Forging Resilient Urban Ecosystems: The Role of Energy Structure Transformation Under China’s New Energy Demonstration City Pilot Policy
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Institutional Regulation Effect
2.2. Resource Allocation Effect
2.3. Energy Substitution Effect
2.4. Awareness-Driven Effect
3. Research Design
3.1. Model Setup
3.2. Explained Variable
3.2.1. Explained Variable: UER Index
- (1)
- Selection of indicators
- (2)
- Variable Measurement
Primary Indicator | Secondary Indicator | Weight | Tertiary Indicator | Unit | Direction | Weight |
---|---|---|---|---|---|---|
Urban Ecological Resilience Index (UER) | State Resilience Index (SRI) | 22.46% | Per Capita Water Resources | m3/person | + | 1.75% |
Green Coverage Rate of Built-up Areas | % | + | 17.58% | |||
Per Capita Urban Park Green Space Area | hectares/10,000 people | + | 1.54% | |||
Per Capita Built-up Area | km2/10,000 people | + | 1.59% | |||
Pressure Resilience Index (PRI) | 41.34% | Per Capita Industrial Wastewater Discharge | tons/person | − | 1.59% | |
Per Capita Industrial Sulfur Dioxide Emissions | tons/person | − | 6.03% | |||
Per Capita Industrial Smoke and Dust Emissions | tons/person | − | 10.00% | |||
Per Capita Industrial Nitrogen Oxide Emissions | tons/person | − | 20.24% | |||
Annual Average PM2.5 Concentration | μg/m3 | − | 3.48% | |||
Response Resilience Index (RRI) | 36.21% | Industrial Sulfur Dioxide Removal Volume | tons | + | 11.24% | |
Industrial Smoke and Dust Removal Volume | tons | + | 9.87% | |||
Harmless Treatment Rate of Household Waste | % | + | 2.91% | |||
Centralized Treatment Rate of Urban Sewage Plants | % | + | 2.46% | |||
Comprehensive Utilization Rate of Industrial Solid Waste | % | + | 9.73% |
3.2.2. Core Explanatory Variable: EST
3.2.3. Control Variables (Controls)
3.3. Data Sources and Descriptive Statistical Analysis
3.4. Correlation Analysis
4. Empirical Results
4.1. Baseline Regression
4.2. Robustness Testing
4.2.1. Parallel Trend Test
4.2.2. Propensity Score Matching
4.2.3. Replacement of Research Samples
4.2.4. Reducing the Sample Period
4.2.5. Excluding Policy Disturbances
4.2.6. One-Period Lag
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Variable | UER | UER | UER | UER | UER | UER | UER |
Treat | 0.0153 *** | 0.0204 *** | 0.0181 *** | 0.0171 *** | 0.0187 *** | 0.0180 *** | |
(0.00365) | (0.00431) | (0.00430) | (0.00410) | (0.00445) | (0.00437) | ||
jnjp | −0.0337 * | ||||||
(0.0197) | |||||||
dtcs | −0.0121 | ||||||
(0.0108) | |||||||
stwm | 0.00667 ** | ||||||
(0.00322) | |||||||
l.treat | 0.0147 *** | ||||||
(0.00400) | |||||||
Constant | 3.018 *** | 1.898 *** | 2.228 *** | 2.516 *** | 2.165 *** | 2.232 *** | 2.267 *** |
(0.265) | (0.409) | (0.342) | (0.271) | (0.364) | (0.349) | (0.346) | |
Excluding Provincial Capitals | No | Yes | No | No | No | No | No |
Excluding Special Years | No | No | Yes | No | No | No | No |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1870 | 3272 | 3138 | 3650 | 3712 | 3661 | 3425 |
R2 | 0.976 | 0.972 | 0.971 | 0.964 | 0.973 | 0.973 | 0.978 |
4.2.7. Placebo Test
5. Mechanism Analysis
5.1. Institutional Regulation Effect
5.2. Resource Allocation Guidance
5.3. Energy Substitution Effect
5.4. Cognitive Driving Effect
6. Heterogeneity Analysis
6.1. City-Level Differences
6.1.1. City Size
6.1.2. City Hierarchy
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | UER | UER | UER | UER |
Treat | 0.0264 *** | 0.00615 | −0.00215 | 0.0188 *** |
(0.00479) | (0.00766) | (0.00855) | (0.00380) | |
Constant | 2.482 *** | 2.194 *** | 4.124 *** | 1.599 *** |
(0.276) | (0.737) | (0.346) | (0.581) | |
Control Variables | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes |
Observations | 2343 | 1331 | 454 | 3258 |
R2 | 0.972 | 0.975 | 0.827 | 0.974 |
Empirical p-value for group coefficient difference | 0.022 | 0.014 |
6.2. Urban Governance Capacity
6.2.1. Ecological Functional Location
6.2.2. Strength of Policy Orientation
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | UER | UER | UER | UER |
Treat | 0.00437 | 0.0316 *** | 0.00636 | 0.0223 *** |
(0.00530) | (0.00630) | (0.00499) | (0.00489) | |
Constant | 2.625 *** | 1.837 *** | 3.156 *** | 0.888 |
(0.492) | (0.519) | (0.259) | (0.982) | |
Control Variables | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes |
Observations | 1412 | 2262 | 1429 | 2245 |
R2 | 0.986 | 0.966 | 0.950 | 0.976 |
