Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Chip and Pellet Characterization
2.2. Wood Chip Sample Processing and Blend Determination
3. Results
Wood Chip Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Biomass black locust with bark (chips) | BLbC |
Biomass black locust without bark (chips) | BLnC |
Biomass poplar with bark (chips) | PPbC |
Biomass poplar without bark (chips) | PPnC |
Biomass oak with bark (chips) | OKbC |
Biomass oak without bark (chips) | OKnC |
Biomass stone pine with bark (chips) | SPbC |
Biomass stone pine without bark (chips) | SPnC |
References
- Kamran, M.; Fazal, M.R.; Mudassar, M. Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis. Renew. Energy 2020, 146, 543–558. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Investment 2019; IEA Publications: Paris, France, 2019. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2018: Highlights; IEA Publications: Paris, France, 2018; Volume 32. [Google Scholar] [CrossRef]
- Moomaw, W.; Yamba, F.; Kamimoto, M.; Maurice, L.; Nyboer, J.; Urama, K.; Weir, T. Introduction. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Goldemberg, J.; Teixeira Coelho, S. Renewable energy—Traditional biomass vs. modern biomass. Energy Policy 2004, 32, 711–714. [Google Scholar] [CrossRef]
- Foppa Pedretti, E.; Del Gatto, A.; Pieri, S.; Mangoni, L.; Ilari, A.; Mancini, M.; Feliciangeli, G.; Leoni, E.; Toscano, G.; Duca, D. Experimental study to support local sunflower oil chains: Production of cold pressed oil in Central Italy. Agriculture 2019, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A.; Toscano, G.; Foppa Pedretti, E.; Duca, D.; Rossini, G.; Mengarelli, C.; Ilari, A.; Renzi, A.; Mancini, M. Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy. Energy 2018, 147, 51–58. [Google Scholar] [CrossRef]
- Pua, F.-L.; Subari, M.S.; Ean, L.-W.; Krishnan, S.G. Characterization of biomass fuel pellets made from Malaysia tea waste and oil palm empty fruit bunch. Mater. Today Proc. 2020, 31, 8–11. [Google Scholar] [CrossRef]
- Singh, R.K.; Pandey, D.; Patil, T.; Sawarkar, A.N. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour. Technol. 2020, 310, 123464. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, A.; Foppa Pedretti, E.; Duca, D.; Rossini, G.; Mengarelli, C.; Ilari, A.; Mancini, M.; Toscano, G. Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects. Renew. Energy 2018, 121, 513–520. [Google Scholar] [CrossRef]
- Grohmann, D.; Prosperi, F.; Menconi, M.E. Tilia sp.’s Pruning Residues Wood Panels for Thermal Insulation; Woodhead Publishing: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Lu, D.; Tabil, L.G.; Wang, D.; Wang, G.; Emami, S. Experimental trials to make wheat straw pellets with wood residue and binders. Biomass Bioenergy 2014, 69, 287–296. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalão, J.P.S. Evaluation of the utilization of woodchips as fuel for industrial boilers. J. Clean Prod. 2019, 223, 270–277. [Google Scholar] [CrossRef]
- Radačovská, L.; Holubčík, M.; Nosek, R.; Jandačka, J. Influence of Bark Content on Ash Melting Temperature. Procedia Eng. 2017, 192, 759–764. [Google Scholar] [CrossRef]
- Simonic, M.; Goricanec, D.; Urbancl, D. Impact of torrefaction on biomass properties depending on temperature and operation time. Sci. Total Environ. 2020, 740, 183135. [Google Scholar] [CrossRef]
- Toscano, G.; Pizzi, A.; Foppa Pedretti, E.; Rossini, G.; Ciceri, G.; Martignon, G.; Duca, D. Torrefaction of tomato industry residues. Fuel 2015, 143, 89–97. [Google Scholar] [CrossRef]
- Muazu, R.I.; Stegemann, J.A. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process. Technol. 2015, 133, 137–145. [Google Scholar] [CrossRef]
- NREL National Renewable Energy Laboratory. International Trade of Wood Pellets; NREL: Denver, CO, USA, 2013. [Google Scholar]
- Spelter, H.; Toth, D. North America’s Wood Pellet Sector; United State Department of Agriculuture (USDA): Washington, DC, USA, 2009; p. 23.
