Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae
Abstract
:1. Introduction
2. Thermotogaceae Family: Features and Roles in Sugar Fermentation
2.1. General Characteristics
2.2. Fermentation of Pure Monosaccharides and Polysaccharides
3. Biodegradable Organic Waste
3.1. Food Waste
3.1.1. Fruit and Vegetable Waste
3.1.2. Fish Waste
3.1.3. Rice straw
3.1.4. Molasses
3.1.5. Cheese Whey
3.2. Lignocellulosic Waste
3.2.1. Miscanthus Waste
3.2.2. Garden Waste
3.2.3. Paper Sludge
3.3. Glycerol
3.4. Microalgal Biomass
4. Molecular Basis of Sugar Catabolism and Hydrolytic Enzymes in the Family Thermotogaceae
5. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perea-Moreno, M.A.; Samerón-Manzano, E.; Perea-Moreno, A.J. Biomass as renewable energy: Worldwide research trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef] [Green Version]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S. Recycling of Solid Waste for Biofuels and Bio-Chemicals; Obulisamy, P., Heimann, K., Muthu, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- European Commission Updated Bioeconomy Strategy. Available online: https://ec.europa.eu/knowledge4policy/publication/updated-bioeconomy-strategy-2018_en (accessed on 12 April 2021).
- Bouallagui, H.; Touhami, Y.; Ben Cheikh, R.; Hamdi, M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process. Biochem. 2005, 40, 989–995. [Google Scholar] [CrossRef]
- Kapdan, I.K.; Kargi, F. Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lay, C.H.; Sen, B.; Chu, C.Y.; Kumar, G.; Chen, C.C.; Chang, J.S. Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrogen Energy 2012, 37, 15632–15642. [Google Scholar] [CrossRef]
- Nasir, I.M.; Ghazi, T.I.M.; Omar, R. Production of biogas from solid organic wastes through anaerobic digestion: A review. Appl. Microbiol. Biotechnol. 2012, 95, 321–329. [Google Scholar] [CrossRef]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valorization 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. Waste to bioenergy: A review on the recent conversion technologies. Bmc Energy 2019, 1, 1–22. [Google Scholar] [CrossRef]
- Kumar, P.; Gnansounou, E.; Raman, J.K.; Baskar, G. Refining Biomass Residues for Sustainable Energy and Bioproducts; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Dung, T.N.B.; Sen, B.; Chen, C.C.; Kumar, G.; Lin, C.Y. Food waste to bioenergy via anaerobic processes. Energy Procedia 2014, 61, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies: Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef]
- Alibardi, L.; Cossu, R. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Boodhun, B.S.F.; Mudhoo, A.; Kumar, G.; Kim, S.H.; Lin, C.Y. Research perspectives on constraints, prospects and opportunities in biohydrogen production. Int. J. Hydrogen Energy 2017, 42, 27471–27481. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Chong, M.L.; Sabaratnam, V.; Shirai, Y.; Hassan, M.A. Biohydrogen production from biomass and industrial wastes by dark fermentation. Int. J. Hydrogen Energy 2009, 34, 3277–3287. [Google Scholar] [CrossRef]
- Pradhan, N.; Dipasquale, L.; D’Ippolito, G.; Panico, A.; Lens, P.N.L.; Esposito, G.; Fontana, A. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Int. J. Mol. Sci. 2015, 16, 12578–12600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dincer, I.; Acar, C. Smart energy solutions with hydrogen options. Int. J. Hydrogen Energy 2018, 43, 8579–8599. [Google Scholar] [CrossRef]
- Ntaikou, I.; Antonopoulou, G.; Lyberatos, G. Biohydrogen production from biomass and wastes via dark fermentation: A review. Waste Biomass Valorization 2010, 1, 21–39. [Google Scholar] [CrossRef]
- Khanna, N.; Das, D. Biohydrogen production by dark fermentation. Wiley Interdiscip. Rev. Energy Environ. 2012, 2, 401–421. [Google Scholar] [CrossRef]
- Raj, S.M.; Talluri, S.; Christopher, L.P. Thermophilic Hydrogen Production from Renewable Resources: Current Status and Future Perspectives. Bioenergy Res. 2012, 5, 515–531. [Google Scholar] [CrossRef]
- Pawar, S.S.; Van Niel, E.W.J. Thermophilic biohydrogen production: How far are we? Appl. Microbiol. Biotechnol. 2013, 97, 7999–8009. [Google Scholar] [CrossRef] [Green Version]
- Kothari, R.; Kumar, V.; Pathak, V.V.; Ahmad, S.; Aoyi, O.; Tyagi, V.V. A critical review on factors influencing fermentative hydrogen production. Front. Biosci. Landmark 2017, 22, 1195–1220. [Google Scholar] [CrossRef] [Green Version]
- Schönheit, P.; Schäfer, T. Metabolism of hyperthermophiles. World J. Microbiol. Biotechnol. 1995, 11, 26–57. [Google Scholar] [CrossRef] [PubMed]
- Van Ooteghem, S.A.; Beer, S.K.; Yue, P.C. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl. Biochem. Biotechnol. Enzym. Eng. Biotechnol. 2002, 98–100, 177–189. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Rupani, P.F.; Krishnan, S.; Ahmad, F.; Rezania, S.; Rashid, M.A.; Sha, C.; Din, M.F. Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species. Energy 2020, 197. [Google Scholar] [CrossRef]
