Risks to Human Health from the Consumption of Water from Aquifers in Gold Mining Areas in the Coastal Region of Ecuador
Abstract
:1. Introduction
Mining in Ecuador
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Laboratory Analysis
2.3. Risk Assessment and Characterization
2.3.1. Insight into the Significance of Parameters
- CGW (Concentration): it represents the concentration of mercury detected at selected sampling points.
- EF (Exposure Frequency): it is a representative parameter of the average number of days per year the receptor is considered to be exposed to contamination. Therefore, the value of EF varies depending on the scenario considered.
- IR (Ingestion Rate): it represents on average the amount of contaminated water ingested daily by the receptor. Clearly, this quantity varies depending on both the scenario considered and the type of receptor.
- ET (Exposure Time): it represents the duration of exposure with reference to the individual contamination event. Its value depends on the considered scenario.
- ED (Exposure Duration): it represents the duration, expressed in years, over which, on average, the receptor is considered to be exposed to contamination. Therefore, the ED value varies depending on the type of receptor: adult or child.
- SA (Skin Area): it is the average area of skin considered to be exposed to contamination through dermal contact. It varies depending on the type of receptor considered.
- Kp (Skin permeability constant): it is the amount of contaminant absorbed per centimeter of skin exposed per hour.
- AT (Averaging Time): it represents the period over which the exposure is averaged. This parameter’s value differs depending on whether toxic (non-carcinogenic) or carcinogenic substances are being considered. In the case of toxic substances, as with mercury, it is conventionally assumed that TA coincides with ED.
- BW (Body Weight): it is the average body weight of the receptor, so it has a different value for adult and child receptors.
- CF (Conversion Factor): it is used to standardize units of measurement. Therefore, it is assumed to be 365.
- RfD (Chronic Reference Dose): it represents the maximum dose of toxic contaminant that can be accepted. In essence, it is the concentration value of the pollutant for which no adverse effects on human health have been found in the literature.
2.3.2. Calculation of HQ and HI
3. Results
3.1. Hg Concentration in Water
3.2. Human Health Risk Assessment
3.2.1. Deterministic Approach
3.2.2. Probabilistic Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, K.W. A History of Mining in Latin America: From the Colonial Era to the Present; UNM Press: Albuquerque, NM, USA, 2012; ISBN 0826351077. [Google Scholar]
- Mestanza-Ramón, C.; Paz-Mena, S.; López-Paredes, C.; Jimenez-Gutierrez, M.; Herrera-Morales, G.; D’Orio, G.; Straface, S. History, Current Situation and Challenges of Gold Mining in Ecuador’s Litoral Region. Land 2021, 10, 1220. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Mora-Silva, D.; D’Orio, G.; Tapia-Segarra, E.; Gaibor, I.D.; Esparza Parra, J.F.; Chávez Velásquez, C.R.; Straface, S. Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability 2022, 14, 6854. [Google Scholar] [CrossRef]
- Loza del Carpio, A.L.; Ccancapa Salcedo, Y. Mercurio en un arroyo altoandino con alto impacto por minería aurífera artesanal (la rinconada, Puno, Perú). Rev. Int. Contam. Ambient. 2020, 36, 33–44. [Google Scholar] [CrossRef]
- Ministerio del Ambiente del Ecuador Línea de Base Nacional. 2020; “Linea de Base Nacional para la Minería Artesanal y en Pequeña Escala de Oro en Ecuador, Conforme la Convención de Minamata sobre Mercurio”; United Nations Industrial Development Organization: UNIDO: Vienna, Austria, 2020; pp. 33–80.
