Digital Capabilities, Integration into Global Innovation Networks, and Enterprise Innovation Performance
Abstract
:1. Introduction
2. Hypotheses
2.1. Digital Capability, Integration of Enterprises into Global Innovation Networks, and Enterprise Innovation Performance
2.2. The Impact of Enterprise IIGIN on Enterprise Innovation Performance
2.3. The Mediating Role of Enterprises in IIGIN
2.4. The Regulatory Role of Organizational Flexibility
2.4.1. The Moderating Role of Cultural Flexibility on IIGIN and Enterprise Innovation Performance
2.4.2. The Moderation of Resource Flexibility on IIGIN and Enterprise Innovation Performance
2.4.3. The Moderation of Capability Flexibility on IIGIN and Enterprise Innovation Performance
3. Methods
3.1. Data Sources and Sample Selection
3.2. Variable Measurement
3.3. Common Method Bias Test
4. Analysis and Results
4.1. Descriptive Statistics and Univariate Analysis
4.2. Regression Analysis and Hypothesis Testing Results
4.2.1. Main Effect Test
4.2.2. Moderating Effect Test
4.3. Reliability and Validity Testing
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kraus, S.; Jones, P.; Kailer, N.; Weinmann, A.; Chaparro-Banegas, N.; Roig-Tierno, N. Digital Transformation: An Overview of the Current State of the Art of Research. Sage Open 2021, 11, 21582440211047576. [Google Scholar] [CrossRef]
- Nambisan, S.; Siegel, D.; Kenney, M. On open innovation, platforms, and entrepreneurship. Strateg. Entrep. J. 2018, 12, 354–368. [Google Scholar] [CrossRef]
- Annarelli, A.; Battistella, C.; Nonino, F.; Parida, V.; Pessot, E. Literature review on digitalization capabilities: Co-citation analysis of antecedents, conceptualization and consequences. Technol. Forecast. Soc. Chang. 2021, 166, 120635. [Google Scholar] [CrossRef]
- Ritter, T.; Pedersen, C.L. Digitization capability and the digitalization of business models in business-to-business firms: Past, present, and future. Ind. Mark. Manag. 2020, 86, 180–190. [Google Scholar] [CrossRef]
- Teece, D.J. Business models and dynamic capabilities. Long Range Plan. 2018, 51, 40–49. [Google Scholar] [CrossRef]
- Warner, K.S.; Wäger, M. Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long Range Plan. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Cenamor, J.; Parida, V.; Wincent, J. How entrepreneurial SMEs compete through digital platforms: The roles of digital platform capability, network capability and ambidexterity. J. Bus. Res. 2019, 100, 196–206. [Google Scholar] [CrossRef]
- Asakawa, K.; Park, Y.; Song, J.; Kim, S.J. Internal embeddedness, geographic distance, and global knowledge sourcing by overseas subsidiaries. J. Int. Bus. Stud. 2018, 49, 743–752. [Google Scholar] [CrossRef]
- Sanchez, R. Strategic flexibility in product competition. Strateg. Manag. J. 1995, 16, 135–159. [Google Scholar] [CrossRef]
- Drucker, P.; Maciariello, J. Innovation and Entrepreneurship; Routledge: London, UK, 2014. [Google Scholar]
- Aggarwal, A.; Baker, H.K.; Joshi, N.A. Organizational innovation as business strategy: A review and Bibliometric analysis. J. Knowl. Econ. 2024, 1–27. [Google Scholar] [CrossRef]
- Chesbrough, H.W.; Appleyard, M.M. Open innovation and strategy. Calif. Manag. Rev. 2007, 50, 57–76. [Google Scholar] [CrossRef]
- Chesbrough, H.; Vanhaverbeke, W.; West, J. (Eds.) New Frontiers in Open Innovation; Oup Oxford: Oxford, UK, 2014. [Google Scholar]