Empirical p-value for group coefficient difference | 0.004 | 0.06 |
6.3. Urban Resource Endowment
6.3.1. Urban Resource Base
6.3.2. Urban Energy Consumption
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | UER | UER | UER | UER |
Treat | −0.000774 | 0.0323 *** | 0.0139 | 0.0280 *** |
(0.00552) | (0.00732) | (0.00856) | (0.00515) | |
Constant | 2.946 *** | 1.503 ** | 2.570 *** | 2.487 *** |
(0.351) | (0.588) | (0.564) | (0.309) | |
Control Variables | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes |
Observations | 1453 | 2221 | 1723 | 1946 |
R2 | 0.965 | 0.976 | 0.576 | 0.989 |
Empirical p-value for group coefficient difference | 0.000 | 0.094 |
7. Further Analysis
7.1. Green Total Factor Productivity—Policy-Driven Path of Capability Jumps
7.2. Green Finance Development—The Amplification and Regulation Path of Institutional Support
(1) | (2) | |
---|---|---|
Variable | GTFP | GFD |
Treat | 0.0872 *** | 0.0119 ** |
(0.0225) | (0.00486) | |
GFD | 0.0892 ** | |
(0.0402) | ||
Constant | 3.563 *** | 2.519 *** |
(1.091) | (0.275) | |
Control Variables | Yes | Yes |
Year FE | Yes | Yes |
City FE | Yes | Yes |
Observations | 3597 | 3635 |
R2 | 0.745 | 0.946 |
8. Conclusions and Recommendations
8.1. Conclusions
8.2. Policy Suggestions
8.2.1. Government Level: Build a Green Policy System with a Complete Structure and Strong Adaptability
8.2.2. City Level: Promoting Green Capacity Leapfrogging and Reshaping Governance Logic
8.2.3. Synergistic Level: Building a Three-Dimensional Green Policy System Integrating System–Finance–Resources
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Tang, W.; Liang, F.; Wang, Z. The impact of climate change on corporate ESG performance: The role of resource misallocation in enterprises. J. Clean. Prod. 2024, 445, 141263. [Google Scholar] [CrossRef]
- Su, J.; Liang, Y.; Ding, L. Exploration of China’s energy development strategy under the carbon neutrality goal. Chin. Acad. Sci. Bull. 2021, 36, 1001–1009. [Google Scholar] [CrossRef]
- Wang, S.; Ma, L. Does new energy demonstration city policy curb air pollution? Evidence from Chinese cities. Sci. Total Environ. 2024, 918, 170595. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.E. Resilience and disaster risk reduction: An etymological journey. Nat. Hazards Earth Syst. Sci. 2013, 13, 2707–2716. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; McGrath, B.; Cadenasso, M.L. Ecological resilience and resilient cities. Build. Res. Inf. 2014, 42, 143–157. [Google Scholar] [CrossRef]
- Li, T.; Li, R.; Liu, Y. Does enhanced land use efficiency promote ecological resilience in China’s urban agglomerations? Environ. Impact Assess. Rev. 2025, 115, 108047. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z. Coordinated development evolution and spatial convergence characteristics of coastal zone urban economic quality and ecological resilience. Econ. Geogr. 2023, 43, 119–129+240. [Google Scholar] [CrossRef]
- Zhang, M.; Ren, Y. Impact of environmental regulation on ecological resilience: A perspective based on “local-neighbor” effects. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2022, 24, 16–29. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y. Impact and mechanism of low-carbon city construction on ecological resilience: A quasi-natural experiment based on low-carbon city pilot policy. East China Econ. Manag. 2025, 39, 69–81. [Google Scholar] [CrossRef]
- Zou, C.; He, D.; Jia, C. Connotation, path of world energy transition and its significance to carbon neutrality. Pet. Explor. Dev. 2021, 42, 233–247. [Google Scholar]
- Fan, Y.; Yi, B.W. The Laws, Driving Mechanisms, and China’s Path of Energy Transition. Manag. World 2021, 37, 95–105. [Google Scholar] [CrossRef]
- Zhou, A.; Wang, S.; Chen, B. Impact of new energy demonstration city policy on energy efficiency: Evidence from China. J. Clean. Prod. 2023, 422, 138560. [Google Scholar] [CrossRef]
- Wu, S.; Jiang, T.; Hong, M. Local government intervention and energy utilization efficiency: Evidence from China’s NEDC policy. Front. Environ. Sci. 2024, 12, 1499235. [Google Scholar] [CrossRef]
- Lu, J.; Wang, E. Impact of new energy demonstration city construction on regional environmental pollution control. Resour. Sci. 2019, 41, 2107–2118. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Ren, S. Can the new energy demonstration city policy reduce environmental pollution? Evidence from a quasi-natural experiment in China. J. Clean. Prod. 2021, 287, 125015. [Google Scholar] [CrossRef]