- Huber, R.; Hannig, M. Thermotogales. Prokaryotes 2006, 899–922. [Google Scholar] [CrossRef]
- Turner, P.; Mamo, G.; Karlsson, E.N. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 2007, 6. [Google Scholar] [CrossRef] [Green Version]
- Blumer-Schuette, S.E.; Kataeva, I.; Westpheling, J.; Adams, M.W.; Kelly, R.M. Extremely thermophilic microorganisms for biomass conversion: Status and prospects. Curr. Opin. Biotechnol. 2008, 19, 210–217. [Google Scholar] [CrossRef]
- Arora, R.; Behera, S.; Kumar, S. Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renew. Sustain. Energy Rev. 2015, 51, 699–717. [Google Scholar] [CrossRef]
- Pradhan, N.; Dipasquale, L.; d’Ippolito, G.; Fontana, A.; Panico, A.; Pirozzi, F.; Lens, P.N.L.; Esposito, G. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana. Water Res. 2016, 99, 225–234. [Google Scholar] [CrossRef]
- Pradhan, N.; Dipasquale, L.; D’Ippolito, G.; Fontana, A.; Panico, A.; Lens, P.N.L.; Pirozzi, F.; Esposito, G. Kinetic modeling of fermentative hydrogen production by Neapolitana. Int. J. Hydrogen Energy 2016, 41, 4931–4940. [Google Scholar] [CrossRef]
- Dipasquale, L.; Pradhan, N.; Ippolito, G.; Fontana, A. Potential of Hydrogen Fermentative Pathways in Marine Thermophilic Bacteria: Dark Fermentation and Capnophilic Lactic Fermentation. In Thermotoga and Pseudothermotoga Species; Elsevier: Cham, Switzerland, 2018; pp. 217–235. [Google Scholar]
- Okonkwo, O.; Lakaniemi, A.M.; Santala, V.; Karp, M.; Mangayil, R. Quantitative real-time PCR monitoring dynamics of Thermotoga neapolitana in synthetic co-culture for biohydrogen production. Int. J. Hydrogen Energy 2018, 43, 3133–3141. [Google Scholar] [CrossRef]
- Eriksen, N.T.; Riis, M.L.; Holm, N.K.; Iversen, N. H2 synthesis from pentoses and biomass in Thermotoga spp. Biotechnol. Lett. 2011, 33, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Cappelletti, M.; Davide, Z.; Anne Postec, B.O. Members of the Order Thermotogales: From Microbiology to Hydrogen Production. Microb. Bioenergy Hydrog. Prod. Adv. Photosynth. Respir. 2014, 38, 321–347. [Google Scholar] [CrossRef]
- Cappelletti, M.; Bucchi, G.; De Sousa Mendes, J.; Alberini, A.; Fedi, S.; Bertin, L.; Frascari, D. Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains. J. Chem. Technol. Biotechnol. 2012, 87, 1291–1301. [Google Scholar] [CrossRef]
- Saidi, R.; Liebgott, P.P.; Gannoun, H.; Ben Gaida, L.; Miladi, B.; Hamdi, M.; Bouallagui, H.; Auria, R. Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: Simplification of the culture medium of Thermotoga maritima. Waste Manag. 2018, 71, 474–484. [Google Scholar] [CrossRef]
- Saidi, R.; Liebgott, P.P.; Hamdi, M.; Auria, R.; Bouallagui, H. Enhancement of fermentative hydrogen production by Thermotoga maritima through hyperthermophilic anaerobic co-digestion of fruit-vegetable and fish wastes. Int. J. Hydrogen Energy 2018, 43, 23168–23177. [Google Scholar] [CrossRef]
- Saidi, R.; Hamdi, M.; Bouallagui, H. Hyperthermophilic hydrogen production in a simplified reaction medium containing onion wastes as a source of carbon and sulfur. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresour. Technol. 2016, 199, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayara, T.; Sánchez, A. A review on anaerobic digestion of lignocellulosic wastes: Pretreatments and operational conditions. Appl. Sci. 2019, 9, 4655. [Google Scholar] [CrossRef] [Green Version]
- Conners, S.B.; Montero, C.I.; Comfort, D.A.; Shockley, K.R.; Johnson, M.R.; Chhabra, S.R.; Kelly, R.M. An Expression-Driven Approach to the Prediction of Carbohydrate Transport and Utilization Regulons in the Hyperthermophilic Bacterium Thermotoga maritima †. J. Bacteriol. 2005, 187, 7267–7282. [Google Scholar] [CrossRef] [Green Version]
- Conners, S.B.; Mongodin, E.F.; Johnson, M.R.; Montero, C.I.; Nelson, K.E.; Kelly, R.M. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. Fems Microbiol. Rev. 2006, 30, 872–905. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, S.R.; Shockley, K.R.; Conners, S.B.; Scott, K.L.; Wolfinger, R.D.; Kelly, R.M. Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J. Biol. Chem. 2003, 278, 7540–7552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, V.; Gupta, R.S. Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. Nov. and Petrotogales ord. Nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. Nov., Kosmotoga. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2014, 105, 143–168. [Google Scholar] [CrossRef] [PubMed]
- Belahbib, H.; Summers, Z.M.; Fardeau, M.L.; Joseph, M.; Tamburini, C.; Dolla, A.; Ollivier, B.; Armougom, F. Towards a congruent reclassification and nomenclature of the thermophilic species of the genus Pseudothermotoga within the order Thermotogales. Syst. Appl. Microbiol. 2018, 41, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Reysenbach, A.-L. Phylum BII. Thermotogae phy.nov. In Bergey’s Manual of Systematic Bacteriology; Springer: New York, NY, USA, 2002. [Google Scholar]
