Assessment of Hydropower Potential in the Upper Indus Basin: A Geographic Information System-Based Multi-Criteria Decision Analysis for Sustainable Water Resources in Pakistan
Abstract
:1. Introduction
- ○
- Introduce a framework for prioritizing sites while identifying and evaluating potential hydropower sites along the Indus, Gilgit, and Hunza Rivers, considering both technical factors (e.g., head, discharge) and environmental criteria.
- ○
- Provide actionable insights for policymakers by identifying the most promising sites and demonstrating how environmental constraints can be integrated into the decision-making process.
- ○
- Offer a replicable methodology that can be applied to other regions with similar hydropower potential, thereby contributing to global efforts in sustainable energy development.
2. Material and Methods
2.1. Study Area
2.2. Data Collection and Framework for DEM
2.3. Adopted Procedure for Analysis
2.4. Head Determination at Proposed Sites
2.5. Discharge Determination at Ungauged Sites
2.6. Estimation of Hydropower Potential
2.7. Multi-Criteria Decision-Making (MCDM)
2.7.1. Step 1: Criterion Selection
2.7.2. Step 2: Making a Decision Matrix
2.7.3. Step 3: Normalization of the Decision Matrix Using Constraint Criteria and Location Criteria
2.7.4. Step 4: Conveying the Weights to Each Criterion
2.7.5. Step 5: Ultimate Standing of Sites Considering the Weighted Result
3. Results
3.1. Head Determination
3.2. Discharge Determination
3.2.1. Watershed Delineation
3.2.2. Flow Duration Curves (FDC)
3.3. Hydropower Potential
3.4. MCDM
4. Discussion
5. Conclusions
6. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddiqui, S. Surge in Capacity Drives up Electricity Production Cost, NEPRA Report Reveals. 2024. Available online: https://www.brecorder.com/news/40348104/ecc-endorses-purchase-of-582mn-capital-shares-in-bricss-new-development-bank (accessed on 1 January 2025).
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Punys, P.; Vyčienė, G.; Jurevičius, L.; Kvaraciejus, A. Small Hydropower Assessment of Uganda Based on Multisource Geospatial Data. Water 2023, 15, 2051. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Butt, F.K.; Khan, A.A.; Afzal, M. Navigating Sustainability: A Comprehensive Analysis of EIA Process and Mitigation Measures at the Karora Hydropower Project, Shangla, Pakistan. J. Mt. Area Res. 2024, 9, 31. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Waseem, M.; Haq, F.U.; Ding, Y.; Mukhtar, M.A.; Afzal, M.; Muhammad, A. Ascertainment of Hydropower Potential Sites Using Location Search Algorithm in Hunza River Basin, Pakistan. Water 2023, 15, 2929. [Google Scholar] [CrossRef]
- Mirjat, N.H.; Uqaili, M.A.; Harijan, K.; Das Valasai, G.; Shaikh, F.; Waris, M. A Review of Energy and Power Planning and Policies of Pakistan. Renew. Sustain. Energy Rev. 2017, 79, 110–127. [Google Scholar] [CrossRef]
- Siddiqi, A.; Wescoat, J.L.; Humair, S.; Afridi, K. An empirical analysis of the hydropower portfolio in Pakistan. Energy Policy 2012, 50, 228–241. [Google Scholar] [CrossRef]
- Hashmi, A.; Bhatti, A.I.; Ahmed, S.; Tariq, M.A.U.R.; Savitsky, A. Revisiting the Indus Basin Model for an Energy Sustainable Pakistan. Water 2022, 14, 702. [Google Scholar] [CrossRef]
- Bartle, A. Hydropower potential and development activities. Energy Policy 2002, 30, 1231–1239. [Google Scholar] [CrossRef]
- Paish, O. Small hydro power: Technology and current status. Renew. Sustain. Energy Rev. 2002, 6, 537–556. [Google Scholar] [CrossRef]
- Flamos, A.; Georgallis, P.G.; Doukas, H.; Karakosta, C. Hydro energy: Techno-economic and social aspects within new climate regim. Int. J. Renew. Energy Technol. 2011, 2, 35–52. [Google Scholar] [CrossRef]
- World Energy Council. World Energy Resources Hydropower; World Energy Council: London, UK, 2016. [Google Scholar]
- Lu, B.; Blakers, A.; Stocks, M.; Do, T.N. Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage. Energy 2021, 236, 121387. [Google Scholar] [CrossRef]
- UNCC. How Hydropower Can Help Climate Action. 2018. Available online: https://unfccc.int/news/how-hydropower-can-help-climate-action (accessed on 1 January 2025).
- UNRIC. Regional Information Centre for Western Europe. 2023. Available online: https://unric.org/en/sdg-7/ (accessed on 1 January 2025).