- Curley, M.; Salmelin, B. Open Innovation 2.0; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sheng, M.L.; Hartmann, N.N. Impact of subsidiaries’ cross-border knowledge tacitness shared and social capital on MNCs’ explorative and exploitative innovation capability. J. Int. Manag. 2019, 25, 100705. [Google Scholar] [CrossRef]
- Zhai, H.; Yang, M.; Chan, K.C. Does digital transformation enhance a firm’s performance? Evidence from China. Technol. Soc. 2022, 68, 101841. [Google Scholar] [CrossRef]
- Christensen, C.M. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail; Harvard Business Review Press: Brighton, MA, USA, 2015. [Google Scholar]
- Christensen, C.; Raynor, M. The innovator’s Solution: Creating and Sustaining Successful Growth; Harvard Business Review Press: Brighton, MA, USA, 2013. [Google Scholar]
- AlNuaimi, B.K.; Singh, S.K.; Ren, S.; Budhwar, P.; Vorobyev, D. Mastering digital transformation: The nexus between leadership, agility, and digital strategy. J. Bus. Res. 2022, 145, 636–648. [Google Scholar] [CrossRef]
- Khin, S.; Ho, T.C. Digital technology, digital capability and organizational performance: A mediating role of digital innovation. Int. J. Innov. Sci. 2019, 11, 177–195. [Google Scholar] [CrossRef]
- Castellani, D.; Jimenez, A.; Zanfei, A. How remote are R&D labs? Distance factors and international innovative activities. J. Int. Bus. Stud. 2013, 44, 649–675. [Google Scholar]
- Zhao, N.; Ren, J. Impact of enterprise digital transformation on capacity utilization: Evidence from China. PLoS ONE 2023, 18, e0283249. [Google Scholar] [CrossRef]
- Wu, L.; Hitt, L.; Lou, B. Data analytics, innovation, and firm productivity. Manag. Sci. 2020, 66, 2017–2039. [Google Scholar] [CrossRef]
- Ovuakporie, O.D.; Pillai, K.G.; Wang, C.; Wei, Y. Differential moderating effects of strategic and operational reconfiguration on the relationship between open innovation practices and innovation performance. Res. Policy 2021, 50, 104146. [Google Scholar] [CrossRef]
- Lavie, D. The competitive advantage of interconnected firms: An extension of the resource-based view. Acad. Manag. Rev. 2006, 31, 638–658. [Google Scholar] [CrossRef]
- Lehrer, C.; Wieneke, A.; Vom Brocke, J.A.N.; Jung, R.; Seidel, S. How big data analytics enables service innovation: Materiality, affordance, and the individualization of service. J. Manag. Inf. Syst. 2018, 35, 424–460. [Google Scholar] [CrossRef]
- Arvidsson, V.; Mønsted, T. Generating innovation potential: How digital entrepreneurs conceal, sequence, anchor, and propagate new technology. J. Strateg. Inf. Syst. 2018, 27, 369–383. [Google Scholar] [CrossRef]
- Bertello, A.; De Bernardi, P.; Ricciardi, F. Open innovation: Status quo and quo vadis-an analysis of a research field. Rev. Manag. Sci. 2024, 18, 633–683. [Google Scholar] [CrossRef]
- Min, Y.; Zhang, X. Integrating into the global innovation network and non-financial companies financialization—Evidence from China-listed companies. Financ. Res. Lett. 2024, 62, 105066. [Google Scholar] [CrossRef]
- Bai, X.; Wu, J.; Liu, Y.; Xu, Y. Research on the impact of global innovation network on 3D printing industry performance. Scientometrics 2020, 124, 1015–1051. [Google Scholar] [CrossRef]
- Lichtenthaler, U. Open innovation: Past research, current debates, and future directions. Acad. Manag. Perspect. 2011, 25, 75–93. [Google Scholar]
- Bai, X.; Wu, J.; Liu, Y.; Yang, Y.; Wang, M. Research on the impact of global innovation network on corporate performance. Technol. Anal. Strateg. Manag. 2022, 34, 518–534. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, T.; Hughes, K.D.; Li, Y. Entrepreneurial alertness and business model innovation: The role of entrepreneurial learning and risk perception. Int. Entrep. Manag. J. 2021, 17, 839–864. [Google Scholar] [CrossRef]
- Lin, P.; Zhang, X.; Yan, S.; Jiang, Q. Dynamic capabilities and business model innovation of platform enterprise: A case study of didi taxi. Sci. Program. 2020, 2020, 8841368. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, L.; Li, N.; Yu, X. Unveiling the influence of global innovation networks on corporate innovation: Evidence from the international semiconductor industry. Sci. Rep. 2024, 14, 11007. [Google Scholar] [CrossRef]
- Fischer, K.J.; Schultz, J. How does a covenantal approach to developing organizational leadership affect innovation? J. Leadersh. Stud. 2016, 10, 53–54. [Google Scholar] [CrossRef]
- Bamel, U.K.; Bamel, N. Organizational resources, KM process capability and strategic flexibility: A dynamic resource-capability perspective. J. Knowl. Manag. 2018, 22, 1555–1572. [Google Scholar] [CrossRef]
- Black, J.; La Venture, K. The human factor to profitability: Leveraging people-centered cultures as meaningful organizations. Public Integr. 2018, 20, 444–458. [Google Scholar] [CrossRef]
- Sarta, A.; Durand, R.; Vergne, J.P. Organizational adaptation. J. Manag. 2021, 47, 43–75. [Google Scholar] [CrossRef]
- Combs, J.G.; Ketchen, D.J., Jr.; Ireland, R.D.; Webb, J.W. The role of resource flexibility in leveraging strategic resources. J. Manag. Stud. 2011, 48, 1098–1125. [Google Scholar] [CrossRef]
- Spigel, B.; Harrison, R. Toward a process theory of entrepreneurial ecosystems. Strateg. Entrep. J. 2018, 12, 151–168. [Google Scholar] [CrossRef]
- Hoisl, K.; Gruber, M.; Conti, A. R&D team diversity and performance in hypercompetitive environments. Strateg. Manag. J. 2017, 38, 1455–1477. [Google Scholar]
- Ehls, D.; Polier, S.; Herstatt, C. Reviewing the field of external knowledge search for innovation: Theoretical underpinnings and future (re-)search directions. J. Prod. Innov. Manag. 2020, 37, 405–430. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1976. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2023. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Jun, W.; Nasir, M.H.; Yousaf, Z.; Khattak, A.; Yasir, M.; Javed, A.; Shirazi, S.H. Innovation performance in digital economy: Does digital platform capability, improvisation capability and organizational readiness really matter? Eur. J. Innov. Manag. 2022, 25, 1309–1327. [Google Scholar] [CrossRef]
- Martín-de Castro, G.; Díez-Vial, I.; Delgado-Verde, M. Intellectual capital and the firm: Evolution and research trends. J. Intellect. Cap. 2019, 20, 555–580. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.F.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef]
- Li, B.; Xu, C.; Wang, Y.; Zhao, Y.; Zhou, Q.; Xing, X. Digital transformation, supply chain collaboration, and enterprise growth: Theoretical logic and Chinese practice. Eur. Res. Manag. Bus. Econ. 2024, 30, 100249. [Google Scholar] [CrossRef]
- Zobel, A.K.; Hagedoorn, J. Implications of open innovation for organizational boundaries and the governance of contractual relations. Acad. Manag. Perspect. 2020, 34, 400–423. [Google Scholar] [CrossRef]
- Srinivasan, A.; Venkatraman, N. Entrepreneurship in digital platforms: A network-centric view. Strateg. Entrep. J. 2018, 12, 54–71. [Google Scholar] [CrossRef]
Attribute | Classification | Number | Percentage (%) |
---|---|---|---|
Enterprise Age | 1–3 years | 11 | 3.2 |
4–10 years | 93 | 27.2 | |
11–20 years | 144 | 42.1 | |
Over 20 years | 94 | 27.5 | |
Enterprise Size | 50 or less people | 15 | 4.4 |
51–100 people | 32 | 9.4 | |
101–500 people | 82 | 24 | |
501–1000 people | 121 | 35.4 | |
1001 or more people | 92 | 26.9 | |
Average Annual Operating Income | Up to USD 142,857 | 7 | 2 |
USD 144,285–1,428,571 | 30 | 8.8 | |
USD 1,430,000–7,142,857 | 148 | 43.3 | |
USD 7,142,857–14,285,714 | 112 | 32.7 | |
Over USD 14,285,714 | 45 | 13.2 | |
Ownership Type | State-owned enterprise | 27 | 7.9 |
Collective enterprise | 57 | 16.7 | |
Private enterprise | 110 | 32.2 | |
Foreign capital enterprise | 148 | 43.3 | |
Main Business Types | Online focus | 27 | 7.9 |
Offline focus | 109 | 31.9 | |
Online + offline | 206 | 60.2 |
Variable | Symbol | Variable Declaration |
---|---|---|
Independent variable | DigPer | Digital perception ability |
DigOpe | Digital operation capability | |
DigRes | Digital resource coordination capability | |
Mediating variable | GloInno | Integrating into global innovation networks |
Moderating variable | CulFle | Cultural flexibility |
ResFle | Resource flexibility | |
CapFle | Capability flexibility | |
Dependent variable | pref | Innovation performance |
Control variable | Age | Enterprise age |
Size | Enterprise size: the number of existing employees in the enterprise | |
Revenue | Average annual operating income level | |
Ownership | Ownership type (dummy variable) | |
Industry | Segmented industries (dummy variable) | |
Area | Location (dummy variable) | |
Model | Business model (dummy variable) |
Variable | Mean Value | Standard Deviation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Age | 2.94 | 0.821 | 1 | ||||||||||||||
2. Size | 3.71 | 1.094 | 0.490 ** | 1 | |||||||||||||
3. Revenue | 3.46 | 0.901 | 0.407 ** | 0.523 ** | 1 | ||||||||||||
4. Ownership | 3.11 | 0.952 | −0.037 | 0.067 | 0.078 | 1 | |||||||||||
5. Industry | 2.23 | 0.936 | 0.019 | −0.049 | −0.085 | −0.015 | 1 | ||||||||||
6. Area | 2.03 | 0.439 | 0.021 | 0.005 | 0.084 | −0.141 ** | 0.041 | 1 | |||||||||
7. Model | 2.52 | 0.639 | 0.061 | 0.075 | 0.012 | −0.007 | −0.002 | 0.029 | 1 | ||||||||
8. DigPer | 3.799 | 0.99392 | 0.272 ** | 0.354 ** | 0.297 ** | 0.042 | −0.085 | −0.005 | −0.036 | 1 | |||||||
9. DigOpe | 3.9376 | 0.8657 | 0.306 ** | 0.333 ** | 0.335 ** | 0.065 | 0.002 | −0.018 | 0.02 | 0.376 ** | 1 | ||||||
10. DigRes | 3.9074 | 0.98318 | 0.326 ** | 0.365 ** | 0.334 ** | −0.002 | −0.028 | −0.062 | 0.01 | 0.433 ** | 0.518 ** | 1 | |||||
11. GloInno | 1.640 | 0.481 | 0.240 ** | 0.284 ** | 0.232 ** | -0.068 | -0.067 | -0.005 | 0.018 | 0.457 ** | 0.351 ** | 0.427 ** | 1 | ||||
12. CulFle | 1.840 | 0.540 | 0.150 ** | 0.126 * | 0.198 ** | 0.045 | 0.003 | 0.020 | -0.049 | 0.365 ** | 0.301 ** | 0.307 ** | 0.298 ** | 1 | |||
13. ResFle | 1.770 | 0.483 | 0.165 ** | 0.198 ** | 0.179 ** | 0.059 | 0.018 | -0.010 | -0.083 | 0.398 ** | 0.279 ** | 0.326 ** | 0.303 ** | 0.515 ** | 1 | ||