- Lerma-Arce, V.; Oliver-Villanueva, J.V.; Segura-Orenga, G. Influence of raw material composition of Mediterranean pinewood on pellet quality. Biomass Bioenergy 2017, 99, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Badrán, I.M.; Luzardo-Ocampo, I.; García-Trejo, J.F.; Santos-Cruz, J.; Gutiérrez-Antonio, C. Production and characterization of fuel pellets from rice husk and wheat straw. Renew. Energy 2020, 145, 500–507. [Google Scholar] [CrossRef]
- Wang, T.; Meng, D.; Zhu, J.; Chen, X. Effects of pelletizing conditions on the structure of rice straw-pellet pyrolysis char. Fuel 2020, 264, 116909. [Google Scholar] [CrossRef]
- Vicente, E.D.; Vicente, A.M.; Evtyugina, M.; Carvalho, R.; Tarelho, L.A.C.; Paniagua, S.; Nunes, T.; Otero, M.; Calvo, L.F.; Alves, C. Emissions from residential pellet combustion of an invasive acacia species. Renew. Energy 2019, 140, 319–329. [Google Scholar] [CrossRef]
- Thiffault, E.; Barrette, J.; Blanchet, P.; Nguyen, Q.N.; Adjalle, K. Optimizing quality of wood pellets made of hardwood processing residues. Forests 2019, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- García, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- Miranda, T.; Arranz, J.I.; Montero, I.; Román, S.; Rojas, C.V.; Nogales, S. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 2012, 103, 91–96. [Google Scholar] [CrossRef]
- Hansson, J.; Berndes, G.; Johnsson, F.; Kjärstad, J. Co-firing biomass with coal for electricity generation—An assessment of the potential in EU27. Energy Policy 2009, 37, 1444–1455. [Google Scholar] [CrossRef]
- ISO/TC 238 Solid biofuels. ISO 17225-1:2021 Solid Biofuels—Fuel Specifications and Classes—Part 1: General Requirements; ISO: Geneva, Switzerland, 2021. [Google Scholar]
- ISO/TC 238 Solid biofuels. ISO 17225-4:2021 Solid Biofuels—Fuel Specifications and Classes—Part 4: Graded Wood Chips; ISO: Geneva, Switzerland, 2021. [Google Scholar]
- ISO/TC 238 Solid biofuels. ISO 17225-2:2021 Solid Biofuels—Fuel Specifications and Classes—Part 2: Graded Wood Pellets; ISO: Geneva, Switzerland, 2021. [Google Scholar]
- Duca, D.; Riva, G.; Foppa Pedretti, E.; Toscano, G. Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 2014, 135, 9–14. [Google Scholar] [CrossRef]
- Brand, M.A.; Jacinto, R.C. Apple pruning residues: Potential for burning in boiler systems and pellet production. Renew. Energy 2020, 152, 458–466. [Google Scholar] [CrossRef]
- Arranz, J.I.; Miranda, M.T.; Montero, I.; Sepúlveda, F.J.; Rojas, C.V. Characterization and combustion behaviour of commercial and experimental wood pellets in South West Europe. Fuel 2015, 142, 199–207. [Google Scholar] [CrossRef]
- Garcia-Maraver, A.; Zamorano, M.; Fernandes, U.; Rabaçal, M.; Costa, M. Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 2014, 119, 141–152. [Google Scholar] [CrossRef]
- Ilari, A.; Toscano, G.; Foppa Pedretti, E.; Fabrizi, S.; Duca, D. Environmental sustainability of heating systems based on pellets produced in mobile and stationary plants from vineyard pruning residues. Resources 2020, 9, 94. [Google Scholar] [CrossRef]