- Thauer, R.K.; Jungermann, K.; Decker, K. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacteriol. Rev. 1977, 41, 809. [Google Scholar] [CrossRef]
- Selig, M.; Xavier, K.B.; Santos, H.; Schönheit, P. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch. Microbiol. 1997, 167, 217–232. [Google Scholar] [CrossRef]
- Romano, A.H.; Conway, T. Evolution of carbohydrate metabolic pathways. Res. Microbiol. 1996, 147, 448–455. [Google Scholar] [CrossRef]
- Flamholz, A.; Noor, E.; Bar-Even, A.; Liebermeister, W.; Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. USA 2013, 110, 10039–10044. [Google Scholar] [CrossRef] [Green Version]
- Dipasquale, L.; D’Ippolito, G.; Fontana, A. Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation from the dark fermentation model. Int. J. Hydrogen Energy 2014, 39, 4857–4862. [Google Scholar] [CrossRef]
- d’Ippolito, G.; Dipasquale, L.; Fontana, A. Recycling of Carbon Dioxide and Acetate as Lactic Acid by the Hydrogen-Producing Bacterium Thermotoga neapolitana. ChemSusChem 2014, 7, 2678–2683. [Google Scholar] [CrossRef]
- Dipasquale, L.; Adessi, A.; d’Ippolito, G.; Rossi, F.; Fontana, A.; De Philippis, R. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: A route to unparalleled H2 yields. Appl. Microbiol. Biotechnol. 2015, 99, 1001–1010. [Google Scholar] [CrossRef]
- d’Ippolito, G.; Dipasquale, L.; Vella, F.M.; Romano, I.; Gambacorta, A.; Cutignano, A.; Fontana, A. Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int. J. Hydrogen Energy 2010, 35, 2290–2295. [Google Scholar] [CrossRef]
- Nuzzo, G.; Landi, S.; Esercizio, N.; Manzo, E.; Fontana, A.; D’Ippolito, G. Capnophilic lactic fermentation from Thermotoga neapolitana: A resourceful pathway to obtain almost enantiopure L-lactic acid. Fermentation 2019, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- d’Ippolito, G.; Landi, S.; Esercizio, N.; Lanzilli, M.; Vastano, M.; Dipasquale, L.; Pradhan, N.; Fontana, A. CO2-Induced Transcriptional Reorganization: Molecular Basis of Capnophillic Lactic Fermentation in Thermotoga neapolitana. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Han, D.; Xu, Z. Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2. BioMed Res. Int. 2014, 2015, 304523. [Google Scholar] [CrossRef] [Green Version]
- Balk, M.; Weijma, J.; Stams, A.J.M. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 2002, 52, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Langworthy, T.A.; König, H.; Thomm, M.; Woese, C.R.; Sleytr, U.B.; Stetter, K.O. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 1986, 144, 324–333. [Google Scholar] [CrossRef]
- Jannasch, H.W.; Huber, R.; Belkin, S.; Stetter, K.O. Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch. Microbiol. 1988, 150, 103–104. [Google Scholar] [CrossRef]
- Windberger, E.; Huber, R.; Trincone, A.; Fricke, H.; Stetter, K.O. Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch. Microbiol. 1989, 151, 506–512. [Google Scholar] [CrossRef]
- Jeanthon, C.; Reysenbach, A.L.; L’Haridon, S.; Gambacorta, A.; Pace, N.R.; Glénat, P.; Prieur, D. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 1995, 164, 91–97. [Google Scholar] [CrossRef]
- Ravot, G.; Magot, M.; Fardeau, M.L.; Patel, B.K.C.; Prensier, G.; Egan, A.; Garcia, J.L.; Ollivier, B. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 1995, 45, 308–314. [Google Scholar] [CrossRef]
- Fardeau, M.-L.; Ollivier, I.; Patel, B.; Magot, M.; Thomas, P.; Rimbault, A.; Rocchiccioli, F.; Garcia’, J. Thermotoga hypogea sp. nov., a Xylanolytic, Thermophilic Bacterium from an Oil-Producing Well. Int. J. Syst. Evol. Microbiol. 1997, 147, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Takahata, Y.; Nishijima, M.; Hoaki, T.; Maruyama, T. Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int. J. Syst. Evol. Microbiol. 2001, 51, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.D.; Han, S.J.; Kim, J.P.; Kim, M.S.; Sim, S.J. Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour. Technol. 2010, 101, S38–S41. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.A.; Sim, S.J. Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana. Environ. Prog. Sustain. Energy 2012, 31, 466–473. [Google Scholar] [CrossRef]
- Ngo, T.A.; Kim, M.S.; Sim, S.J. Thermophilic hydrogen fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture. Int. J. Hydrogen Energy 2011, 36, 14014–14023. [Google Scholar] [CrossRef]
- Pradhan, N.; d’Ippolito, G.; Dipasquale, L.; Esposito, G.; Panico, A.; Lens, P.N.L.; Fontana, A. Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica. Biomass Bioenergy 2019, 125, 17–22. [Google Scholar] [CrossRef]
- Woodward, J.; Heyer, N.I.; Getty, J.P.; Neill, H.M.O.; Pinkhassik, E.; Evans, B.R. Efficient Hydrogen Production Using Enzymes of the Pentose Phosphate Pathway. In Proceedings of the 2002 U.S. DOE Hydrogen Program Review, Golden, CO, USA, 6–10 May 2002; pp. 1–12. [Google Scholar]
- De Vrije, T.; Budde, M.A.W.; Lips, S.J.; Bakker, R.R.; Mars, A.E.; Claassen, P.A.M. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int. J. Hydrogen Energy 2010, 35, 13206–13213. [Google Scholar] [CrossRef]