14. CapFle | 1.940 | 0.407 | 0.278 ** | 0.366 ** | 0.305 ** | 0.041 | 0.039 | 0.011 | 0.040 | 0.276 ** | 0.277 ** | 0.268 ** | 0.255 ** | 0.154 ** | 0.179 ** | 1 | |
15. pref | 3.914 | 0.84427 | 0.450 ** | 0.559 ** | 0.454 ** | -0.015 | -0.068 | 0.019 | 0.043 | 0.480 ** | 0.473 ** | 0.519 ** | 0.479 ** | 0.285 ** | 0.286 ** | 0.593 ** | 1 |
Variable | Dependent Variable: Innovation Performance | Mediating Variable: GloInno | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Age | 0.199 *** | 0.123 ** | 0.146 *** | 0.118 ** | 0.143 ** | 0.032 |
Size | 0.285 *** | 0.204 *** | 0.231 *** | 0.196 *** | 0.148 *** | 0.026 |
Revenue | 0.172 *** | 0.092 ** | 0.119 *** | 0.092 ** | 0.146 ** | 0.029 |
DigPer | 0.158 *** | 0.112 *** | 0.274 *** | |||
DigOpe | 0.146 *** | 0.126 *** | 0.201 *** | |||
DigRes | 0.166 *** | 0.133 *** | 0.218 *** | |||
GloInno | 0.368 *** | 0.316 *** | ||||
Ownership | control | control | control | control | control | control |
Industry | control | control | control | control | control | control |
Area | control | control | control | control | control | control |
Model | control | control | control | control | control | control |
R-sq | 0.380 | 0.509 | 0.516 | 0.532 | 0.137 | 0.382 |
Adj. R-sq | 0.367 | 0.495 | 0.504 | 0.517 | 0.119 | 0.363 |
F Value | 29.264 *** | 34.363 *** | 44.320 *** | 34.126 *** | 7.589 *** | 20.432 *** |
Observations | 342 | 342 | 342 | 342 | 342 | 342 |
Variable | Dependent Variable: Innovation Performance | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
Age | 0.105 ** | 0.105 ** | 0.103 ** | 0.108 ** |
Size | 0.181 *** | 0.181 *** | 0.182 *** | 0.181 *** |
Revenue | 0.105 ** | 0.104 ** | 0.104 ** | 0.103 ** |
CulFle | 0.058 | 0.062 | 0.065 | 0.057 |
ResFle | −0.004 | −0.009 | −0.01 | −0.006 |
CapFle | 0.339 *** | 0.339 *** | 0.340 *** | 0.366 *** |
GloInno | 0.303 *** | 0.304 *** | 0.301 *** | 0.305 *** |
GloInno × CulFle | 0.010 | |||
GloInno × ResFle | −0.012 | |||
GloInno × CapFle | 0.067 * | |||
Ownership | Control | Control | Control | Control |
Industry | Control | Control | Control | Control |
Area | Control | Control | Control | Control |
Model | Control | Control | Control | Control |
R-sq | 0.593 | 0.593 | 0.593 | 0.597 |
Adj. R-sq | 0.580 | 0.579 | 0.579 | 0.582 |
F Value | 43.759 *** | 40.009 *** | 40.015 *** | 40.564 *** |
Observations | 342 | 342 | 342 | 342 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Lai, X.; Dong, L.; Xu, X. Digital Capabilities, Integration into Global Innovation Networks, and Enterprise Innovation Performance. Systems 2025, 13, 212. https://doi.org/10.3390/systems13030212
Tian S, Lai X, Dong L, Xu X. Digital Capabilities, Integration into Global Innovation Networks, and Enterprise Innovation Performance. Systems. 2025; 13(3):212. https://doi.org/10.3390/systems13030212
Chicago/Turabian StyleTian, Shanwu, Xiaozhen Lai, Lijun Dong, and Xiurui Xu. 2025. "Digital Capabilities, Integration into Global Innovation Networks, and Enterprise Innovation Performance" Systems 13, no. 3: 212. https://doi.org/10.3390/systems13030212
APA StyleTian, S., Lai, X., Dong, L., & Xu, X. (2025). Digital Capabilities, Integration into Global Innovation Networks, and Enterprise Innovation Performance. Systems, 13(3), 212. https://doi.org/10.3390/systems13030212