- Pradhan, P.; Arora, A.; Mahajani, S.M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Dev. 2018, 43, 1–14. [Google Scholar] [CrossRef]
- De Souza, H.J.P.L.; Arantes, M.D.C.; Vidaurre, G.B.; Andrade, C.R.; Carneiro, A.D.C.O.; de Souza, D.P.L.; de Paula Protásio, T. Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production. Renew. Energy 2020, 149, 128–140. [Google Scholar] [CrossRef]
- Wang, C.; Deng, X.; Xiang, W.; Yan, W. Calorific value variations in each component and biomass-based energy accumulation of red-heart Chinese fir plantations at different ages. Biomass Bioenergy 2020, 134, 105467. [Google Scholar] [CrossRef]
- Min Lee, S.; Ahn, B.J.; Choi, D.H.; Han, G.S.; Jeong, H.S.; Ahn, S.H.; Yang, I. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Biomass Bioenergy 2013, 48, 1–9. [Google Scholar] [CrossRef]
- Arzola, N.; Gómez, A.; Rincón, S. The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters. Ing. Investig. 2012, 32, 24–29. [Google Scholar]
- Kirsten, C.; Lenz, V.; Schröder, H.W.; Repke, J.U. Hay pellets—The influence of particle size reduction on their physical-mechanical quality and energy demand during production. Fuel Process. Technol. 2016, 148, 163–174. [Google Scholar] [CrossRef]
Parameter | Unit | Analysis Type | Standard |
---|---|---|---|
Moisture 1,2 | %ar | Drying 105 °C | ISO 18134-2:2015 |
Bulk density 1,2 | kg/m3ar | Mass 50 L volume | ISO 17828:2015 |
Ashes 1,2 | %db | Incineration 550 °C | ISO 18122:2015 |
NCV 1,2 | kWh/kgar | Calorimeter | ISO 18125:2017 |
GCV 1,2 | kWh/kgdb | Calorimeter | |
CHN 1,2 | %db | Elemental analyzer | ISO 16948:2015 |
Chlorine 1,2 | %db | Chromatography | ISO 16994:2015 |
Sulfur 1,2 | %db | Chromatography | |
Dimension of particles 1 | % | Sieves | ISO 17827-1:2016 |
Length 2 | Mm | Caliper | ISO 17829:2015 |
Diameter 2 | Mm | Caliper | |
Ash melting 2 | °C | Ash fusion analyzer | UNI CEN/TS 15370-1:2006 |
Mechanical durability 2 | % | Durability tester | ISO 17831-1:2015 |
Arsenic 1,2 | mg/kgdb | ICP | UNI EN ISO 16968:2015 UNI EN ISO 11885:2009 |
Cadmium 1,2 | mg/kgdb | ICP | |
Chromium 1,2 | mg/kgdb | ICP | |
Copper 1,2 | mg/kgdb | ICP | |
Lead 1,2 | mg/kgdb | ICP | |
Nickel 1,2 | mg/kgdb | ICP | |
Zinc 1,2 | mg/kgdb | ICP | |
Mercury 1,2 | mg/kgdb | DMA | EPA 7473 2007 |
% | BLbC | BLnC | OKbC | OKnC | PPbC | PPnC | SPbC | SPnC |
---|---|---|---|---|---|---|---|---|
0 | 1.6 | 1.1 | 3.7 | 1.1 | 2.3 | 1.3 | 0.9 | 0.5 |
5 | 1.6 | 1.13 | 3.6 | 1.13 | 2.27 | 1.32 | 0.94 | 0.56 |
10 | 1.6 | 1.16 | 3.5 | 1.16 | 2.24 | 1.34 | 0.98 | 0.62 |
15 | 1.6 | 1.19 | 3.4 | 1.19 | 2.21 | 1.36 | 1.02 | 0.68 |
20 | 1.6 | 1.22 | 3.3 | 1.22 | 8 | 1.38 | 1.06 | 0.74 |
25 | 1.6 | 1.25 | 3.2 | 1.25 | 2.15 | 1.4 | 1.1 | 0.8 |
30 | 1.6 | 1.28 | 3.1 | 1.28 | 2.12 | 1.42 | 1.14 | 0.86 |
35 | 1.6 | 1.31 | 3 | 1.31 | 2.09 | 1.44 | 1.18 | 0.92 |
40 | 1.6 | 1.34 | 2.9 | 1.34 | 2.06 | 1.46 | 1.22 | 0.98 |
45 | 1.6 | 1.37 | 2.8 | 1.37 | 2.03 | 1.48 | 1.26 | 1.04 |
50 | 1.6 | 1.4 | 2.7 | 1.4 | 2 | 1.5 | 1.3 | 1.1 |
55 | 1.6 | 1.43 | 2.6 | 1.43 | 1.97 | 1.52 | 1.34 | 1.16 |
60 | 1.6 | 1.46 | 2.5 | 1.46 | 1.94 | 1.54 | 1.38 | 1.22 |
65 | 1.6 | 1.49 | 2.4 | 1.49 | 1.91 | 1.56 | 1.42 | 1.28 |
70 | 1.6 | 1.52 | 2.3 | 1.52 | 1.88 | 1.58 | 1.46 | 1.34 |
75 | 1.6 | 1.55 | 2.2 | 1.55 | 1.85 | 1.6 | 1.5 | 1.4 |
80 | 1.6 | 1.58 | 2.1 | 1.58 | 1.82 | 1.62 | 1.54 | 1.46 |
85 | 1.6 | 1.61 | 2 | 1.61 | 1.79 | 1.64 | 1.58 | 1.52 |
90 | 1.6 | 1.64 | 1.9 | 1.64 | 1.76 | 1.66 | 1.62 | 1.58 |
95 | 1.6 | 1.67 | 1.8 | 1.67 | 1.73 | 1.68 | 1.66 | 1.64 |
Blend | SPnC | SPbC | PPnC | PPbC | Ash Content Expected %db | Expected ISO 17225-2 Class |
---|---|---|---|---|---|---|
Pellet 1 | 90% | 10% | 0.58 | A1 | ||
Pellet 2 | 40% | 60% | 0.98 | A2 | ||
Pellet 2bis | 40% | 60% | 1.00 | A2 | ||
Pellet 3 | 95% | 5% | 0.59 | A1 | ||
Pellet 4 | 90% | 10% | 1.04 | A2 | ||
Pellet 5 | 40% | 60% | 1.14 | A2 | ||
Pellet 5bis | 40% | 60% | 1.74 | B |
Parameter | BLbC | BLnC | PPbC | PPnC | OKbC | OKnC | SPbC | SPnC | |
---|---|---|---|---|---|---|---|---|---|
Moisture (%) | 15.1 ± 0.01 c | 14.8 ± 0.1 cd | 28.4 ± 0.3 a | 27.0 ± 1.3 a | 12.9 ± 0.3 de | 12.3 ± 0.1 e | 17.5 ± 0.01 b | 17.4 ± 0.1 b | |
Bulk density (kg/m3ar) | 303.7 | 317.0 | 293.2 | 282.0 | 347.3 | 321.0 | 301.8 | 287.7 | |
Ash (%db) | 1.7 ± 0.07 c | 1.1 ± 0.05 de | 2.3 ± 0.18 b | 1.3 ± 0.06 cd | 3.7 ± 0.32 a | 1.1 ± 0.09 de | 0.9 ± 0.13 e | 0.5 ± 0.1 f | |
NCV (kJ/kgar) | 14941 | 14779 | 12346 | 11913 | 14420 | 16139 | 15919 | 15738 | |
NCV (kJ/kgdb) | 18038 | 17778 | 18197 | 17235 | 16914 | 18746 | 19803 | 19564 | |
GCV (kJ/kgdb) | 19232 | 19009 | 19481 | 18482 | 18113 | 19910 | 21097 | 20837 | |
C (%db) | 48.8 | 48.9 | 49.7 | 48.3 | 49.5 | 49.0 | 51.5 | 50.1 | |
H (%db) | 5.5 | 5.6 | 5.9 | 5.7 | 5.5 | 5.3 | 5.9 | 5.8 | |
N (%db) | 0.4 | 0.3 | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | |
O (%db) | 44.7 | 44.0 | 41.8 | 44.6 | 41.0 | 44.4 | 41.5 | 43.4 | |
Chlorine (%db) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
Sulfur (%db) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
Dimension of particles (%) | >100 | 1.17 | 4.42 | 0.00 | 0.00 | 1.76 | 2.30 | 0.00 | 0.97 |
63–100 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
45–63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
31.5–45 | 1.38 | 1.18 | 1.19 | 0.00 | 1.07 | 0.00 | 0.41 | 0.20 | |
16–31.5 | 8.78 | 8.80 | 7.27 | 8.25 | 6.72 | 9.28 | 16.39 | 9.90 | |
8–16 | 30.66 | 16.11 | 29.08 | 13.61 | 22.09 | 18.57 | 38.21 | 20.22 | |
3.15–8 | 45.77 | 33.10 | 41.01 | 36.02 | 44.09 | 30.27 | 34.90 | 38.31 | |
<3.15 | 12.24 | 36.40 | 21.44 | 42.11 | 24.28 | 39.58 | 10.09 | 30.39 | |
Arsenic (mg/kgdb) | - | <1 | - | <1 | - | - | - | - | - |
Cadmium (mg/kgdb) | - | <0.005 | - | 0.1 | - | - | - | - | - |
Chromium (mg/kgdb) | - | <1 | - | <1 | - | - | - | - | - |
Copper (mg/kgdb) | - | 1 | - | 1 | - | - | - | - | - |