- Akabzaa, T. Mining in Ghana: Implications for National Economic Development and Poverty Reduction. In Mining in Africa: Regulation and Development; Pluto Press: London, UK, 2009; pp. 25–65. [Google Scholar]
- Rea Toapanta, A.R. Política Minera y Sostenibilidad Ambiental En Ecuador. FIGEMPA Investig. Desarro. 2017, 4, 41–52. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, S.M.; Pascó-Font, A. La Socioeconomía de La Minería Del Oro. In El libro de Minería del Oro en Iberoamérica; CYTED: Madrid, Spain, 2001; pp. 53–81. [Google Scholar]
- Minería, M.D. Plan Nacional de Desarrollo Del Sector Minero; ARCOM: Quito, Ecuador, 2016; p. 8. [Google Scholar]
- Jiménez-Oyola, S.; Escobar Segovia, K.; García-Martínez, M.-J.J.; Ortega, M.; Bolonio, D.; García-Garizabal, I.; Salgado, B.; Segovia-Escobar, K.; García-Martínez, M.-J.J.; Ortega, M.; et al. Human Health Risk Assessment for Exposure to Potentially Toxic Elements in Polluted Rivers in the Ecuadorian Amazon. Water 2021, 13, 613. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Cuenca-Cumbicus, J.; D’Orio, G.; Flores-Toala, J.; Segovia-Cáceres, S.; Bonilla-Bonilla, A.; Straface, S. Gold Mining in the Amazon Region of Ecuador: History and a Review of Its Socio-Environmental Impacts. Land 2022, 11, 221. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Jiménez-Oyola, S.; Montoya, A.V.G.; Vizuete, D.D.C.; D’Orio, G.; Cedeño-Laje, J.; Straface, S. Assessment of Hg Pollution in Stream Waters and Human Health Risk in Areas Impacted by Mining Activities in the Ecuadorian Amazon. Environ. Geochem. Health 2023, 45, 7183–7197. [Google Scholar] [CrossRef] [PubMed]
- Goix, S.; Maurice, L.; Laffont, L.; Rinaldo, R.; Lagane, C.; Chmeleff, J.; Menges, J.; Heimbürger, L.-E.; Maury-Brachet, R.; Sonke, J.E. Quantifying the Impacts of Artisanal Gold Mining on a Tropical River System Using Mercury Isotopes. Chemosphere 2019, 219, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Wongsasuluk, P.; Tun, A.Z.; Chotpantarat, S.; Siriwong, W. Related Health Risk Assessment of Exposure to Arsenic and Some Heavy Metals in Gold Mines in Banmauk Township, Myanmar. Sci. Rep. 2021, 11, 22843. [Google Scholar] [CrossRef]
- Smith, N.M. “Our Gold Is Dirty, but We Want to Improve”: Challenges to Addressing Mercury Use in Artisanal and Small-Scale Gold Mining in Peru. J. Clean. Prod. 2019, 222, 646–654. [Google Scholar] [CrossRef]
- Ovadje, L.; Calys-Tagoe, B.N.L.; Clarke, E.; Basu, N. Registration Status, Mercury Exposure Biomarkers, and Neuropsychological Assessment of Artisanal and Small-Scale Gold Miners (ASGM) from the Western Region of Ghana. Environ. Res. 2021, 201, 111639. [Google Scholar] [CrossRef] [PubMed]
- Oakley, P. Making Mercury’s Histories: Mercury in Gold Mining’s Past and Present. Ambix 2023, 70, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Gandara, F.; Herrera-Herrera, C.; Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. Assessment of human health risk associated with methylmercury in the imported fish marketed in the Carribean. Environ. Res. 2018, 165, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Tinkov, A.A.; Dadar, M.; Rahman, M.M.; Chirumbolo, S.; Skalny, A.V.; Skalnaya, M.G.; Haley, B.E.; Ajsuvakova, O.P.; Aaseth, J. Insights into the Potential Role of Mercury in Alzheimer’s Disease. J. Mol. Neurosci. 2019, 67, 511–533. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Rivera Grunauer, R.E. Características Físicas, Ubicación Geográfica y Calidad Del Suelo Agrícola de Las Provincias de La Costa Ecuatoriana; Universidad Técnica de Machala: Machala, Ecuador, 2019. [Google Scholar]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Industrial Metal Pollution in Water and Probabilistic Assessment of Human Health Risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Frækaland Vangsnes, G. The Meanings of Mining: A Perspective on the Regulation of Artisanal and Small-Scale Gold Mining in Southern Ecuador. Extr. Ind. Soc. 2018, 5, 317–326. [Google Scholar] [CrossRef]
- Sandoval, F. Small-Scale Mining in Ecuador. Environ. Soc. Found. 2001, 75, 28. [Google Scholar]
- Mestanza-Ramón, C.; Ordoñez-Alcivar, R.; Arguello-Guadalupe, C.; Carrera-Silva, K.; D’Orio, G.; Straface, S. History, Socioeconomic Problems and Environmental Impacts of Gold Mining in the Andean Region of Ecuador. Int. J. Environ. Res. Public Health 2022, 19, 1190. [Google Scholar] [CrossRef] [PubMed]
- Vásconez Carrasco, M.; Torres León, L. Minería En El Ecuador: Sostenibilidad y Licitud. Rev. Estud. Desarro. Soc. Cuba. Am. Lat. 2018, 6, 83–103. [Google Scholar]
- Portilla Plaza, S.C. La Minería Artesanal Como Fuente de Identidad y Práctica Ancestral Cimarronera: Caso Telembí, Esmeraldas. Master’s Thesis, Flacso Ecuador, Quito, Ecuador, 2023. [Google Scholar]
- Sarmiento Bravo, D.V.; Carvajal Mediavilla, K.L. Estrategia de Regularización de Actividades Mineras En Los Cantones San Lorenzo y Eloy Alfaro, Como Alternativa a Mejorar Las Condiciones de Vida, Salud y Ambiente de Las Poblaciones de Influencia Directa. Bachelor’s Thesis, Universidad Técnica del Norte, Ibarra, Ecuador, 2018. [Google Scholar]
- Abril, P.F.E.F.M.; Octubre, M.J.J.A.S.; Diciembre, N. Características de Población y Vivienda: Censo Nacional de Población y Vivienda; Instituto Nacional de Estadística y Censos: Loja, Ecuador, 2010. [Google Scholar]
- Winckell, A. Relieve y Geomorfología Del Ecuador. Cent. Ecuat. Investig. Geogr. Guayaquil 1982, 3–19. [Google Scholar]
- Baker, T.; Bickford, D.; Juras, S.; Lewis, P.; Oztas, Y.; Ross, K.; Tukac, A.; Rabayrol, F.; Miskovic, A.; Friedman, R. The Geology of the Kişladağ Porphyry Gold Deposit, Turkey; Society of Economic Geologists: Littleton, CO, USA, 2016. [Google Scholar]
- Valente, T.; Grande, J.A.; De la Torre, M.L.; Gomes, P.; Santisteban, M.; Borrego, J.; Braga, M.A.S. Mineralogy and Geochemistry of a Clogged Mining Reservoir Affected by Historical Acid Mine Drainage in an Abandoned Mining Area. J. Geochem. Explor. 2015, 157, 66–76. [Google Scholar] [CrossRef]
- Calderón Robles, P.V. Estado Actual de La Minería de Oro En Ecuador: Gran Minería vs Minería Artesanal. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2020. [Google Scholar]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of Soil and Water Contaminated with Petroleum Hydrocarbon: A Review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Franco, G.H.; Quinchuela, T.G.; Macancela, N.A.; Mero, P.C. Participative analysis of socio-ecological dynamics and interactions. A case study of the Manglaralto coastal aquifer, Santa Elena-Ecuador. Malays. J. Sustain. Agric. 2017, 1, 19–22. [Google Scholar] [CrossRef]
- Park, S.-C.; Yun, S.-T.; Chae, G.-T.; Yoo, I.-S.; Shin, K.-S.; Heo, C.-H.; Lee, S.-K. Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J. Hydrol. 2005, 313, 182–194. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván, F.J.; Morante-Carballo, F.; Heredia, J.; Elorza, F.J.; Solórzano, J.; Aguilera, H. Hydrochemical and Isotopic Characterization of the Waters of the Manglaralto River Basin (Ecuador) to Contribute to the Management of the Coastal Aquifer. Water 2021, 13, 537. [Google Scholar] [CrossRef]
- Damanik-Ambarita, M.N.; Boets, P.; Thi, H.T.N.; Forio, M.A.E.; Everaert, G.; Lock, K.; Musonge, P.L.S.; Suhareva, N.; Bennetsen, E.; Gobeyn, S.; et al. Impact assessment of local land use on ecological water quality of the Guayas river basin (Ecuador). Ecol. Inform. 2018, 548, 226–237. [Google Scholar] [CrossRef]
- Guzzi, L.; Martinotti, W.; Cardellicchio, N.; CESI; CNR. Il Mercurio in Ecosistemi Acquatici. In La Chimica e L’industria; Società Chimica Italiana: Roma, Italy, 2005. [Google Scholar]
- WHO. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx (accessed on 23 June 2022).
- Pavla, S.; Danka, H.; Premysl, M.; Denisa, M.; Kristyna, M.; Zdenka, S. Do the total mercury concentrations detected in fish from Czech ponds represent a risk for consumers? Nature 2022, 12, 553. [Google Scholar] [CrossRef]
- Ilbay-Yupa, M.; Lavado-Casimiro, W.; Rau, P.; Zubieta, R.; Castillón, F. Updating Regionalization of Precipitation in Ecuador. Theor. Appl. Climatol. 2021, 143, 1513–1528. [Google Scholar] [CrossRef]
- Mensh, M. Direct Mercury Analysis of Soil, Sediments and Waste Waters Using Method 7473. Soil Sediment Contam. 2004, 13, 150. [Google Scholar]
- United States Department of Energy. RAIS: Risk Assessment Information System; United States Department of Energy: Washington, DC, USA, 2018. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2023. Available online: https://www.R-project.org/ (accessed on 16 March 2022).
- Spence, L.R.; Walden, T. RISC User’s Manual Version 4. 0 463. 2001. Available online: https://www.researchgate.net/publication/353493146_HEAVY_METALS_IN_RIVERS_AFFECTED_BY_MINING_ACTIVITIES_IN_ECUADOR_POLLUTION_AND_HUMAN_HEALTH_IMPLICATIONS (accessed on 16 March 2022).
- USEPA (United States Environmental Protection Agency). Assessment Guidance for Superfund (RAGS) Volume III (Part A). Process for Conducting Probabilistic Risk Assessment; USEPA: Washington, DC, USA, 2011. [Google Scholar]
- Israeli, M.; Nelson, C.B. Distribution and Expected Time of Residence for U.S. Households. Risk Anal. 1992, 12, 65–72. [Google Scholar] [CrossRef] [PubMed]
- AIHC (American Industrial Health Council). Exposure Factors Sourcebook, Regulatory Toxicology and Pharmacology; AIHC: Orlando, FL, USA, 1994. [Google Scholar]
- Anderson, E.; Browne, N.; Duletsky, S.; Raming, J.; Warn, T. Development of Statistical Distribution or Ranges of Standard Factors used in Exposure Assessments; NTIS: Alexandria, VA, USA, 1985. [Google Scholar]
- González-Merizalde, M.V.; Menezes-Filho, J.A.; Cruz-Erazo, C.T.; Bermeo-Flores, S.A.; Sánchez-Castillo, M.O.; Hernández-Bonilla, D.; Mora, A. Manganese and Mercury Levels in Water, Sediments, and Children Living near Gold-Mining Areas of the Nangaritza River Basin, Ecuadorian Amazon. Arch. Environ. Contam. Toxicol. 2016, 71, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Coomes, O.T.; Mainville, N.; Mergler, D. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction. Bull. Environ. Contam. Toxicol. 2015, 95, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Dorleku, M.K.; Nukpezah, D.; Carboo, D. Efects of small-scale gold mining on heavy metal levels in groundwater in the Lower Pra Basin of Ghana. Appl. Water Sci. 2018, 8, 126. [Google Scholar] [CrossRef]
- Al-Hobaib, A.S.; Al-Jaseem, Q.K.; Baioumy, H.M.; Ahmed, A.H. Heavy metals concentrations and usability of groundwater at Mahd Adh Dhahab gold mine, Saudi Arabia. Saudi Arabia. Arab. J. Geosci. 2013, 6, 259–270. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Awomeso, J.A. Assessment of trace metal concentration and health risk of artisanal gold mining activities in Ijeshaland, Osun State Nigeria. J. Geochem. Explor. 2017, 177, 1–10. [Google Scholar] [CrossRef]
- Teixeira, R.A.; da Silveira Pereira, W.V.; de Souza, E.S.; Ramos, S.J.; Dias, Y.N.; de Lima, M.W.; de Souza Neto, H.F.; de Oliveira, E.S.; Fernandes, A.R. Artisanal gold mining in the eastern Amazon: Environmental and human health risks of mercury from different mining methods. Chemosphere 2021, 284, 131220. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, Y.-H.; Choi, H.; Moon, K.W. Association between Environmental Mercury Exposure and Allergic Disorders in Korean Children: Korean National Environmental Health Survey (KoNEHS) Cycles 3–4 (2015–2020). Sci. Rep. 2024, 14, 1472. [Google Scholar] [CrossRef]
- Shin, Y.-Y.; Ryu, I.-K.; Park, M.-J.; Kim, S.-H. The Association of Total Blood Mercury Levels and Overweight among Korean Adolescents: Analysis of the Korean National Health and Nutrition Examination Survey (KNHANES) 2010–2013. Korean J. Pediatr. 2018, 61, 121. [Google Scholar] [CrossRef]
- Althomali, R.H.; Abbood, M.A.; Saleh, E.A.M.; Djuraeva, L.; Abdullaeva, B.S.; Habash, R.T.; Alhassan, M.S.; Alawady, A.H.R.; Alsaalamy, A.H.; Najafi, M.L. Exposure to Heavy Metals and Neurocognitive Function in Adults: A Systematic Review. Environ. Sci. Eur. 2024, 36, 18. [Google Scholar] [CrossRef]
- Li, X.; Bi, L.; Han, L. Associations of Five Blood Heavy Metals with Hepatitis B Virus Infection and Immunity in Adults: A Cross-Sectional Study. BMC Public Health 2024, 24, 266. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Na, J.E.; Lee, J.; Park, Y.E.; Lee, J.; Choi, J.H.; Heo, N.Y.; Park, J.; Kim, T.O.; Jang, H.J. Blood Concentrations of Lead, Cadmium, and Mercury Are Associated With Alcohol-Related Liver Disease. J. Korean Med. Sci. 2023, 38, e412. [Google Scholar] [CrossRef] [PubMed]
Parameter | Point Value |
---|---|
EFresidential (day/year) a | 350 |
EFrecreational (day/year) a | 120 |
ETredisential (h/event) b | 0.22 |
ETrecreational (h/event) a | 2.6 |
IRresidential (L/day) a | A = 2.04; C = 1.28 |
IRrecreational (L/day) a | A = 0.053; C = 0.090 |
ED (year) c,d | A = 30; C = 6 |
SA (cm2) c,e,f | A = 23,000; C = 7280 |
Bw (kg) e,f | A = 72; C = 15.6 |
Province | n | Min–Max | p50 | S.D. |
---|---|---|---|---|
Esmeraldas | 12 | 0.25–2.1 | 0.9 | 0.64 |
Santo Domingo | 4 | * | * | * |
Los Rios | 9 | 0.25–1.1 | 0.25 | 0.329 |
Guayas | 4 | * | * | * |
El Oro | 38 | 0.25–9.9 | 2.1 | 2.847 |
Province | Parameter | Residential Scenario | Recreational Scenario | ||
---|---|---|---|---|---|