- Frock, A.D.; Gray, S.R.; Kelly, R.M. Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl. Environ. Microbiol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Abreu, A.A.; Tavares, F.; Alves, M.M.; Pereira, M.A. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Bioresour. Technol. 2016, 219, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Drapcho, C.M.; Drapcho, C.M. Hydrogen Production by the Hyperthermophilic Bacterium Thermotoga neapolitana using Agricultural-Based Carbon and Nitrogen Sources. Biol. Eng. Trans. 2011, 4, 101–112. [Google Scholar] [CrossRef]
- Vargas, M.; Noll, K.M. Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP. Microbiology 1996, 142, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.N.; Ejaz, A.D.; Brancieri, M.A.; Mikula, A.M.; Nelson, K.E.; Gill, S.R.; Noll, K.M. Whole-genome expression profiling of Thermotoga maritima in response to growth on sugars in a chemostat. J. Bacteriol. 2004, 186, 4824–4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.A.D.; Han, S.J.; Kim, J.P.; Kim, M.S.; Oh, Y.K.; Sim, S.J. Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. Int. J. Hydrogen Energy 2008, 33, 5161–5168. [Google Scholar] [CrossRef]
- Nguyen, T.A.D.; Pyo Kim, J.; Sun Kim, M.; Kwan Oh, Y.; Sim, S.J. Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int. J. Hydrogen Energy 2008, 33, 1483–1488. [Google Scholar] [CrossRef]
- Ngo, T.A.; Nguyen, T.H.; Bui, H.T.V. Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renew. Energy 2012, 37, 174–179. [Google Scholar] [CrossRef]
- Singh, R.; White, D.; Demirel, Y.; Kelly, R.; Noll, K.; Blum, P. Uncoupling fermentative synthesis of molecular hydrogen from biomass formation in Thermotoga maritima. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Van Niel, E.W.J.; Budde, M.A.W.; De Haas, G.; Van der Wal, F.J.; Claassen, P.A.M.; Stams, A.J.M. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrogen Energy 2002, 27, 1391–1398. [Google Scholar] [CrossRef]
- Benedetti, M.; Vecchi, V.; Betterle, N.; Natali, A.; Bassi, R.; Dall’Osto, L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J. Biotechnol. 2019, 296, 42–52. [Google Scholar] [CrossRef]
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. Available online: https://www.hindawi.com/journals/bmri/2017/2370927/ (accessed on 15 April 2020).
- Yun, Y.; Lee, M.; Im, S.; Marone, A.; Trably, E.; Shin, S.; Kim, M.; Cho, S.; Kim, D. Bioresource Technology Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresour. Technol. 2018, 248, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Peña, E.I.; Parameswaran, P.; Kang, D.W.; Canul-Chan, M.; Krajmalnik-Brown, R. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour. Technol. 2011, 102, 9447–9455. [Google Scholar] [CrossRef]
- Bouallagui, H.; Lahdheb, H.; Ben Romdan, E.; Rachdi, B.; Hamdi, M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J. Environ. Manag. 2009, 90, 1844–1849. [Google Scholar] [CrossRef]
- Thanikal, J. Anaerobic Co-digestion of fruit and vegetable waste: Bio- reactor performance. World. J. Exp. Biosci. 2015, 3, 1–17. [Google Scholar]
- Bao, B.; Chang, K.C. Carrot Pulp Chemical Composition, Color, and Water-holding Capacity as Affected by Blanching. J. Food Sci. 1994, 59, 1159–1161. [Google Scholar] [CrossRef]
- Claassen, P.A.; Budde, M.A.; van Nooren, G.E.; Hoekema, S.; Hazewinkel, J.H.O.; van Gorensestijn, J.W.; de Vrije, G.J. Biological hydrogen production from agro-food-by-products. In Proceedings of the Total Food: Exploiting Co-Products, Norwich, UK, 25–28 April 2004. [Google Scholar]
- Djomo, S.N.; Humbert, S. Dagnija Blumberga Life cycle assessment of hydrogen produced from potato steam peels. Int. J. Hydrogen Energy 2008, 33, 3067–3072. [Google Scholar] [CrossRef]
- Mars, A.E.; Veuskens, T.; Budde, M.A.W.; Van Doeveren, P.F.N.M.; Lips, S.J.; Bakker, R.R.; De Vrije, T.; Claassen, P.A.M. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int. J. Hydrogen Energy 2010, 35, 7730–7737. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant. Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, R.T.; Zhang, R. Anaerobic digestion of onion residuals using a mesophilic Anaerobic Phased Solids Digester. Biomass Bioenergy 2011, 35, 4174–4179. [Google Scholar] [CrossRef]
- Milquez-Sanabria, H.; Blanco-Cocom, L.; Alzate-Gaviria, L. A fast linear predictive adaptive model of packed bed coupled with UASB reactor treating onion waste to produce biofuel. Microb. Cell Fact. 2016, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, K.; Mahato, N.; Nile, S.H.; Lee, E.T.; Lee, Y.R. Economical and environmentally-friendly approaches for usage of onion (: Allium cepa L.) waste. Food Funct. 2016, 7, 3354–3369. [Google Scholar] [CrossRef] [PubMed]