- Feng, Y.; Nie, C. Re-examining the effect of China’s new-energy demonstration cities construction policy on environmental pollution: A perspective of pollutant emission intensity control. J. Environ. Plan. Manag. 2022, 65, 2333–2361. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, F. Research on the coordinated governance effect of pollution reduction and carbon reduction in new energy demonstration city construction. Soft Sci. 2025, 39, 60–69. [Google Scholar]
- Huang, M.; Yang, L. Empirical test of carbon reduction effect of new energy demonstration city policy. Stat. Decis. 2025, 41, 54–59. [Google Scholar] [CrossRef]
- Wang, X.; Long, R.; Sun, Q. Spatial spillover effects and driving mechanisms of carbon emission reduction in new energy demonstration cities. Appl. Energy 2024, 357, 122457. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X. Green and low-carbon development effect of China’s new energy demonstration cities. Resour. Sci. 2023, 45, 1590–1603. [Google Scholar] [CrossRef]
- Chen, B.; Jin, F.; Li, G. Can the new energy demonstration city policy promote green and low-carbon development? Evidence from China. Sustainability 2023, 15, 8727. [Google Scholar] [CrossRef]
- Chai, M.; Wu, C.; Luo, Y. New Energy Demonstration City Policy and Corporate Green Innovation: From the Perspective of Industrial and Regional Spillover Effect. Sustainability 2025, 17, 3179. [Google Scholar] [CrossRef]
- Song, Y.; Pang, X.; Zhang, Z. Can the new energy demonstration city policy promote corporate green innovation capability? Energy Econ. 2024, 136, 107714. [Google Scholar] [CrossRef]
- Liu, C.; Tang, C.; Liu, Y. Does the transformation of energy structure promote green technological innovation? A quasi–natural experiment based on new energy demonstration city construction. Geosci. Front. 2024, 15, 101615. [Google Scholar] [CrossRef]
- Chen, M.; Su, Y.; Piao, Z. The green innovation effect of urban energy saving construction: A quasi-natural experiment from new energy demonstration city policy. J. Clean. Prod. 2023, 428, 139392. [Google Scholar] [CrossRef]
- Yang, X.; Wang, W.; Wu, H. The impact of the new energy demonstration city policy on the green total factor productivity of resource-based cities: Empirical evidence from a quasi-natural experiment in China. J. Environ. Plan. Manag. 2022, 66, 293–326. [Google Scholar] [CrossRef]
- Yu, Z.; Xie, W.; Guo, J. Green effect of energy transition policy: A quasi-natural experiment based on new energy demonstration cities. Financ. Res. Lett. 2024, 66, 105669. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Liu, Y. Study on the impact of new energy demonstration city construction on green total factor productivity. Macroecon. Res. 2022, 11, 134–146. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, P.; Wang, X. New energy policy and new quality productive forces: A quasi-natural experiment based on demonstration cities. Econ. Anal. Policy 2024, 84, 1670–1688. [Google Scholar] [CrossRef]
- Lee, C.; Ogata, S. Every coin has two sides: Dual effects of energy transition on regional sustainable development—A quasi-natural experiment of the New Energy Demonstration City Pilot Policy. Appl. Energy 2025, 390, 125772. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A. Is renewable energy effective in promoting growth? Energy Policy 2012, 46, 434–442. [Google Scholar] [CrossRef]
- Lin, M. Clean energy consumption, environmental governance and sustainable economic growth in China. Quant. Econ. Tech. Econ. Res. 2017, 34, 3–21. [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, J.; Zhao, Q. Economic growth, energy structure transition and carbon dioxide emissions: An empirical analysis based on panel data. Econ. Manag. Res. 2020, 41, 19–34. [Google Scholar] [CrossRef]
- Jiang, S.; Du, H.; Xu, M. Dual structural transition of energy and industry under the “dual carbon” goal. Quant. Econ. Tech. Econ. Res. 2024, 41, 109–130. [Google Scholar] [CrossRef]
- Dai, H.; Masui, T.; Matsuoka, Y. Assessment of China’s climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model. Energy Policy 2011, 39, 2875–2887. [Google Scholar] [CrossRef]
- Alves, M.R.; Moutinho, V. Decomposition analysis and Innovative Accounting Approach for energy-related CO2 emissions intensity over 1996–2009 in Portugal. Energy 2013, 57, 775–787. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, M.; Ji, P. Dynamic decomposition of industrial pollution emissions in China: Technological progress, resource allocation, and selection effects. Quant. Tech. Econ. Res. 2022, 39, 153–172. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X. Spatial effects of haze pollution in China and the influence of economic and energy structures. China Ind. Econ. 2014, 4, 19–31. [Google Scholar] [CrossRef]
- Sun, H.; Huang, Z.; Xu, D. Spatial characteristics and driving mechanisms of the coupling between urbanization and ecological environment in the Pan-Yangtze River Delta urban agglomeration. Econ. Geogr. 2017, 37, 163–170+186. [Google Scholar] [CrossRef]
- Guo, H.; Liu, X. Coupling coordination mechanism between new-type urbanization and ecological resilience in central cities along the Yellow River region. East China Econ. Manag. 2023, 37, 101–109. [Google Scholar] [CrossRef]
- Ying, Z.; Yuan, C.; Zhuolu, L. Ecological resilience assessment of an emerging urban agglomeration: A case study of Chengdu-Chongqing Economic Circle, China. Pol. J. Environ. Stud. 2022, 31, 2381–2395. [Google Scholar] [CrossRef]
- Chen, T.; Li, Y. Urban design strategies of urban water environment orientation based on perspective of ecological resilience. Sci. Technol. Rev. 2019, 37, 26–39. [Google Scholar] [CrossRef]
- Cao, T.; Yi, Y.; Liu, H. The relationship between ecosystem service supply and demand in plain areas undergoing urbanization: A case study of China’s Baiyangdian Basin. J. Environ. Manag. 2021, 289, 112492. [Google Scholar] [CrossRef] [PubMed]
- Mert, M.; Caglar, A.E. Testing pollution haven and pollution halo hypotheses for Turkey: A new perspective. Environ. Sci. Pollut. Res. 2020, 27, 32933–32943. [Google Scholar] [CrossRef]
- Li, D.; Yang, W.; Huang, R. The multidimensional differences and driving forces of ecological environment resilience in China. Environ. Impact Assess. Rev. 2023, 98, 106954. [Google Scholar] [CrossRef]
- Chang, X.; Guan, X. Spatio-temporal evolution and influencing factors of ecological efficiency in the Yangtze River Delta urban agglomeration during new-type urbanization. Econ. Geogr. 2020, 40, 185–195. [Google Scholar] [CrossRef]
- Xu, L.; Peng, S.; Wang, L. The synergy of pollution and carbon reduction by green fiscal policy: A quasi-natural experiment utilizing a pilot program from China’s comprehensive demonstration cities of energy conservation and emission reduction fiscal policy. Sustainability 2025, 17, 667. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, X. The impact of green transformation policy mix on carbon reduction and economic development. J. Xi’an Jiaotong Univ. (Soc. Sci.) 2025, 45, 39–54. [Google Scholar] [CrossRef]
- Baasch, S.; Maschke, J. Participatory governance in decentralized energy transition: Long-term findings from a municipal case study in Germany. J. Environ. Policy Plan. 2025, 27, 244–259. [Google Scholar] [CrossRef]
- Lund, H. The implementation of renewable energy systems. Lessons learned from the Danish case. Energy 2010, 35, 4003–4009. [Google Scholar] [CrossRef]
- Raupach, M.R.; Marland, G.; Ciais, P. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chiu, Y.H.; Chiu, C.R. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis. Energy Econ. 2015, 51, 252–260. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Chai, J. Influence of new energy vehicle subsidy policy on emission reduction of atmospheric pollutants: A case study of Beijing, China. J. Clean. Prod. 2020, 275, 124069. [Google Scholar] [CrossRef]
- McDonald, R.I.; Fargione, J.; Kiesecker, J. Energy sprawl or energy efficiency: Climate policy impacts on natural habitat for the United States of America. PLoS ONE 2009, 4, e6802. [Google Scholar] [CrossRef]
- Hamed, T.A.; Alshare, A. Environmental impact of solar and wind energy—A review. J. Sustain. Dev. Energy Water Environ. Syst. 2022, 10, 1090387. [Google Scholar] [CrossRef]
- Tao, F.; Zhao, J.; Zhou, H. Has environmental regulation improved the quantity and quality of green technological innovation? Evidence from environmental target responsibility system. China Ind. Econ. 2021, 2, 136–154. [Google Scholar] [CrossRef]