Adults | Children | Adults | Children | ||
Esmeraldas | HQingestion | 4.53 × 10−2 | 1.31 × 10−1 | 7.61 × 10−3 | 3.16 × 10−3 |
HQdermal contact | 1.60 × 100 | 2.34 × 100 | 6.50 × 100 | 9.50 × 100 | |
HI | 1.65 × 100 | 2.48 × 100 | 6.51 × 100 | 9.50 × 100 | |
Santo Domingo de los Tsáchilas | HQingestion | 4.53 × 10−2 | 1.31 × 10−1 | 7.61 × 10−3 | 3.16 × 10−3 |
HQdermal contact | 1.60 × 100 | 2.34 × 100 | 6.50 × 100 | 9.50 × 100 | |
HI | 1.65 × 100 | 2.48 × 100 | 6.51 × 100 | 9.50 × 100 | |
Los Rios | HQingestion | 4.53 × 10−2 | 1.31 × 10−1 | 7.61 × 10−3 | 3.16 × 10−3 |
HQdermal contact | 1.60 × 100 | 2.34 × 100 | 6.50 × 100 | 9.50 × 100 | |
HI | 1.65 × 100 | 2.48 × 100 | 6.51 × 100 | 9.50 × 100 | |
Guayas | HQingestion | 4.53 × 10−2 | 1.31 × 10−1 | 7.61 × 10−3 | 3.16 × 10−3 |
HQdermal contact | 1.60 × 100 | 2.34 × 100 | 6.50 × 100 | 9.50 × 100 | |
HI | 1.65 × 100 | 2.48 × 100 | 6.51 × 100 | 9.50 × 100 | |
El Oro | HQingestion | 1.72 × 10−1 | 4.98 × 10−1 | 2.89 × 10−2 | 1.20 × 10−2 |
HQdermal contact | 6.10 × 100 | 8.91 × 100 | 2.47 × 101 | 3.61 × 101 | |
HI | 6.27 × 100 | 9.41 × 100 | 2.47 × 101 | 3.61 × 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passarelli, I.; Mora-Silva, D.; Arguello Guadalupe, C.; Carrillo Arteaga, T.; Ureta Valdez, R.; Orna Puente, L.M.; Tobar Ruiz, M.G.; Ati-Cutiupala, G.; Sanchez-Salazar, M.; Straface, S.; et al. Risks to Human Health from the Consumption of Water from Aquifers in Gold Mining Areas in the Coastal Region of Ecuador. Resources 2024, 13, 53. https://doi.org/10.3390/resources13040053
Passarelli I, Mora-Silva D, Arguello Guadalupe C, Carrillo Arteaga T, Ureta Valdez R, Orna Puente LM, Tobar Ruiz MG, Ati-Cutiupala G, Sanchez-Salazar M, Straface S, et al. Risks to Human Health from the Consumption of Water from Aquifers in Gold Mining Areas in the Coastal Region of Ecuador. Resources. 2024; 13(4):53. https://doi.org/10.3390/resources13040053
Chicago/Turabian StylePassarelli, Irene, Demmy Mora-Silva, Carla Arguello Guadalupe, Thalía Carrillo Arteaga, Rogelio Ureta Valdez, Luz María Orna Puente, María Gabriela Tobar Ruiz, Guicela Ati-Cutiupala, Marcelo Sanchez-Salazar, Salvatore Straface, and et al. 2024. "Risks to Human Health from the Consumption of Water from Aquifers in Gold Mining Areas in the Coastal Region of Ecuador" Resources 13, no. 4: 53. https://doi.org/10.3390/resources13040053
APA StylePassarelli, I., Mora-Silva, D., Arguello Guadalupe, C., Carrillo Arteaga, T., Ureta Valdez, R., Orna Puente, L. M., Tobar Ruiz, M. G., Ati-Cutiupala, G., Sanchez-Salazar, M., Straface, S., & Mestanza-Ramón, C. (2024). Risks to Human Health from the Consumption of Water from Aquifers in Gold Mining Areas in the Coastal Region of Ecuador. Resources, 13(4), 53. https://doi.org/10.3390/resources13040053