- Kadam, K.L.; Forrest, L.H.; Jacobson, W.A. Rice straw as a lignocellulosic resource: Collection, processing, transportation, and environmental aspects. Biomass Bioenergy 2000, 18, 369–389. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Nguyen, T.A.D.; Kim, K.R.; Kim, M.S.; Sim, S.J. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int. J. Hydrogen Energy 2010, 35, 13392–13398. [Google Scholar] [CrossRef]
- Chang, A.C.C.; Tu, Y.H.; Huang, M.H.; Lay, C.H.; Lin, C.Y. Hydrogen production by the anaerobic fermentation from acid hydrolyzed rice straw hydrolysate. Int. J. Hydrogen Energy 2011, 36, 14280–14288. [Google Scholar] [CrossRef]
- He, L.; Huang, H.; Lei, Z.; Liu, C.; Zhang, Z. Enhanced hydrogen production from anaerobic fermentation of rice straw pretreated by hydrothermal technology. Bioresour. Technol. 2014, 171, 145–151. [Google Scholar] [CrossRef]
- Wang, D.; Ai, P.; Yu, L.; Tan, Z.; Zhang, Y. Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosyst. Eng. 2015, 132, 47–55. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, Y.Y. Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2005, 124, 1119–1131. [Google Scholar] [CrossRef]
- Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 2005, 96, 1959–1966. [Google Scholar] [CrossRef]
- Ren, N.; Li, J.; Li, B.; Wang, Y.; Liu, S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy 2006, 31, 2147–2157. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Zhu, G.; Ren, N.; Bo, L.; He, J. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrogen Energy 2007, 32, 3274–3283. [Google Scholar] [CrossRef]
- Aceves-Lara, C.A.; Latrille, E.; Bernet, N.; Buffière, P.; Steyer, J.P. A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res. 2008, 42, 2539–2550. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jin, B. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J. Biosci. Bioeng. 2009, 107, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Scoma, A.; Coma, M.; Kerckhof, F.M.; Boon, N.; Rabaey, K. Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. Biotechnol. Biofuels 2017, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frascari, D.; Cappelletti, M.; Mendes, J.D.S.; Alberini, A.; Scimonelli, F.; Manfreda, C.; Longanesi, L.; Zannoni, D.; Pinelli, D.; Fedi, S. A kinetic study of biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of Thermotoga neapolitana. Bioresour. Technol. 2013, 147, 553–561. [Google Scholar] [CrossRef]
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013, 445–446, 385–396. [Google Scholar] [CrossRef]
- Lopes, A.C.A.; Eda, S.H.; Andrade, R.P.; Amorim, J.C.; Duarte, W.F. New Alcoholic Fermented Beverages—Potentials and Challenges. Fermented Beverages 2019, 577–603. [Google Scholar] [CrossRef]
- Zotta, T.; Solieri, L.; Iacumin, L.; Picozzi, C.; Gullo, M. Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol. 2020, 104, 2749–2764. [Google Scholar] [CrossRef]
- Ren, N.; Wang, A.; Cao, G.; Xu, J.; Gao, L. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol. Adv. 2009, 27, 1051–1060. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Bakonyi, P.; Periyasamy, S.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose biohydrogen: Practical challenges and recent progress. Renew. Sustain. Energy Rev. 2015, 44, 728–737. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2015, 178, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Klemes, J.J.; Lee, C.T. Pre- and post-treatment assessment for the anaerobic digestion of lignocellulosic waste: P-graph. Chem. Eng. Trans. 2018, 63, 1–6. [Google Scholar] [CrossRef]
- Van Fan, Y.; Klemeš, J.J.; Perry, S.; Lee, C.T. Anaerobic digestion of lignocellulosic waste: Environmental impact and economic assessment. J. Environ. Manag. 2019, 231, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew. Sustain. Energy Rev. 2020, 117. [Google Scholar] [CrossRef]
- Wyman, V.; Henríquez, J.; Palma, C.; Carvajal, A. Lignocellulosic waste valorisation strategy through enzyme and biogas production. Bioresour. Technol. 2018, 247, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Shelvapulle, S.; Reddy, K.R.; Kulkarni, R.V.; Puttaiahgowda, Y.M.; Naveen, S.; Raghu, A.V. Integration of biological pre-treatment methods for increased resource replace resource with energy recovery from paper and pulp biosludge. J. Microbiol. Methods 2019, 160, 93–100. [Google Scholar] [CrossRef]
- Vasco-Correa, J.; Khanal, S.; Manandhar, A.; Shah, A. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 2018, 247, 1015–1026. [Google Scholar] [CrossRef]
- Olsson, L.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzym. Microb. Technol. 1996, 18, 312–331. [Google Scholar] [CrossRef]
- De Vrije, T.; De Haas, G.; Tan, G.B.; Keijsers, E.R.P.; Claassen, P.A.M. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energy 2002, 27, 1381–1390. [Google Scholar] [CrossRef]
- De Vrije, T.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels 2009, 2. [Google Scholar] [CrossRef] [Green Version]
- Akyol, Ç.; Ince, O.; Bozan, M.; Ozbayram, E.G.; Ince, B. Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach. Ind. Crop. Prod. 2019, 140. [Google Scholar] [CrossRef]