- Shao, W.; Jin, Z.; Chen, Z. Spatial effects of environmental regulation on regional ecological efficiency: Based on the moderating role of fiscal decentralization. Financ. Econ. Forum 2023, 6, 103–112. [Google Scholar] [CrossRef]
- Burtraw, D.; Krupnick, A.; Palmer, K. Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector. J. Environ. Econ. Manag. 2003, 45, 650–673. [Google Scholar] [CrossRef]
- Zhang, L. The impact of environmental policy and environmental protection expenditure on regional carbon reduction: Also on the role of government execution. Price Theory Pract. 2018, 6, 38–41. [Google Scholar] [CrossRef]
- Niu, H.; Yan, C. Environmental taxation, resource allocation and high-quality economic development. J. World Econ. 2021, 44, 28–50. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, J.; Fan, Y. The impact of environmental regulation on resource misallocation in resource-based cities and its spatial heterogeneity. Sci. Geogr. Sin. 2025, 45, 1182–1192. [Google Scholar] [CrossRef]
- Kang, Y.; Yan, C. Environmental regulation and green transformation: An analysis from the perspective of green fiscal and taxation. J. Cent. Univ. Financ. Econ. 2024, 1, 29–46. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Jeon, J.; Hong, S.; Yang, T. How technological innovation affects the structure of an industry: Entrepreneurship evolution in the biotechnology and pharmaceutical industry since 1980. Technol. Anal. Strateg. Manag. 2016, 28, 733–754. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, X.; Shao, Q. The non-linear effect of environmental regulation on haze pollution: Empirical evidence for 277 Chinese cities during 2002–2010. J. Environ. Manag. 2019, 248, 109274. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, P.; Zhang, Z.G. Impact of environmental regulations on industrial structure upgrading: An empirical study on Beijing-Tianjin-Hebei region in China. J. Clean. Prod. 2019, 238, 117848. [Google Scholar] [CrossRef]
- Mao, J.; Guan, C. Do environmental regulations inhibit industrial structure upgrading?—A nonlinear threshold model analysis based on government behavior. Financ. Trade Res. 2020, 31, 29–42. [Google Scholar] [CrossRef]
- Wang, F.; He, Z. Environmental regulation, green innovation, and industrial structure upgrading. Stat. Decis. 2022, 38, 73–76. [Google Scholar] [CrossRef]
- Cui, L.; Sun, W.; Li, X. Environmental effects of new energy demonstration city construction. East China Econ. Manag. 2022, 36, 57–65. [Google Scholar] [CrossRef]
- Wu, J.; Zuidema, C.; Gugerell, K. Mind the gap! Barriers and implementation deficiencies of energy policies at the local scale in urban China. Energy Policy 2017, 106, 201–211. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Zhang, Y. Can new energy policy promote corporate total factor energy efficiency? Evidence from China’s new energy demonstration city pilot policy. Energy 2025, 318, 134782. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Wu, H. The impact of the new energy demonstration city construction on energy consumption intensity: Exploring the sustainable potential of China’s firms. Energy 2023, 283, 128716. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, X.; Xu, Y. New energy demonstration city pilot and green energy consumption: Evidences from China. Energy Rep. 2022, 8, 7735–7750. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Wu, H. Assessing the potential of energy transition policy in driving renewable energy technology innovation: Evidence from new energy demonstration city pilots in China. Econ. Change Restruct. 2024, 57, 160. [Google Scholar] [CrossRef]
- Ren, J.; Liu, Y.; Ren, Y. Renewable energy investment in China’s new demonstration cities: A quasi-natural experiment. Util. Policy 2025, 96, 101996. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Zhang, D. Energy economic transformation pathways and policy research under the carbon neutrality goal. Manag. World 2022, 38, 35–66. [Google Scholar] [CrossRef]
- Wang, G.F.; Liu, H.; Wang, D.D. High-Quality Energy Development and Energy Security in China under the New Situation. Bull. Chin. Acad. Sci. 2023, 38, 23–37. [Google Scholar] [CrossRef]
- Bo, F.; Zhuang, G. Resilience connotation, application scenarios, and realization paths of green infrastructure. J. Cent. Univ. Financ. Econ. 2025, 6, 5–17. [Google Scholar] [CrossRef]
- National Energy Administration. Available online: https://zfxxgk.nea.gov.cn/auto87/201402/t20140212_1762.htm (accessed on 4 August 2025).