Lead (mg/kgdb) | - | <1 | - | <1 | - | - | - | - | - |
Nickel (mg/kgdb) | - | <1 | - | <1 | - | - | - | - | - |
Zinc (mg/kgdb) | - | <5 | - | 26 | - | - | - | - | - |
Mercury (mg/kgdb) | - | <0.05 | - | <0.05 |
Parameter | Mix1 | Mix2 | Mix2bis | Mix3 | Mix4 | Mix5 | Mix5bis | |
---|---|---|---|---|---|---|---|---|
Moisture (%) | 8.6 ± 0.05 | 9.2 ± 0.01 | 10.1 ± 0.02 | 7.7 ± 0.03 | 8.7 ± 0.00 | 9.7 ± 0.01 | 9.9 ± 0.02 | |
Bulk density (kg/m3ar) | 654.4 | 583.2 | 526.0 | 647.2 | 666.8 | 525.6 | 537.6 | |
Ash (%db) | 0.7 ± 0.01 c | 1.2 ± 0.01 b | 1.2 ± 0.04 b | 0.6 ± 0.00 c | 1.1 ± 0.00 b | 1.3 ± 0.02 a | 1.3 ± 0.02 a | |
NCV (kJ/kgar) | 17089 | 16596 | 16954 | 17389 | 17309 | 16788 | 16548 | |
NCV (kJ/kgdb) | 18924 | 18520 | 19129 | 19033 | 19182 | 18865 | 18634 | |
GCV (kJ/kgdb) | 20190 | 19942 | 19939 | 20269 | 20447 | 20122 | 19849 | |
C (%db) | 51.1 | 50.4 | 50.3 | 51.0 | 51.3 | 50.6 | 49.9 | |
H (%db) | 5.8 | 6.5 | 5.7 | 5.7 | 5.8 | 5.8 | 5.6 | |
N (%db) | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | |
O (%db) | 42.3 | 41.8 | 42.7 | 42.6 | 41.6 | 42.1 | 43.1 | |
Chlorine (%db) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
Sulfur (%db) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
Length (mm) | 19.5 | 19.6 | 25.2 | 27.6 | 26.4 | 18.0 | 21.9 | |
Diameter (mm) | 6.2 | 6.3 | 6.1 | 6.1 | 6.2 | 6.1 | 6.2 | |
Ash melting (°C) | Shrink | 730 | 730 | 740 | 740 | 750 | 750 | 730 |
Deformation | >1480 | >1480 | >1480 | >1480 | >1480 | >1480 | >1480 | |
Hemisphere | >1480 | >1480 | >1480 | >1480 | >1480 | >1480 | >1480 | |
Flow | >1480 | >1480 | >1480 | >1480 | >1480 | >1480 | >1480 | |
Mechanical durability (%) | 95.4 | 88.6 | 88.4 | 95.1 | 95.9 | 92.2 | 92.9 | |
Arsenic (mg/kgdb) | <1 | - | - | <1 | <1 | - | - | |
Cadmium (mg/kgdb) | <0.005 | - | - | <0.005 | 0.0180 | - | - | |
Chromium (mg/kgdb) | <1 | - | - | <1 | <1 | - | - | |
Copper (mg/kgdb) | 1.00 | - | - | <1 | 1.00 | - | - | |
Lead (mg/kgdb) | <1 | - | - | <1 | <1 | - | - | |
Nickel (mg/kgdb) | <1 | - | - | <1 | <1 | - | - | |
Zinc (mg/kgdb) | 6.00 | - | - | <5 | 10.0 | - | - | |
Mercury (mg/kgdb) | <0.05 | - | - | <0.05 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilari, A.; Foppa Pedretti, E.; De Francesco, C.; Duca, D. Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources 2021, 10, 122. https://doi.org/10.3390/resources10120122
Ilari A, Foppa Pedretti E, De Francesco C, Duca D. Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources. 2021; 10(12):122. https://doi.org/10.3390/resources10120122
Chicago/Turabian StyleIlari, Alessio, Ester Foppa Pedretti, Carmine De Francesco, and Daniele Duca. 2021. "Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability" Resources 10, no. 12: 122. https://doi.org/10.3390/resources10120122
APA StyleIlari, A., Foppa Pedretti, E., De Francesco, C., & Duca, D. (2021). Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources, 10(12), 122. https://doi.org/10.3390/resources10120122