- Government of Pakistan. Pakistan’s Implementation of the 2030 Agenda for Sustainable Development Goals—Voluntary National Review; SDG Section, Ministry of Planning, Development and Reforms: Islamabad, Pakistan, 2019.
- Dudhani, S.; Sinha, A.K.; Inamdar, S.S. Assessment of small hydropower potential using remote sensing data for sustainable development in India. Energy Policy 2006, 34, 3195–3205. [Google Scholar] [CrossRef]
- Rojanamon, P.; Chaisomphob, T.; Bureekul, T. Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact. Renew. Sustain. Energy Rev. 2009, 13, 2336–2348. [Google Scholar] [CrossRef]
- Ullah, S.; Iqbal, M.; Waseem, M.; Abbas, A.; Masood, M.; Nabi, G.; Tariq, M.A.U.R.; Sadam, M. Potential sites for rainwater harvesting focusing on the sustainable development goals using remote sensing and geographical information system. Sustainability 2024, 16, 9266. [Google Scholar] [CrossRef]
- Kusre, B.C.; Baruah, D.C.; Bordoloi, P.K.; Patra, S.C. Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India). Appl. Energy 2010, 87, 298–309. [Google Scholar] [CrossRef]
- Larentis, D.G.; Collischonn, W.; Olivera, F.; Tucci, C.E.M. Gis-based procedures for hydropower potential spotting. Energy 2010, 35, 4237–4243. [Google Scholar] [CrossRef]
- Yi, C.-S.; Lee, J.-H.; Shim, M.-P. Site location analysis for small hydropower using geo-spatial information system. Renew. Energy 2010, 35, 852–861. [Google Scholar] [CrossRef]
- Palomino Cuya, D.G.; Brandimarte, L.; Popescu, I.; Alterach, J.; Peviani, M. A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes. Renew. Energy 2013, 50, 103–114. [Google Scholar] [CrossRef]
- Akbar, H.; Gheewala, S.H. Impact of Climate and Land Use Changes on flowrate in the Kunhar River Basin, Pakistan, for the Period (1992–2014). Arab. J. Geosci. 2021, 14, 707. [Google Scholar] [CrossRef]
- Alashan, S.; Şen, Z.; Toprak, Z.F. Hydroelectric Energy Potential of Turkey: A Refined Calculation Method. Arab. J. Sci. Eng. 2016, 41, 1511–1520. [Google Scholar] [CrossRef]
- Zaidi, A.Z.; Khan, M. Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models. Renew. Sustain. Energy Rev. 2018, 89, 106–116. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Ding, Y.; Banerjee, A.; Mukhtar, M.A.; Taj, K. Evaluation of environmental impact assessment and mitigation strategies for Gulpur hydropower project, Kotli, Pakistan. Discov. Appl. Sci. 2024, 6, 137. [Google Scholar] [CrossRef]
- Bayazıt, Y.; Bakış, R.; Koç, C. An investigation of small scale hydropower plants using the geographic information system. Renew. Sustain. Energy Rev. 2017, 67, 289–294. [Google Scholar] [CrossRef]
- Belmonte, S.; Núñez, V.; Viramonte, J.G.; Franco, J. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning. Renew. Sustain. Energy Rev. 2009, 13, 1475–1484. [Google Scholar] [CrossRef]
- Fasipe, O.A.; Izinyon, O.C.; Ehiorobo, J.O. Hydropower potential assessment using spatial technology and hydrological modelling in Nigeria river basin. Renew. Energy 2021, 178, 960–976. [Google Scholar] [CrossRef]
- Punys, P.; Dumbrauskas, A.; Kvaraciejus, A.; Vyciene, G. Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications. Energies 2011, 4, 1258–1277. [Google Scholar] [CrossRef]
- Kouadio, C.A.; Kouassi, K.L.; Diedhiou, A.; Obahoundje, S.; Amoussou, E.; Kamagate, B.; Paturel, J.-E.; Coulibaly, T.J.H.; Coulibaly, H.S.J.P.; Didi, R.S.; et al. Assessing the Hydropower Potential Using Hydrological Models and Geospatial Tools in the White Bandama Watershed (Côte d’Ivoire, West Africa). Front. Water 2022, 4, 844934. [Google Scholar] [CrossRef]
- Uy, H.C.; Quebada, A.E.E.; Amante, M.L.P. Hydropower Generation Potential of Samar River System Based on GIS and SWAT Model. GMSARN Int. J. 2023, 17, 33–39. [Google Scholar]
- Akande, B.S.O.; Sanusi, Y.A.; Sanni, L.M.; Santali, B.N. GIS-Based Approach to Small Hydropower Potential Assessment along River Ogun, Nigeria. J. