343. [Google Scholar] [CrossRef]
- Ryan Charleton, T.; Galavan, R.J. Multimarket contact between partners and strategic alliance survival. Strateg. Manag. J. 2024, 2024, 1–30. [Google Scholar]
- Bouncken, R.B.; Kraus, S. Innovation in knowledge-intensive industries: The double-edged sword of coopetition. J. Bus. Res. 2013, 66, 2060–2070. [Google Scholar] [CrossRef]
- Šmejkal, A.; Novotná, M.; Volek, T. Company Investments in the Context of Financial Strategies. Argum. Oecon 2022, 48, 164–185. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Li, Y. Natural resources, urbanization and regional innovation capabilities. Resour. Policy 2020, 66, 101643. [Google Scholar] [CrossRef]
- Ganau, R.; Grandinetti, R. Disentangling regional innovation capability: What really matters? Ind. Innov. 2021, 28, 749–772. [Google Scholar] [CrossRef]
- Hjaltadóttir, R.E.; Makkonen, T.; Mitze, T. Inter-regional innovation cooperation and structural heterogeneity: Does being a rural, or border region, or both, make a difference? J. Rural. Stud. 2020, 74, 257–270. [Google Scholar] [CrossRef]
- Yang, R.; Che, T.; Lai, F. The Impacts of production linkages on cross-regional collaborative innovations: The role of inter-regional network capital. Technol. Forecast. Soc. 2021, 170, 120905. [Google Scholar] [CrossRef]
- Genin, A.L.; Tan, J.; Song, J. State governance and technological innovation in emerging economies: State-owned enterprise restructuration and institutional logic dissonance in China’s high-speed train sector. J. Int. Bus. Stud. 2021, 52, 621–645. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Breakdown Name | Symbol |
---|---|---|---|
Independent variable | Utilization of enterprise scientific and technological information resources | Intensity of utilization of enterprise S&T information resources | STIRA_In |
Imbalance of utilization of enterprise S&T information resources | STIRA_Im | ||
Moderating variable | Strategic aggressiveness | Strategic aggressiveness | SA |
Dependent variable | Breakthrough innovation | Enterprise breakthrough innovation performance | BI |
Control variable | Control variables | Enterprise age | Ea |
Enterprise profitability | Ep | ||
Nature of property rights | Npr | ||
Number of R&D Staff | R&Dsn | ||
Investment in R&D | R&Di | ||
Time dummy | Year | ||
Industry dummy | Ind |
Coefficients | ||||
---|---|---|---|---|
(b) | (B) | (b-B) | Sqrt (Diag(V_b-V_B)) | |
FE | RE | Difference | Std. Err. | |
Stira_In | −0.031944 | −0.0329217 | 0.0009777 | 0.0005199 |
Stira_Im | 0.1151972 | 0.1242172 | −0.00902 | 0.0008367 |
Ea | −0.0099359 | −0.0160318 | 0.0060959 | 0.0034465 |
Ep | −2.20 × 10−6 | 1.07 × 10−6 | −3.27 × 10−6 | 1.73 × 10−6 |
R&Dsn | 0.0219173 | 0.01065 | 0.0112673 | 0.0020405 |
R&Di | 0.1543455 | 0.2717775 | −0.117432 | 0.008623 |