- Chu, E.; Sun, H.; Li, Y. Impact of smart city construction on ecological resilience. Manag. Rev. 2023, 36, 21–37. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, J. Performance evaluation of environmental governance and its impact on local economy: An empirical analysis based on 2017 “2+26” cities’ air pollution governance and inspection. J. Anhui Norm. Univ. (Humanit. Soc. Sci. Ed.) 2022, 50, 148–157. [Google Scholar] [CrossRef]
- Lv, T.; Hu, H.; Zhang, X. Spatial spillover effects of urbanization on carbon emissions in the Yangtze River Delta urban agglomeration, China. Environ. Sci. Pollut. Res. 2022, 29, 33920–33934. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Luo, L. The impact and spatial effects of environmental regulation on high-quality economic development: Based on the intermediary perspective of industrial structure transformation. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2021, 23, 27–40. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Li, B. Urban Intelligence, Labor Supply of Residents, and Inclusive Employment: Evidence from a Quasi-Natural Experiment. J. Econ. Manag. Res. 2023, 44, 41–59. [Google Scholar] [CrossRef]
- Jiang, T. Mediation and moderation effects in causal inference empirical research. China Ind. Econ. 2022, 5, 100–120. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, Y. Emission reduction effects and mechanisms of carbon trading and carbon tax. Commer. Res. 2023, 1, 98–107. [Google Scholar] [CrossRef]
- Li, C. The impact of government green investment on economic, social, and ecological benefits. Bus. Econ. 2021, 11, 78–80+139. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Song, J. Unleashing the power of green fiscal policies: Driving energy efficiency in China. Energy 2024, 312, 133402. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, B. The energy-saving effect of green fiscal policy: Empirical evidence from China’s comprehensive demonstration cities of energy conservation and emission reduction fiscal policy. Appl. Energy 2025, 378, 124784. [Google Scholar] [CrossRef]
- Huang, J.T. Sulfur dioxide (SO2) emissions and government spending on environmental protection in China—Evidence from spatial econometric analysis. J. Clean. Prod. 2018, 175, 431–441. [Google Scholar] [CrossRef]
- Ghisetti, C.; Quatraro, F. Green technologies and environmental productivity: A cross-sectoral analysis of direct and indirect effects in Italian regions. Ecol. Econ. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Xu, T.; Kang, C.; Zhang, H. China’s efforts towards carbon neutrality: Does energy-saving and emission-reduction policy mitigate carbon emissions? J. Environ. Manag. 2022, 316, 115286. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Hao, Y. An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China. Renew. Energy 2020, 146, 598–609. [Google Scholar] [CrossRef]
- Jiang, C.; Yan, Z.; Wang, M. From dual control of energy consumption to dual control of carbon emissions under the “dual carbon” target: Regulatory tools, effect simulation, and policy evaluation. China Ind. Econ. 2024, 11, 5–23. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, J.; Ren, Y. Spatiotemporal evolution and influencing factors of resilience in resource-based cities—From the perspective of low-carbon energy transition. Stat. Decis. 2025, 41, 105–110. [Google Scholar] [CrossRef]
