Artificial Intelligence and the New Quality Productive Forces of Enterprises: Digital Intelligence Empowerment Paths and Spatial Spillover Effects
Abstract
:1. Introduction
2. Theoretical Foundation and Research Hypotheses
2.1. A Theoretical Analysis of Artificial Intelligence for New Quality Productive Forces in Firms
2.2. Digital Intelligence Empowerment Influence Channels
2.2.1. Digital–Real Fusion Effect Influence Channel
2.2.2. Knowledge Flow Effect Affects the Channel
2.3. Other Channels
2.3.1. Sustainable Development Impact Channels
2.3.2. Capital Market Synchronization Channel
2.4. The Spatial Spillover Effect of Artificial Intelligence Empowers the Cultivation of Enterprise New Quality Productive Forces
3. Research Design
3.1. Model Setting
3.2. Research Process
3.3. Sample Selection and Data Sources
3.4. Explained Variable: New Quality Productive Forces (Npro)
3.5. Explanatory Variables: The Comprehensive Level of Artificial Intelligence (AI)
3.6. Control Variables
4. Empirical Tests
4.1. Benchmark Regression
4.2. Robustness Tests
4.2.1. Endogeneity Test
- 1.
- Instrumental variable method
- 2.
- Heckman two-stage model
4.2.2. Robustness Test
- 1.
- Extended time observation window
- 2.
- Other robustness tests
4.3. Mechanism Testing
4.3.1. Digital–Reality Integration Effect Influence Channels
4.3.2. Knowledge Flow Effect Influence Channels
4.3.3. Sustainable Development Channels
4.3.4. Capital Market Synchronization Impact Channels
4.4. Heterogeneity Analysis
4.4.1. Heterogeneity of Property Rights
4.4.2. Heterogeneity of Industry Competition
4.4.3. Heterogeneity in the Digital Background of Executives
4.4.4. Heterogeneity in the Nature of the Industry
5. Spatial Measurement Analysis
5.1. Spatial Correlation Tests
5.2. Spatial Weighting Matrix
5.2.1. Spatial Geographic Distance Matrix
5.2.2. Spatial Economic Geography Nested Matrix
5.3. Selection of Spatial Econometric Regression Models
5.4. Spatial Econometric Regression Analysis
6. Conclusions and Recommendations
6.1. Conclusions
6.2. Recommendations
6.3. Limitations and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, W.; Xu, L. On the new-quality productive forces: Connotation, Characteristics and Important Focus Points. Reform 2023, 10, 1–13. [Google Scholar]
- Furman, J.; Seamans, R. AI and the economy. Innov. Policy Econ. 2019, 19, 161–191. [Google Scholar] [CrossRef]
- Qi, Y.; Shen, T. Artificial intelligence empowers new-quality productive forces: Logic, mode and path. Econ. Manag. Res. 2024, 45, 3–17. [Google Scholar]
- Guo, H. Value implication, risk review and institutional structure of generative artificial intelligence to help the development of new-quality productive forces. Financ. Econ. 2024, 11, 14–25. [Google Scholar]
- Jiang, W.; Yang, Q. On the Facilitating Role of Generative Artificial Intelligence on the Formation of new-quality productive forces. J. Shaanxi Norm. Univ. (Philos. Soc. Sci. Ed.) 2024, 53, 15–25. [Google Scholar]
- Sun, Y. Artificial Intelligence Enabling new-quality productive forces: Theoretical Logic, Practical Basis and Policy Path. J. Southwest Univ. Natl. (Humanit. Soc. Sci. Ed.) 2024, 45, 108–115. [Google Scholar]
- Ren, B.; Wang, X. The framework and path of forming new-quality productive forces through the deep integration of artificial intelligence and real economy. Soc. Sci. 2024, 7, 120–127. [Google Scholar]
- Qi, Y. The development of new-quality productive forces should play the role of digital technology. China Newsp. Ind. 2024, 11, 5. [Google Scholar]
- Mokyr, J.; Vickers, C.; Ziebarth, N.L. The history of technological anxiety and the future of economic growth: Is this time different? J. Econ. Perspect. 2015, 29, 31–50. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Artificial Intelligence, Automation and Work; NBER Working Paper No. 24196; National Bureau of Economic Research: Cambridge, UK, 2018. [Google Scholar]
- Chen, Y.; Bao, J.; Weng, G.; Shang, Y.; Liu, C.; Jiang, B. AI-Enabled Multi-Mode Electronic Information Innovation Practice Teaching Reform Prediction and Exploration in Application-Oriented Universities. Systems 2024, 12, 442. [Google Scholar] [CrossRef]
- Abositta, A.; Adedokun, M.W.; Berberoğlu, A. Influence of Artificial Intelligence on Engineering Management Decision-Making with Mediating Role of Transformational Leadership. Systems 2024, 12, 570. [Google Scholar] [CrossRef]
- Jing, H.; Zhang, S. The Impact of Artificial Intelligence on ESG Performance of Manufacturing Firms: The Mediating Role of Ambidextrous Green Innovation. Systems 2024, 12, 499. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Are we approaching an economic singularity? Information technology and future of economic growth. Am. Econ. J. Macroecon. 2021, 13, 299–332. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Sun, F.; Li, X. The Functional Mechanisms through Which Artificial Intelligence Influences the Innovation of Green Processes of Enterprises. Systems 2024, 12, 378. [Google Scholar] [CrossRef]
- Johnson, P.C.; Laurell, C.; Ots, M.; Sandström, C. Digital Innovation and the Effects of Artificial Intelligence on Firms’ Research and Development-Automation or Augmentation, Exploration or Exploitation? Technol. Forecast. Soc. Change 2022, 179, 121636. [Google Scholar] [CrossRef]
- Madanchian, M. The Impact of Artificial Intelligence Marketing on E-Commerce Sales. Systems 2024, 12, 429. [Google Scholar] [CrossRef]
- Wagner, D.N. The Nature of the Artificially Intelligent Firm-An Economic Investigation into Changes That AI Brings to the Firm. Telecommun. Policy 2020, 44, 101954. [Google Scholar] [CrossRef]
- Zhang, H.; Song, M.; Wang, Y. Does AI-Infused Operations Capability Enhance or Impede the Relationship between Information Technology Capability and Firm Performance? Firm Performance? Technol. Forecast. Soc. Change 2023, 191, 122517. [Google Scholar] [CrossRef]
- Chiarini, A. Industry 4.0 Technologies in the Manufacturing Sector: Are We Sure They Are All Relevant for Environmental Performance? Bus. Strateg. Environ. 2021, 30, 3194–3207. [Google Scholar] [CrossRef]
- Monteiro, A.; Cepêda, C.; Da Silva, A.C.F.; Vale, J. The Relationship between AI Adoption Intensity and Internal Control System and Accounting Information Quality. Systems 2023, 11, 536. [Google Scholar] [CrossRef]
- Zharfan, M.; Hendra, H. Changing role of millennial accountants in the information revolution era (Industry 4.0) and challenges in the society generation scope (Society 5.0). Enrich. J. Manag. 2023, 13, 376–384. [Google Scholar] [CrossRef]
- Vărzaru, A.A.; Bocean, C.G. Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation. Systems 2024, 12, 359. [Google Scholar] [CrossRef]
- Obermayer, N.; Csizmadia, T.; Hargitai, D.M. Influence of Industry 4.0 technologies on corporate operation and performance management from human aspects. Meditari Account. Res. 2022, 30, 1027–1049. [Google Scholar] [CrossRef]