Variable | N | Mean | p50 | SD | Min | Max |
---|---|---|---|---|---|---|
STIRA_In | 14,632 | 6.008 | 6 | 2.549 | 0 | 34 |
STIRA_Im | 14,632 | 2.714 | 2.51 | 2.144 | 0 | 23.784 |
BI | 14,632 | 2.135 | 1.946 | 1.147 | 0.693 | 9.028 |
SA | 6611 | 11.683 | 12 | 3.835 | 0 | 23 |
Ea | 14,632 | 17.352 | 17 | 6.042 | 1 | 63 |
Ep | 14,632 | −13.843 | 11.198 | 1612.435 | −160,034.734 | 4805.529 |
R&Dsn | 14,632 | 3.19 | 4.382 | 2.897 | 0 | 10.485 |
R&Di | 14,150 | 17.855 | 17.726 | 1.311 | 8.007 | 23.491 |
Variable | BI | STIRA_In | STIRA_Im | SA | Ea | Ep | Npr | R&Dsn | R&Di | Mean VIF |
---|---|---|---|---|---|---|---|---|---|---|
BI | 1 | |||||||||
STIRA_In | 0.036 *** | 1 | ||||||||
STIRA_Im | 0.375 *** | 0.353 *** | 1 | |||||||
SA | −0.059 *** | −0.023 * | −0.002 | 1 | ||||||
Ea | 0.097 *** | 0.028 *** | 0.128 *** | −0.137 *** | 1 | |||||
Ep | 0.001 | 0.01 | −0.003 | 0.018 | 0.012 | 1 | ||||
Npr | 0.134 *** | 0.020 ** | 0.017 ** | −0.189 *** | 0.178 *** | 0.005 | 1 | |||
R&Dsn | 0.244 *** | 0.057 *** | 0.265 *** | −0.042 *** | 0.386 *** | 0.003 | 0.085 *** | 1 | ||
R&Di | 0.525 *** | 0.044 *** | 0.225 *** | −0.165 *** | 0.246 *** | −0.027 *** | 0.216 *** | 0.482 *** | 1 | |
VIF | - | 1.17 | 1.27 | 1.08 | 1.12 | 1.01 | 1.08 | 1.36 | 1.27 | 1.17 |
1/VIF | - | 0.857186 | 0.789739 | 0.926606 | 0.894439 | 0.989701 | 0.924842 | 0.734387 | 0.787834 | - |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
BI | BI | BI | BI | BI | BI | |
STIRA_In | 0.0164 *** | 0.00634 ** | 0.00757 ** | |||
(4.40) | (1.98) | (2.37) | ||||
STIRA_Im | 0.201 *** | 0.150 *** | 0.160 *** | |||
(49.00) | (39.87) | (41.72) | ||||
Ea | −0.00928 *** | −0.00377 ** | −0.0107 *** | −0.00305 ** | ||
(−6.20) | (−2.48) | (−7.51) | (−2.13) | |||
Ep | 0.0000114 ** | 0.00000699 | 0.0000113 ** | 0.00000561 | ||
(2.25) | (1.41) | (2.37) | (1.20) | |||
Npr | 0.0816 *** | 0.0684 *** | 0.110 *** | 0.0676 *** | ||
(4.03) | (3.26) | (5.72) | (3.42) | |||
R&Dsn | 0.000926 | 0.00216 | −0.0194 *** | 0.00213 | ||
(0.27) | (0.46) | (−5.92) | (0.48) | |||
R&Di | 0.463 *** | 0.459 *** | 0.429 *** | 0.417 *** | ||
(63.53) | (59.92) | (61.65) | (57.01) | |||
_cons | 2.037 *** | −6.021 *** | −6.001 *** | 1.590 *** | −5.706 *** | −5.476 *** |
(83.97) | (−47.51) | (−40.30) | (112.21) | (−47.82) | (−38.96) | |
N | 14,632 | 14,150 | 14,150 | 14,632 | 14,150 | 14,150 |
Year | No | No | Yes | No | No | Yes |
Ind | No | No | Yes | No | No | Yes |
R2 | 0.001 | 0.279 | 0.309 | 0.141 | 0.352 | 0.385 |
adj. R2 | 0.001 | 0.279 | 0.307 | 0.141 | 0.352 | 0.383 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
BI | BI | BI | BI | |
STIRA_In | 0.00757 ** | 0.0522 *** | ||
(2.37) | (5.61) | |||
STIRA_Im | 0.160 *** | 0.264 *** | ||
(41.72) | (18.40) | |||
Ea | −0.00377 ** | 0.0134 *** | −0.00305 ** | 0.0125 *** |
(−2.48) | (4.14) | (−2.13) | (4.10) | |
Ep | 0.00000699 | 0.00311 *** | 0.00000561 | 0.00244 *** |
(1.41) | (4.48) | (1.20) | (3.73) | |
Npr | 0.0684 *** | 0.300 *** | 0.0676 *** | 0.261 *** |
(3.26) | (8.91) | (3.42) | (8.25) | |
R&Dsn | 0.00216 | 0.00213 | ||
(0.46) | (0.48) | |||
R&Di | 0.459 *** | 0.417 *** | ||
(59.92) | (57.01) | |||
STIRA_In * SA | −0.00201 *** | |||
(−3.31) | ||||
STIRA_Im * SA | −0.00503 *** | |||
(−4.75) | ||||
_cons | −6.001 *** | 1.405 *** | −5.476 *** | 1.338 *** |
(−40.30) | (8.71) | (−38.96) | (8.98) | |
N | 14,150 | 6611 | 14,150 | 6611 |
Year | Yes | Yes | Yes | Yes |
Ind | Yes | Yes | Yes | Yes |
R2 | 0.309 | 0.122 | 0.385 | 0.223 |
adj. R2 | 0.307 | 0.115 | 0.383 | 0.218 |
Phase I | ||||||
Variant | STIRA_In | t-Value | p-Value | STIRA_Im | t-Value | p-Value |
TMTIP | 23.22846 | 1.70 | 0.09 | 74.77208 | 6.5 | <0.01 |
Constant Term | 6.001367 | 280.14 | <0.01 | 2.692901 | 149.6 | <0.01 |
N | 14,632 | 14,632 | ||||
R2 | 0.000 | 0.0028 | ||||
Phase II | ||||||
Variant | BI | t-Value | p-Value | |||
STIRA_In | 0.0164 | 4.40 | <0.01 | |||
STIRA_Im | 0.201 | 49.00 | <0.01 | |||
Constant Term | 2.037 | 83.97 | <0.01 | |||
N | 14,632 | |||||
R2 | 0.001 |
One Period Lag | Change Sample Size | Add Regional Dummy Variables | Replace Dependent Variable | |||||
---|---|---|---|---|---|---|---|---|
BI | BI | BI | BI | BI | BI | BI | BI | |
L.STIRA_In | 0.00824 ** | |||||||
(2.02) | ||||||||
L.STIRA_Im | 0.0968 *** | |||||||
(19.36) | ||||||||
STIRA_In | 0.0134 *** | 0.00731 ** | 0.0645 *** | |||||
(3.73) | (2.29) | (4.31) | ||||||
STIRA_Im | 0.141 *** | 0.160 *** | 0.326 *** | |||||
(32.31) | (41.68) | (17.28) | ||||||
Ea | −0.00504 *** | −0.00485 *** | −0.00476 ** | −0.00417 ** | −0.00368 ** | −0.00301 ** | −0.0114 | −0.00995 |
(−2.90) | (−2.84) | (−2.50) | (−2.32) | (−2.42) | (−2.10) | (−1.60) | (−1.41) | |
Ep | 0.00000717 | 0.00000665 | 0.00000682 | 0.00000603 | 0.00000688 | 0.00000556 | 0.0000232 | 0.0000215 |
(1.35) | (1.27) | (1.35) | (1.26) | (1.39) | (1.19) | (1.00) | (0.93) | |
Npr | 0.0609 ** | 0.0679 *** | 0.0338 | 0.0323 | 0.0611 *** | 0.0643 *** | 0.474 *** | 0.475 *** |
(2.55) | (2.90) | (1.22) | (1.23) | (2.85) | (3.18) | (4.82) | (4.88) | |
R&Dsn | −0.00367 | −0.00582 | −0.00206 | 0.000857 | 0.00194 | 0.00203 | −0.0608 *** | −0.0604 *** |
(−0.67) | (−1.08) | (−0.36) | (0.16) | (0.41) | (0.46) | (−2.76) | (−2.77) | |
R&Di | 0.495 *** | 0.475 *** | 0.481 *** | 0.435 *** | 0.460 *** | 0.417 *** | 1.264 *** | 1.181 *** |
(55.19) | (53.58) | (45.76) | (43.25) | (59.94) | (57.01) | (35.14) | (32.83) | |
_cons | −6.448 *** | −6.229 *** | −6.346 *** | −5.755 *** | −5.988 *** | −5.471 *** | −18.32 *** | −17.06 *** |
(−36.30) | (−35.78) | (−33.30) | (−31.81) | (−40.16) | (−38.88) | (−26.22) | (−24.65) | |