- Yang, G.; Wang, H.; Fan, H. The carbon emission reduction effect of the digital economy: Theoretical analysis and empirical evidence. China Ind. Econ. 2023, 5, 80–98. [Google Scholar] [CrossRef]
- Dian, J.; Song, T.; Li, S. Facilitating or inhibiting? Spatial effects of the digital economy affecting urban green technology innovation. Energy Econ. 2024, 129, 107223. [Google Scholar] [CrossRef]
- Yu, X. Mechanism and practice change of environmental regulation policy: An analysis based on policy evolution from 1978 to 2016. China Sci. Forum 2017, 12, 15–24+31. [Google Scholar] [CrossRef]
- Zheng, S.; Wan, G.; Sun, W. Public demands and urban environmental governance. Manag. World 2013, 6, 72–84. [Google Scholar] [CrossRef]
- Wang, B.; Liu, G. Energy saving and emission reduction and China’s green economic growth: From the perspective of total factor productivity. China Ind. Econ. 2015, 5, 57–69. [Google Scholar] [CrossRef]
- Si, L.; Cao, H. Can green credit policy improve corporate environmental social responsibility? Based on external constraints and internal concerns. China Ind. Econ. 2022, 4, 137–155. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y. Research on green credit policy promoting green innovation. Manag. World 2021, 37, 173–188+11. [Google Scholar] [CrossRef]
Variable | N | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
UER | 3712 | 3.109 | 0.303 | 0.278 | 3.160 | 4.654 |
Treat | 3712 | 0.148 | 0.355 | 0 | 0 | 1 |
lngdp | 3712 | 10.74 | 0.590 | 8.576 | 10.72 | 12.46 |
lnpop | 3712 | 5.745 | 0.925 | 1.792 | 5.890 | 7.943 |
open | 3712 | 0.204 | 0.341 | 0 | 0.0850 | 3.659 |
lnhr | 3712 | 4.747 | 0.987 | 1.099 | 4.718 | 7.166 |
str | 3712 | 1.072 | 0.616 | 0.109 | 0.928 | 5.929 |
urb | 3712 | 5.281 | 84.23 | 0.187 | 0.540 | 1550 |
lninf | 3712 | 2.885 | 0.410 | 0.863 | 2.892 | 4.363 |
lu | 3712 | 0.440 | 0.266 | 0.00500 | 0.358 | 1.314 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | UER | UER | UER | UER | UER |
Treat | 0.0148 *** | 0.0517 *** | 0.0512 *** | 0.0178 *** | 0.0190 *** |
(0.00417) | (0.00736) | (0.00760) | (0.00399) | (0.00454) | |
lngdp | 0.0490 *** | 0.0369 *** | 0.0293 *** | 0.0164 * | |
(0.00880) | (0.00967) | (0.00455) | (0.00835) | ||
lnpop | 0.0298 *** | 0.0284 *** | 0.0590 | 0.0598 | |
(0.00597) | (0.00614) | (0.0394) | (0.0390) | ||
open | 0.00515 | 0.0111 | 0.0845 *** | 0.0842 ** | |
(0.0194) | (0.0205) | (0.0326) | (0.0329) | ||
lnhr | 0.00655 | 0.0127 ** | −0.00338 | −0.00475 | |
(0.00505) | (0.00528) | (0.00234) | (0.00294) | ||
str | −0.0864 *** | −0.0994 *** | 0.00583 ** | −0.00368 | |
(0.0154) | (0.0186) | (0.00278) | (0.00391) | ||
urb | −0.00178 *** | −0.00178 *** | 0.0592 ** | 0.0653 *** | |
(1.68 × 10−5) | (1.61 × 10−5) | (0.0234) | (0.0229) | ||
lninf | −0.00643 | −0.0153 | 0.0177 *** | 0.0140 *** | |
(0.0105) | (0.0114) | (0.00451) | (0.00468) | ||
lu | −0.00487 | −0.0101 | −0.0101 | −0.0118 | |
(0.0135) | (0.0129) | (0.00733) | (0.00734) | ||
Constant | 3.096 *** | 2.494 *** | 2.654 *** | 2.086 *** | 2.205 *** |
(0.00581) | (0.0880) | (0.108) | (0.332) | (0.354) | |
Year FE | Yes | No | Yes | No | Yes |
City FE | Yes | No | No | Yes | Yes |
Observations | 3712 | 3712 | 3712 | 3712 | 3712 |
R2 | 0.971 | 0.313 | 0.316 | 0.973 | 0.973 |
(a) | ||||
Variable | Mean | T-test | ||
Variable lngdp | Treated | Control | ||
10.838 | 10.708 | t-value | p-value | |
lnpop | 5.865 | 5.713 | 5.52 | 0.000 |
open | 0.212 | 0.202 | 4.11 | 0.000 |
lnhr | 4.997 | 4.679 | 0.74 | 0.459 |
str | 1.108 | 1.062 | 8.11 | 0.000 |
urb | 6.011 | 5.831 | 1.87 | 0.061 |
lninf | 2.882 | 2.885 | 5.87 | 0.000 |
lu | 0.460 | 0.435 | −0.18 | 0.856 |
(b) | ||||
Variable | Mean | T-test | ||
Variable lngdp | Treated | Control | ||
10.838 | 10.809 | t-value | p-value | |
lnpop | 5.865 | 5.876 | 1.02 | 0.307 |
open | 0.212 | 0.191 | −0.26 | 0.797 |
lnhr | 4.997 | 4.949 | 1.39 | 0.165 |
str | 1.108 | 1.082 | 1.01 | 0.311 |
urb | 6.011 | 6.034 | 0.84 | 0.399 |
lninf | 2.882 | 2.884 | −0.70 | 0.482 |
lu | 0.460 | 0.477 | −0.08 | 0.936 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variable | ER | GSE | GI | EI | PEC-1 | PEC-2 |
Treat | 0.0178 *** | 0.0152 * | 0.0673 * | −0.0192 *** | 0.202 *** | 0.170 *** |
(0.00399) | (0.00811) | (0.0386) | (0.00618) | (0.0612) | (0.0531) | |
lngdp | 0.0293 *** | 0.00314 | 0.428 *** | −0.0842 *** | 0.333 *** | 0.249 *** |
(0.00455) | (0.00290) | (0.0532) | (0.0159) | (0.0584) | (0.0535) | |
lnpop | 0.0590 | 0.0111 | 0.327 | 0.0766 | 1.163 *** | 0.871 ** |
(0.0394) | (0.0268) | (0.268) | (0.0472) | (0.414) | (0.373) | |
open | 0.0845 *** | −0.00475 | −0.00465 | 0.0445 *** | −0.375 ** | −0.360 ** |
(0.0326) | (0.00477) | (0.0924) | (0.0123) | (0.150) | (0.155) | |
lnhr | −0.00338 | −0.0218 | −0.0229 | −0.00384 | −0.177 *** | −0.157 *** |
(0.00234) | (0.0158) | (0.0265) | (0.00301) | (0.0305) | (0.0269) | |
str | 0.00583 ** | −0.00138 | −0.0928 ** | −0.00725 | 0.0476 | 0.0176 |
(0.00278) | (0.00139) | (0.0417) | (0.00836) | (0.0338) | (0.0308) | |
urb | 0.0592 ** | 0.000471 | −0.155 * | 0.0448 *** | −0.352 ** | −0.196 * |
(0.0234) | (0.00670) | (0.0883) | (0.0165) | (0.137) | (0.117) | |
lninf | 0.0177 *** | −0.000910 | −0.0644 | 0.0310 *** | −0.127 *** | −0.139 *** |
(0.00451) | (0.00159) | (0.0438) | (0.00793) | (0.0455) | (0.0415) | |
lu | −0.0101 | −0.00540 | −0.170 *** | −0.0102 | −0.158 ** | −0.126 * |
(0.00733) | (0.00383) | (0.0600) | (0.0116) | (0.0768) | (0.0663) | |
Constant | 2.086 *** | 0.0270 | −2.362 | 0.443 | −8.798 *** | −6.396 *** |
(0.332) | (0.159) | (1.853) | (0.305) | (2.448) | (2.185) | |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 3712 | 1940 | 3712 | 3370 | 3373 | 3373 |
R2 | 0.973 | 0.611 | 0.941 | 0.712 | 0.883 | 0.929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yang, M.; Xia, N.; Cai, S.; Tian, Y.; Li, C. Forging Resilient Urban Ecosystems: The Role of Energy Structure Transformation Under China’s New Energy Demonstration City Pilot Policy. Systems 2025, 13, 709. https://doi.org/10.3390/systems13080709
Li M, Yang M, Xia N, Cai S, Tian Y, Li C. Forging Resilient Urban Ecosystems: The Role of Energy Structure Transformation Under China’s New Energy Demonstration City Pilot Policy. Systems. 2025; 13(8):709. https://doi.org/10.3390/systems13080709
Chicago/Turabian StyleLi, Mo, Ming Yang, Nan Xia, Sixiang Cai, Yuan Tian, and Chengming Li. 2025. "Forging Resilient Urban Ecosystems: The Role of Energy Structure Transformation Under China’s New Energy Demonstration City Pilot Policy" Systems 13, no. 8: 709. https://doi.org/10.3390/systems13080709
APA StyleLi, M., Yang, M., Xia, N., Cai, S., Tian, Y., & Li, C. (2025). Forging Resilient Urban Ecosystems: The Role of Energy Structure Transformation Under China’s New Energy Demonstration City Pilot Policy. Systems, 13(8), 709. https://doi.org/10.3390/systems13080709