- Cassiman, B.; Veugelers, R. R&D Cooperation and Spillovers:Some Empirical Evidence from Belgium. Am. Econ. Rev. 2022, 92, 1169–1184. [Google Scholar]
- Lenka, S.; Vinit, P.; Wincent, J. Digitalization Capabilities as Enablers of Value Co-creation in Servitizing Firms. Psychol. Mark. 2017, 34, 92–100. [Google Scholar] [CrossRef]
- Zhou, B.; Huang, X.; Wu, X. Financial Reform and Innovation: Evidence from China’s Financial Reform Pilot Zones. Asian J. Technol. Innov. 2023, 31, 137–155. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Qiao, Y.; Li, X.; Li, S. Does Improvement of Environmental Information Transparency Boost Firms’ Green Innovation? Evidence from the Air Quality Monitoring and Disclosure Program in China. J. Clean. Prod. 2022, 357, 131921. [Google Scholar] [CrossRef]
- Hao, X.; Wen, S.; Xue, Y.; Wu, H.; Hao, Y. How to Improve Environment, Resources and Economic Efficiency in the Digital Era? Resour. Policy 2023, 80, 103198. [Google Scholar]
- Su, H.; Qu, X.; Tian, S.; Ma, Q.; Li, L.; Chen, Y. Artificial Intelligence Empowerment: The Impact of Research and Development Investment on Green Radical Innovation in High-Tech Enterprises. Syst. Res. Behav. Sci. 2022, 39, 489–502. [Google Scholar] [CrossRef]
- Berg, F.; Koelbel, J.F.; Rigobon, R. Aggregate confusion: The divergence of ESG ratings. Rev. Financ. 2022, 26, 1315–1344. [Google Scholar] [CrossRef]
- Fama, E.F. Two Pillars of Asset Pricing. Am. Econ. Rev. 2014, 104, 1467–1485. [Google Scholar] [CrossRef]
- Xie, W.; Zheng, D.; Li, Z.; Wang, Y.; Wang, L. Digital technology and manufacturing industrial change: Evidence from the Chinese manufacturing industry. Comput. Ind. Eng. 2024, 187, 109825. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, Z.; Xi, R.; Diao, Y.; Hu, Y. Digital transformation, productive services agglomeration and innovation performance. Heliyon 2024, 10, e25534. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and new tasks:How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.L.; Yang, Z. Can artificial intelligence improve green economic growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T. Mediating and moderating effects in empirical studies of causal inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Song, J.; Zhang, J.; Pan, Y. A study on the impact of ESG development on firms’ new-quality productive forces--empirical evidence from Chinese A-share listed firms. Contemp. Econ. Manag. 2024, 46, 1–11. [Google Scholar]
- Wang, Y.; Ma, Y. New-quality productive forces, firm innovation and supply chain resilience: Micro evidence from Chinese listed companies. Xinjiang Soc. Sci. 2024, 3, 68–82+177. [Google Scholar]
- Yao, J.; Zhang, K.; Guo, L.; Feng, X. How Does Artificial Intelligence Enhance the Productivity of Enterprises?—Based on the perspective of labor skill restructuring. Manag. World 2024, 40, 101–116+133+117–122. [Google Scholar]
- Li, G.; Bai, Y. How Artificial Intelligence Adoption Affects the Innovation Performance of Manufacturing Firms? Financ. Econ. Ser. 2024, 12, 102–112. [Google Scholar]
- Zhu, G.; Wang, K. Artificial intelligence application and green innovation in manufacturing enterprises. Ind. Technol. Econ. 2024, 43, 73–81. [Google Scholar]
- Wang, Y.Q.; Dong, W. How does the rise of robots affect China’s labor market?—Evidence from listed manufacturing companies. Econ. Res. 2020, 55, 159–175. [Google Scholar]
- Zhao, C.; Chen, S.; Cao, W. “Internet+” disclosure: Material statement or strategic speculation—Evidence based on the risk of stock price collapse. China Ind. Econ. 2020, 3, 174–192. [Google Scholar]