N | 10,945 | 10,945 | 9028 | 9028 | 14,150 | 14,150 | 14,150 | 14,150 |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Ind | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province | No | No | No | No | Yes | Yes | No | No |
R2 | 0.329 | 0.351 | 0.313 | 0.384 | 0.310 | 0.385 | 0.165 | 0.181 |
adj. R2 | 0.325 | 0.348 | 0.310 | 0.381 | 0.307 | 0.383 | 0.162 | 0.178 |
One Period Lag | Change Sample Size | Add Regional Dummy Variables | Replace Dependent Variable | |||||
---|---|---|---|---|---|---|---|---|
BI | BI | BI | BI | BI | BI | BI | BI | |
L.STIRA_In | 0.00542 * | |||||||
(1.83) | ||||||||
L.STIRA_Im | 0.0859 *** | |||||||
(11.15) | ||||||||
STIRA_In | 0.00268 * | 0.0116 * | 0.0864 ** | |||||
(1.28) | (1.44) | (2.12) | ||||||
STIRA_Im | 0.133 *** | 0.148 *** | 0.409 *** | |||||
(9.47) | (11.59) | (6.13) | ||||||
Ea | 0.00623 ** | 0.00845 *** | 0.00779 ** | 0.00652 ** | 0.00704 ** | 0.00627 ** | 0.0417 *** | 0.0402 *** |
(2.08) | (2.95) | (2.36) | (2.06) | (2.52) | (2.36) | (2.98) | (2.89) | |
Ep | 0.000780 | 0.000379 | 0.00141 * | 0.000904 | 0.000610 | 0.000299 | 0.00367 | 0.00314 |
(1.20) | (0.61) | (1.79) | (1.20) | (1.00) | (0.51) | (1.19) | (1.03) | |
Npr | 0.153 *** | 0.175 *** | 0.127 *** | 0.102 *** | 0.170 *** | 0.143 *** | 0.734 *** | 0.687 *** |
(4.85) | (5.76) | (3.53) | (2.97) | (5.70) | (5.05) | (5.01) | (4.73) | |
R&Dsn | 0.0778 *** | 0.0586 *** | 0.0953 *** | 0.0850 *** | 0.100 *** | 0.0826 *** | 0.412 *** | 0.379 *** |
(4.71) | (3.69) | (4.96) | (4.61) | (6.69) | (5.77) | (5.47) | (5.05) | |
R&Di | 0.484 *** | 0.464 *** | 0.451 *** | 0.416 *** | 0.441 *** | 0.406 *** | 1.105 *** | 1.041 *** |
(31.83) | (31.76) | (23.16) | (22.28) | (33.22) | (31.99) | (16.55) | (15.69) | |
STIRA_In*SA | −0.00134 *** | −0.00137 ** | −0.00192 *** | −0.000944 * | ||||
(−3.47) | (−2.14) | (−3.62) | (−1.35) | |||||
STIRA_Im*SA | −0.00840 *** | −0.000192 * | −0.000787 * | −0.00788 * | ||||
(−16.74) | (1.19) | (−1.84) | (−1.62) | |||||
_cons | −6.569 *** | −6.423 *** | −6.878 *** | −6.242 *** | −6.014 *** | −5.490 *** | −16.57 *** | −15.39 *** |
(−20.39) | (−21.01) | (−21.49) | (−20.36) | (−22.55) | (−21.67) | (−12.37) | (−11.61) | |
N | 5420 | 5420 | 4448 | 4448 | 6539 | 6539 | 14,632 | 14,632 |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Ind | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province | No | No | No | No | Yes | Yes | No | No |
R2 | 0.366 | 0.416 | 0.359 | 0.411 | 0.349 | 0.408 | 0.078 | 0.107 |
adj. R2 | 0.360 | 0.410 | 0.353 | 0.405 | 0.344 | 0.403 | 0.075 | 0.104 |
Non-Coastal | Coastal | Non-Coastal | Coastal | |
---|---|---|---|---|
BI | BI | BI | BI | |
STIRA_In | 0.0179 *** | 0.00288 * | ||
(3.01) | (1.76) | |||
STIRA_Im | 0.143 *** | 0.167 *** | ||
(20.46) | (36.54) | |||
Ea | −0.00584 * | −0.00183 | −0.00424 | −0.00139 |