- Amend, J.P.; Shock, E.L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. Fems Microbiol. Rev. 2001, 25, 175–243. [Google Scholar] [CrossRef]
- Arnoult, S.; Brancourt-Hulmel, M. A Review on Miscanthus Biomass Production and Composition for Bioenergy Use: Genotypic and Environmental Variability and Implications for Breeding. BioEnergy Res. 2014, 8, 502–526. [Google Scholar] [CrossRef] [Green Version]
- Abreu, A.A.; Tavares, F.; Alves, M.M.; Cavaleiro, A.J.; Pereira, M.A. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresour. Technol. 2019, 278, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Moretti, P.; Morais de Araujo, J.; Borges de Castilhos, A.; Buffière, P.; Gourdon, R.; Bayard, R. Characterization of municipal biowaste categories for their capacity to be converted into a feedstock aqueous slurry to produce methane by anaerobic digestion. Sci. Total Environ. 2020, 716, 137084. [Google Scholar] [CrossRef] [PubMed]
- Boldrin, A.; Christensen, T.H. Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Manag. 2010, 30, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Kadar, Z.; Vrije, T.; Budde, M.A.W.; Szengyel, Z.; Réczey, K.; Claassen, P.A. Hydrogen Production from Paper Sludge Hydrolysate. Appl. Biochem. Biotechnol. 2003, 105–108, 557–566. [Google Scholar] [CrossRef]
- Logeswaran, V.; Ramakrishna, G. Waste Paper Sludge Ash-State of art. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2333–2338. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, S.; Wang, D. Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic-thermophilic anaerobic co-digestion. Int. J. Hydrogen Energy 2013, 38, 15055–15062. [Google Scholar] [CrossRef]
- Nguyen, T.A.D.; Kim, K.R.; Nguyen, M.T.; Kim, M.S.; Kim, D.; Sim, S.J. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int. J. Hydrogen Energy 2010, 35, 13035–13040. [Google Scholar] [CrossRef]
- Dipasquale, L.; D’Ippolito, G.; Gallo, C.; Vella, F.M.; Gambacorta, A.; Picariello, G.; Fontana, A. Hydrogen production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO 2-fixing diatom Thalassiosira weissflogii. Int. J. Hydrogen Energy 2012, 37, 12250–12257. [Google Scholar] [CrossRef]
- Santibáñez, C.; Varnero, M.T.; Bustamante, M. Residual glycerol from biodiesel Manufacturing, waste or potential source of Bioenergy: A review. Chil. J. Agric. Res. 2011, 71, 469–475. [Google Scholar] [CrossRef]
- Safaei, H.R.; Shekouhy, M.; Rahmanpur, S.; Shirinfeshan, A. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans. Green Chem. 2012, 14, 1696–1704. [Google Scholar] [CrossRef]
- Yang, F.; Hanna, M.A.; Sun, R. Value-added uses for crude glycerol–A byproduct of biodiesel production. Biotechnol. Biofuels 2012, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, N.; He, B. Value-added Utilization of Crude Glycerol from Biodiesel Production: A Survey of Current Research Activities. In Proceedings of the 2006 ASABE Annual International Meeting, Portland, OR, USA, 9–12 July 2006; Volume 0300. [Google Scholar]
- Thompson, J.C.; He, B.B. Characterization of Crude Glycerol From Biodiesel Production from Multiple Feedstocks. Appl. Eng. Agric. 2006, 22, 261–265. [Google Scholar] [CrossRef]
- Da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Pyle, D.J. Use of Biodiesel-Derived Crude Glycerol for the Production of Omega-3 Polyunsaturated Fatty Acids by the Microalga Schizochytrium Limacinum. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Balcksburg, VA, USA, 2008. [Google Scholar]
- Hansen, C.F.; Hernandez, A.; Mullan, B.P.; Moore, K.; Trezona-Murray, M.; King, R.H.; Pluske, J.R. A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter. Anim. Prod. Sci. 2009, 49, 154–161. [Google Scholar] [CrossRef]
- Siles López, J.Á.; de los Martín Santos, M.Á.; Chica Pérez, A.F.; Martín Martín, A. Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresour. Technol. 2009, 100, 5609–5615. [Google Scholar] [CrossRef]
- Ngo, T.A.; Kim, M.S.; Sim, S.J. High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int. J. Hydrogen Energy 2011, 36, 5836–5842. [Google Scholar] [CrossRef]
- Dasari, M. Crude Glycerol Potential Described. Feedstuffs, 15 October 2007; 1–3. [Google Scholar]
- Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantí, M.; Medina, F. Biohydrogen Production from Glycerol using Thermotoga spp. Energy Procedia 2012, 29, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Maru, B.T.; Bielen, A.A.M.; Constantí, M.; Medina, F.; Kengen, S.W.M. Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations. Int. J. Hydrogen Energy 2013, 38, 5563–5572. [Google Scholar] [CrossRef]
- Nelson, K.E.; Clayton, R.A.; Gill, S.R.; Gwinn, M.L.; Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Nelson, W.C.; Ketchum, K.A.; et al. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 1999, 399, 323–329. [Google Scholar] [CrossRef]
- Van Ooteghem, S.A.; Jones, A.; Van Der Lelie, D.; Dong, B.; Mahajan, D. H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol. Lett. 2004, 26, 1223–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, C.; Selig, M.; Schönheit, P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 1994, 161, 460–470. [Google Scholar] [CrossRef]
- Schut, G.J.; Adams, M.W.W. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen production. J. Bacteriol. 2009, 191, 4451–4457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Mahapatra, D.M.; Karthick, B.; Gordon, R. Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res. 2009, 48, 8769–8788. [Google Scholar] [CrossRef]
- Latif, H.; Lerman, J.A.; Portnoy, V.A.; Tarasova, Y.; Nagarajan, H.; Schrimpe-Rutledge, A.C.; Smith, R.D.; Adkins, J.N.; Lee, D.-H.; Qiu, Y.; et al. The Genome Organization of Thermotoga maritima Reflects Its Lifestyle. Plos Genet. 2013, 9, e1003485. [Google Scholar] [CrossRef]
- Rodionov, D.A.; Rodionova, I.A.; Li, X.; Ravcheev, D.A.; Tarasova, Y.; Portnoy, V.A.; Zengler, K.; Osterman, A.L. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima. Front. Microbiol. 2013, 4, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göker, M.; Spring, S.; Scheuner, C.; Anderson, I.; Zeytun, A.; Nolan, M.; Lucas, S.; Tice, H.; Del Rio, T.G.; Cheng, J.F.; et al. Genome sequence of the Thermotoga thermarum type strain (LA3T) from an African solfataric spring. Stand. Genom. Sci. 2015, 9, 1105–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravcheev, D.A.; Khoroshkin, M.S.; Laikova, O.N.; Tsoy, O.V.; Sernova, N.V.; Petrova, S.A.; Rakhmaninova, A.B.; Novichkov, P.S.; Gelfand, M.S.; Rodionov, D.A. Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front. Microbiol. 2014, 5, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Puranik, R.; Hu, J.; Xu, H.; Han, D. Complete genome sequence of Thermotoga sp. strain RQ7. Stand. Genom. Sci. 2017, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Beaucamp, N.; Hofmann, A.; Kellerer, B.; Jaenicke, R. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: Design and characterization of the separate triosephosphate isomerase. Protein Sci. 1997, 6, 2159–2165. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Huang, Y.; Zhang, Y.; Li, W.; Li, X.; Wang, F. High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli. Bmc Biotechnol. 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Martín Del Campo, J.S.; Chun, Y.; Kim, J.E.; Patiño, R.; Zhang, Y.H.P. Discovery and characterization of a novel ATP/polyphosphate xylulokinase from a hyperthermophilic bacterium Thermotoga maritima. J. Ind. Microbiol. Biotechnol. 2013, 40, 661–669. [Google Scholar] [CrossRef]
- Fatima, B.; Aftab, M.N.; Haq, I.U. Cloning, purification, and characterization of xylose isomerase from Thermotoga naphthophila RKU-10. J. Basic Microbiol. 2016, 56, 949–962. [Google Scholar] [CrossRef]
- Latif, H.; Sahin, M.; Tarasova, J.; Tarasova, Y.; Portnoy, V.A.; Nogales, J.; Zengler, K. Adaptive evolution of Thermotoga maritima reveals plasticity of the ABC transporter network. Appl. Environ. Microbiol. 2015, 81, 5477–5485. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zhang, W.; Zhang, T.; Jiang, B.; Mu, W. l-Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl. Microbiol. Biotechnol. 2016, 100, 2985–2992. [Google Scholar] [CrossRef] [PubMed]
- Bertoldo, C.; Antranikian, G. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 2002, 6, 151–160. [Google Scholar] [CrossRef]
- Botha, J.; Mizrachi, E.; Myburg, A.A.; Cowan, D.A. Carbohydrate active enzyme domains from extreme thermophiles: Components of a modular toolbox for lignocellulose degradation. Extremophiles 2018, 22, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Lee, D.S.; Kim, Y.O.; Joshi, C.P.; Bae, H.J. Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5′ amplification promoting sequence. Plant. Mol. Biol. 2013, 83, 317–328. [Google Scholar] [CrossRef] [PubMed]
Substrate | Strain | T (°C) | Start pH | Mixing Speed (rpm) | Gas Sparge | Reactor Volume (mL) | Working Volume (mL) | Substrate Consumption (mmol/L) | H2 yield (mol H2/mol sugar) | Organic acids Production (mM) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Sucrose | T.nea cf | 80 | 7.5 | 250 | CO2 | 3800 | 500 | 23.30 ± 0.69 | 2.56 ± 0.1 | AA 25.12 ± 1.43 LA 16.95 ± 1.34 | [73] |
Laminarin | T.nea cf | 80 | 7.5 | 250 | CO2 | 3800 | 500 | 24.73 ± 0.40 | 3.70 ± 0.17 | AA 28.75 ± 0.81 LA 7.60 ± 0.27 | |
CMC | T.nea cf | 80 | 7.5 | 250 | CO2 | 3800 | 500 | 2.75 ± 0.25 | 2.05 ± 0.13 | AA 3.40 ± 0.30 LA 1.18 ± 0.05 | |
Sucrose | T.nea | 75 | 7.5 pH control | 300 | N2 | 3000 | 1000 | 14.69 ± 0.06 | 4.95 ± 0.25 | AA 25.66 LA 1.69 | [72] |
7.5 w/o pH control | 13.78 ± 0.70 | 3.52 ± 0.18 | AA 23.97 LA 2.5 | ||||||||
Cellulose pretreated with [C4mim] Cl | T.nea | 80 | 7.5 | 150 | N2 | 120 | 40 | - | 2.20 ± 0.1 | - | [81] |
w/o N2 | 1.22 ± 0.067 | ||||||||||
Cellulose | T.nea | 80 | 7.5 | - | N2 | 120 | 50 | 10.18 ± 0.08 | 30.7 ± 1.5 * | AA 4.09 | [82] |
T.mar | 75 | 6.5 | 8.82 ± 0.07 | 27.8 ± 1.3 * | AA 3.20 | ||||||
Starch | T.nea | 80 | 7.5 | - | N2 | 120 | 50 | 5.51 ± 0.09 | 174 ± 8.7 * | AA 22.04 | |
T.mar | 75 | 6.5 | 6.01 ± 0.09 | 187 ± 9.4 * | AA 24.34 | ||||||
CMC | T.nea | 80 | 7.5 | - | N2 | 120 | 50 | 6.80 ± 0.08 | 96.4 ± 4.8 * | AA 8.97 | |
T.mar | 75 | 6.5 | 6.99 ± 0.08 | 95.5± 4.8 * | AA 9.75 | ||||||
Cellobiose | T.mar | 70 | 7.2 | 90 | N2 | 120 | 50 | 6.125 | 3.60 ± 0.2 | - | [77] |
Substrate | Matrix Components | Sugar Components | Pretreatment Type | Pretreatment Method | Substrate Load (g/L) | Strain | T (°C) | Start pH | Mixing Speed (rpm) | Volume tot. (mL) | Working Volume (mL) | H2 yield (mol/mol sugar) | Organic Acids Yield (mol/mol sugar) | Organic Acids (g/L) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Carrot pulp | Glucose, fructose, sucrose, polysaccharides | Glucose, fructose | Enzymatic | Enzymes | 10 | T.nea | 72 | 6.8/7 | 350 | 2000 | 1000 | 2.7 | AA 1.3 LA 0.17 | AA 7.20 LA 1.34 | [75] |
2.4 | AA 1.1 LA 0.30 | AA 10.79 LA 4.08 | |||||||||||||
Rice straw | Cellulose, hemicellulose, lignin | Glucose, xylose | Untreated | - | 10 | T.nea | 75 | 7.5 | 150 | 120 | 40 | 2.27 ± 0.01 | - | - | [102] |
Chemical | NH3 | 2.68 ± 0.02 | |||||||||||||
H2SO4 | 2.61 ± 0.01 | ||||||||||||||
Combined NH3/H2SO4 | 2.70 ± 0.01 | ||||||||||||||
Potato steam peels | Starch | Glucose | Enzymatic | Enzymes | 10 | T.nea | 75 | 6.9 | 350 | 2000 | 1000 | 3.8 | AA 1.8 LA 0.20 | - | [95] |
Molasses | Glucose, fructose, sucrose | Glucose, fructose, sucrose | - | - | 20 | T.nea | 77 | 8.5 | 100 | 116 | 40 | 2.6 ± 0.1 | AA 1.5 | - | [38] |
Cheese whey | Lactose, proteins, lipids | Lactose | - | - | 12.5 | T.nea | 77 | 8.5 | 100 | 116 | 40 | 2.4 ± 0.1 | AA 1.0 | - | |
Fruit and vegetable waste | Cellulose, hemicellulose | Glucose | Mechanical | Shredding | 8.1 | T.mar | 80 | 7 | 150 | 2200 | 1100 | 3.89 | AA 1.96 | AA 5.39 | [39] |
20 (plus FW) | 2500 | 3.86 | AA 1.94 | AA 12.28 LA 5.49 | [40] | ||||||||||
Onion waste | Glucose, fructose, sucrose, cellulose, hemicellulose | Glucose, fructose, sucrose | Mechanical | Shredding | 200 * OW | T.mar | 80 | 7 | 150 | 2500 | 1100 | 3.76 ± 0.5 | AA 1.97 | AA 5.33 LA 1.12 | [41] |
400 * OW 100 * FVW | 3.67 ± 0.8 | AA 1.85 | AA 9.27 LA 1.96 |
Substrate | Matrix Components | Sugar Components | Pretreatment type | Pretreatment Method | Substrate Load (g/L) | Strain | T (°C) | Start pH | Mixing Speed (rpm) | Volume tot. (mL) | Working Volume (mL) | H2 Yield (mol/mol sugars) | Organic Acid(g/L) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Miscanthus | Cellulose, hemicellulose, lignin | Glucose, xylose | Mechanical, chemical | Extrusion NaOH | 14 | T.nea | 80 | 7 | 350 | 2000 | 1000 | 3.2 | AA 10.29 LA 1.25 | [130] |
Chemical, enzymatic | NaOH enzymes | 10 | P.elfii | 65 | 8 | - | 100 | 30 | 60.36 * | AA 3.52 | [129] | |||
Garden waste | Glucans, Xylans, lignin | Glucans, xylans | Mechanical | Shredding | 5 | T.mar | 70 | 7.2 | 90 | 120 | 50 | 41.5 ** | AA 0.31 | [77] |
Paper sludge | Proteins, lignin, carbohydrates, lipids, cellulose | Glucose, xylose | Chemical, enzymatic | H2SO4- enzymes | 11 | P.elfii | 65 | 7.2 | 100 | 30 | - | - | - | [137] |
Chlamydomonas reinhardtii | Starch | Glucose | Enzymatic | Enzymes | 5 | T.nea | 75 | 7/7.4 | 150 | 120 | 40 | 2.5 ± 0.3 | - | [140] |
Thalassiosira weissflogi | Protein, chrysolaminarins | Chrysolaminarins | Chemical | MeOH | 2 | T.nea | 80 | 7.5/8 | 250 | 3800 | 500 | 1.9 ± 0.1 | AA 1.57 LA 0.112 | [141] |
Substrate | Pretreatment Type | Pretreatment Method | Substrate Load (g/L) | Strain | T (°C) | Start pH | Mixing Speed (rpm) | Reactor Volume (mL) | Working Volume (mL) | H2 Yield (mol H2/mol Sugar) | Organic Acids (g/L) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pure glycerol | - | - | 5 | T.nea | 80 | 7.5 | 200 | 120 | 25 | 2.65 | - | [153] |
T.mar | 2.75 | |||||||||||
Biodiesel waste (1% glycerol) | Mechanical | Evaporation, centrifugation | 5 | T.nea | 80 | 7.5 | - | 120 | 40 | 2.70 ± 0.10 | AA 1.85 | [151] |
Pure glycerol | - | - | 2.5 | T.nea | 80 | 8 | 200 | 120 | 25 | 2.86 | AA 2.21 | [154] |
T.mar | 2.84 | LA 1.74 | ||||||||||
Biodiesel waste (1% glycerol) | Mechanical | Evaporation, centrifugation | 3 | T.nea | 75 | 7.5 | - | 120 | 40 | 1.3 ± 0.06 | - | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esercizio, N.; Lanzilli, M.; Vastano, M.; Landi, S.; Xu, Z.; Gallo, C.; Nuzzo, G.; Manzo, E.; Fontana, A.; d’Ippolito, G. Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae. Resources 2021, 10, 34. https://doi.org/10.3390/resources10040034
Esercizio N, Lanzilli M, Vastano M, Landi S, Xu Z, Gallo C, Nuzzo G, Manzo E, Fontana A, d’Ippolito G. Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae. Resources. 2021; 10(4):34. https://doi.org/10.3390/resources10040034
Chicago/Turabian StyleEsercizio, Nunzia, Mariamichela Lanzilli, Marco Vastano, Simone Landi, Zhaohui Xu, Carmela Gallo, Genoveffa Nuzzo, Emiliano Manzo, Angelo Fontana, and Giuliana d’Ippolito. 2021. "Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae" Resources 10, no. 4: 34. https://doi.org/10.3390/resources10040034