- Huang, B.; Li, H.; Liu, J. Digital technology innovation and high-quality development of Chinese firms-Evidence from firms’ digital patents. Econ. Res. 2023, 58, 97–115. [Google Scholar]
- Bartik, T.J. Who Benefits from State and Local Economic Development Policies; W.E. Upjohn Institute for Employment Research: Kalamazoo, MI, USA, 1991. [Google Scholar]
- Blanchard, O.J.; Katz, L.F.; Hall, R.E.; Eichengreen, B. Regional Evolutions. Brook. Pap. Econ. Act. 1992, 1, 1–75. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, W.; Li, X. How digital transformation affects enterprise total factor productivity. Financ. Trade Econ. 2021, 42, 114–129. [Google Scholar]
- Zhang, S.; Gu, C. Supply chain digitization and supply chain resilience. Financ. Res. 2024, 50, 21–34. [Google Scholar]
- Huang, X.; Gao, Y. Technology integration and enterprise total factor productivity in the digital real industry—A study based on patent information of Chinese enterprises. China Ind. Econ. 2023, 11, 118–136. [Google Scholar]
- Yuan, Y.; Zhu, G.; He, H.; Zhang, Y. Digital transformation, knowledge coupling and corporate knowledge flow. Stat. Decis. Mak. 2024, 40, 172–177. [Google Scholar]
- Huang, X.; Ye, Z.; Wang, S. Anti-dumping and Information Efficiency in China’s Capital Market—A Study Based on Stock Price Synchronization. Economics 2023, 23, 1954–1972. [Google Scholar]
- Cai, G.; Deng, J.; Ge, R.; Zheng, G. Customer industry competitive position and supplier firm performance. Account. Res. 2022, 11, 72–86. [Google Scholar]
- Wu, Y.; Zhang, T.; Qin, L.; Bao, H. Executive information technology background and enterprise digital transformation. Econ. Manag. 2022, 44, 138–157. [Google Scholar]
- Zhu, Y.; Lu, X.; Lin, Z. Spatial econometric analysis of cohort effect in R&D decision-making of Chinese enterprises. Sci. Technol. Prog. Countermeas. 2021, 38, 104–113. [Google Scholar]
Variable Name | Variable Description | Weight | |
---|---|---|---|
Laborers | R&D staff salary ratio | (R&D Expense—Salary and Wages)/Operating Income | 28% |
Percentage of R&D personnel | Number of R&D Personnel/Number of Employees | 4% | |
Percentage of highly educated personnel | Number of Bachelor’s Degree or Above/Number of Employees | 3% | |
Labor Materials | R&D depreciation and amortization ratio | (R&D Expense—Depreciation and Amortization)/Operating Income | 28% |
Percentage of R&D lease fee | (R&D Expenses − Lease Fee)/Revenue | 2% | |
Percentage of R&D direct investment | (R&D Expenses − Direct Inputs)/Revenue | 28% | |
Labor Object | Intangible assets | Intangible Assets/Total Assets | 7% |
Variable Name | Variable Symbol | Variable Description |
---|---|---|
New quality productive forces | Npro | Evaluation index of new quality productive forces constructed by entropy weight method |
Artificial intelligence level | AI | Comprehensive level of artificial intelligence measured at the strategic, application, and innovation levels |
Tobin’s q-value | tobin | Market value of the firm/replacement cost of assets |
Profitability of total assets | roa | Firm’s annual earnings divided by the value of total assets |
Growth rate of operating income | growth | Previous year’s revenue/current year’s revenue |
Current ratio | liqui | Ratio of total current assets to total current liabilities |
Independent directors | indep | Number of independent directors/number of directors |
Both | both | Whether the chairman and general manager are the same person; if yes, take 1; otherwise, take 0 |
Gearing ratio | lev | Total assets/total liabilities of the company |
Variables | Sample Size | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
Npro | 7690 | 5.611 | 2.352 | 1.589 | 5.251 | 14.611 |
AI | 7690 | 0.629 | 0.515 | 0.009 | 0.452 | 2.214 |
lev | 7690 | 0.415 | 0.198 | 0.052 | 0.408 | 0.927 |
roa | 7690 | 0.030 | 0.068 | −0.302 | 0.032 | 0.192 |
tobin | 7690 | 2.113 | 1.358 | 0.818 | 1.675 | 8.733 |
growth | 7690 | 0.239 | 0.573 | −0.680 | 0.107 | 3.565 |
liqui | 7690 | 2.351 | 2.392 | 0.288 | 1.615 | 15.896 |
both | 7690 | 0.269 | 0.444 | 0.000 | 0.000 | 1.000 |
indep | 7690 | 0.375 | 0.053 | 0.333 | 0.357 | 0.571 |
Variables | (1) Npro | (2) Npro |
---|---|---|
AI | 0.686 *** (3.55) | 0.696 *** (3.65) |
Control variables | NO | YES |
Year and industry fixed effects | YES | YES |
Constant | 5.170 *** (41.50) | 4.654 *** (10.57) |
Sample size | 7690 | 7690 |
Variables | AI Phase I | Npro Phase II | AI Phase I | Npro Phase II |
---|---|---|---|---|
Bartik_IV | 2.463 *** (0.373) | |||
AI | 1.110 *** (0.280) | 1.785 *** (0.353) | ||
mean_AI | 9.811 *** (0.555) | |||
Kleibergen–Paap rk LM statistic | 28.372 *** | 135.609 *** | ||
Kleibergen–Paap rk Wald F statistic | 43.606 [16.38] | 313.005 [16.38] | ||
Year and Industry Fixed Effects | YES | YES | YES | YES |
Control variables | YES | YES | YES | YES |
Number of samples | 7690 | 7690 | 7690 | 7690 |
Variables | AI_dummy | Npro |
---|---|---|
AI | 0.686 *** (0.000) | |
Imr | 125.70 * (0.060) | |
AI_mean | 0.237 *** (0.000) | |
Constant | −0.318 *** (0.000) | −117.389 * (0.068) |
Control variables | YES | YES |
Industry/year fixed effects | YES | YES |
Sample size | 7690 | 7690 |
Variables | F.Npro | F2.Npro | F3.Npro | (1) Npro | (2) Npro | (3) Npro |
---|---|---|---|---|---|---|
AI | 0.758 *** (3.68) | 0.827 *** (3.81) | 0.872 *** (3.96) | |||
L.AI | 7.548 *** (3.62) | |||||
L2.AI | 8.201 *** (3.69) | |||||
L3.AI | 8.519 *** (3.73) | |||||
Year and industry fixed effects | YES | YES | YES | YES | YES | YES |
Control variables | YES | YES | YES | YES | YES | YES |
Constant | 4.605 *** (9.91) | 4.370 *** (8.59) | 4.340 *** (8.25) | 4.629 *** (9.99) | 4.627 *** (9.55) | 4.647 *** (9.38) |
Sample size | 6921 | 6152 | 5381 | 6921 | 6149 | 5383 |
Variables | Excluding the Stock Market Crash | Excluding Outbreaks | Substitution of Explanatory Variables | Higher-Dimensional Fixed Effect |
---|---|---|---|---|
AI | 0.687 *** (3.59) | 0.832 *** (4.16) | 0.722 *** (3.92) | |
AI_1 | 0.020 *** (5.68) | |||
Year and industry fixed effects | Yes | Yes | Yes | Yes |
Control variables | Yes | Yes | Yes | Yes |
Constant | 4.649 *** (10.41) | 4.804 *** (10.36) | 4.888 *** (11.62) | 4.263 *** (10.36) |
Sample size | 6921 | 4612 | 7690 | 7690 |
Variables | TechConv | Flow | Sus | Syn |
---|---|---|---|---|
AI | 0.134 ** (2.03) | 2.879 *** (2.69) | 0.189 *** (3.93) | 0.012 ** (2.40) |
Year and industry fixed effects | YES | YES | YES | YES |
Control variables | YES | YES | YES | YES |
Constant | 0.085 (0.64) | −1.261 * (−1.83) | 4.085 *** (23.40) | 0.442 *** (20.02) |
Sample size | 7690 | 7690 | 7690 | 7690 |
Variables | Property Right Heterogeneity | Industry Competition Heterogeneity | Executives Digitalization Background Heterogeneity | Industry Nature Heterogeneity | ||||
---|---|---|---|---|---|---|---|---|
Nationalized Business | Non-State Enterprise | High Level | Low Level | Digital Background | No Digital Background | Strategic Industry | Other Industries | |
AI | 0.335 (1.19) | 0.971 *** (4.96) | 0.739 *** (3.33) | 0.340 * (1.74) | 1.539 *** (5.52) | 0.388 ** (2.16) | 0.799 *** (3.23) | 0.408 ** (2.00) |
Year and industry fixed effects | YES | YES | YES | YES | YES | YES | YES | YES |
Control variables | YES | YES | YES | YES | YES | YES | YES | YES |
Constant | 5.83 *** (7.37) | 4.078 *** (8.60) | 4.127 *** (7.14) | 5.639 *** (12.46) | 2.574 ** (2.27) | 5.092 *** (11.27) | 3.853 *** (5.92) | 5.635 *** (9.79) |
Sample size | 4665 | 3025 | 5410 | 2280 | 1112 | 6578 | 4172 | 3518 |
Year | Spatial Geographic Distance Matrix | Spatial Economic Geography Nested Matrix | ||||
---|---|---|---|---|---|---|
Moran’s I | Z-Value | p-Value | Moran’s I | Z-Value | p-Value | |
2013 | 0.096 *** | 3.531 | 0.000 | 0.119 *** | 4.511 | 0.000 |
2014 | 0.081 *** | 4.641 | 0.000 | 0.109 *** | 4.133 | 0.000 |
2015 | 0.091 *** | 3.372 | 0.000 | 0.101 *** | 3.820 | 0.000 |
2016 | 0.125 *** | 4.641 | 0.000 | 0.111 *** | 4.242 | 0.000 |
2017 | 0.108 *** | 4.009 | 0.000 | 0.110 *** | 4.210 | 0.000 |
2018 | 0.101 *** | 3.764 | 0.000 | 0.109 *** | 4.169 | 0.000 |
2019 | 0.105 *** | 3.897 | 0.000 | 0.111 *** | 4.238 | 0.000 |
2020 | 0.125 *** | 4.640 | 0.000 | 0.127 *** | 4.830 | 0.000 |
2021 | 0.116 *** | 4.311 | 0.000 | 0.120 *** | 4.576 | 0.000 |
2022 | 0.123 *** | 4.579 | 0.000 | 0.125 *** | 4.750 | 0.000 |
Wald Test | LR Test (Which Model to Choose) | LR Test (What Fixed Effects to Choose) | Hausman Test | |||
---|---|---|---|---|---|---|
Wald-SEM | Wald-SAR | LR for SEM | LR for SEM | LR-ind | LR-time. | / |
46.19 *** | 40.22 *** | 40.16 *** | 46.05 *** | 580.30 *** | 10016.72 *** | 5026.65 *** |
Variables | Npro | |
---|---|---|
Spatial Geographic Distance Matrix | Spatial Economic Geography Nested Matrix | |
AI | 0.209 *** (4.31) | 0.207 *** (4.26) |
WAI | 0.279 *** (3.49) | 0.175 *** (2.05) |
Control variables | YES | YES |
Time and space fixed effects | YES | YES |
ρ | 0.060 *** (3.96) | 0.053 *** (3.57) |
Brochure | 7690 | 7690 |
Sigma2_e | 1.304 *** (61.98) | 1.102 *** (59.15) |
Geographic Distance Matrix | Economic Geography Nested Matrix | |||||
---|---|---|---|---|---|---|
Ratio | Z-Value | p-Value | Ratio | Z-Value | p-Value | |
aggregate effect | 0.528 *** | 5.55 | 0.000 | 0.413 *** | 4.18 | 0.000 |
indirect effect | 0.312 *** | 3.83 | 0.000 | 0.202 ** | 2.34 | 0.019 |
direct effect | 0.216 *** | 4.33 | 0.000 | 0.211 *** | 4.23 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tang, H.; Chen, Z. Artificial Intelligence and the New Quality Productive Forces of Enterprises: Digital Intelligence Empowerment Paths and Spatial Spillover Effects. Systems 2025, 13, 105. https://doi.org/10.3390/systems13020105
Li X, Tang H, Chen Z. Artificial Intelligence and the New Quality Productive Forces of Enterprises: Digital Intelligence Empowerment Paths and Spatial Spillover Effects. Systems. 2025; 13(2):105. https://doi.org/10.3390/systems13020105
Chicago/Turabian StyleLi, Xiumin, Haojian Tang, and Zishuo Chen. 2025. "Artificial Intelligence and the New Quality Productive Forces of Enterprises: Digital Intelligence Empowerment Paths and Spatial Spillover Effects" Systems 13, no. 2: 105. https://doi.org/10.3390/systems13020105
APA StyleLi, X., Tang, H., & Chen, Z. (2025). Artificial Intelligence and the New Quality Productive Forces of Enterprises: Digital Intelligence Empowerment Paths and Spatial Spillover Effects. Systems, 13(2), 105. https://doi.org/10.3390/systems13020105