(−1.77) | (−1.09) | (−1.35) | (−0.88) | |
Ep | −0.000125 | 0.00000834 * | −0.000127 * | 0.00000672 |
(−1.61) | (1.71) | (−1.70) | (1.47) | |
Npr | 0.00133 | 0.00141 | 0.00122 | 0.00157 |
(0.14) | (0.26) | (0.14) | (0.31) | |
R&Dsn | 0.418 *** | 0.489 *** | 0.391 *** | 0.437 *** |
(31.21) | (52.31) | (30.47) | (49.19) | |
R&Di | −5.114 *** | −6.610 *** | −4.819 *** | −5.923 *** |
(−19.91) | (−35.76) | (−19.79) | (−33.99) | |
_cons | 0.0179 *** | 0.00288 * | ||
(3.01) | (1.76) | |||
N | 4122 | 10,028 | 4122 | 10,028 |
Year | Yes | Yes | Yes | Yes |
Ind | Yes | Yes | Yes | Yes |
R2 | 0.319 | 0.317 | 0.381 | 0.398 |
adj. R2 | 0.312 | 0.314 | 0.374 | 0.395 |
Inter-group differences | p = 0.398 > 0.1 | p = 0.0408 < 0.1 |
Non-State | Nationalized | Non-State | Nationalized | |
---|---|---|---|---|
BI | BI | BI | BI | |
STIRA_In | 0.00381 * | 0.0235 *** | ||
(1.13) | (2.79) | |||
STIRA_Im | 0.158 *** | 0.169 *** | ||
(38.61) | (17.37) | |||
Ea | −0.00541 *** | 0.00573 | −0.00463 *** | 0.00655 * |
(−3.36) | (1.38) | (−3.07) | (1.65) | |
Ep | 0.00000734 | 0.000506 | 0.00000571 | 0.000348 |
(1.54) | (0.70) | (1.28) | (0.50) | |
R&Dsn | 0.00185 | 0.0214 | 0.00322 | 0.0129 |
(0.37) | (1.47) | (0.69) | (0.93) | |
R&Di | 0.456 *** | 0.448 *** | 0.409 *** | 0.415 *** |
(49.72) | (28.86) | (47.12) | (27.78) | |
_cons | −5.889 *** | −6.044 *** | −5.318 *** | −5.621 *** |
(−33.80) | (−18.72) | (−32.52) | (−18.24) | |
N | 10,952 | 3198 | 10,952 | 3198 |
Year | Yes | Yes | Yes | Yes |
Ind | Yes | Yes | Yes | Yes |
R2 | 0.268 | 0.379 | 0.356 | 0.431 |
adj. R2 | 0.265 | 0.371 | 0.353 | 0.424 |
Inter-group differences | p = 0.0317 < 0.1 | p = 0.4417 > 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Yang, X.; Song, H. The Impact of Scientific and Technological Information Resource Utilization on Breakthrough Innovation in Enterprises: The Moderating Role of Strategic Aggressiveness. Systems 2024, 12, 248. https://doi.org/10.3390/systems12070248
Hou J, Yang X, Song H. The Impact of Scientific and Technological Information Resource Utilization on Breakthrough Innovation in Enterprises: The Moderating Role of Strategic Aggressiveness. Systems. 2024; 12(7):248. https://doi.org/10.3390/systems12070248
Chicago/Turabian StyleHou, Jianhua, Xiucai Yang, and Haoyang Song. 2024. "The Impact of Scientific and Technological Information Resource Utilization on Breakthrough Innovation in Enterprises: The Moderating Role of Strategic Aggressiveness" Systems 12, no. 7: 248. https://doi.org/10.3390/systems12070248
APA StyleHou, J., Yang, X., & Song, H. (2024). The Impact of Scientific and Technological Information Resource Utilization on Breakthrough Innovation in Enterprises: The Moderating Role of Strategic Aggressiveness. Systems, 12(7), 248. https://doi.org/10.3390/systems12070248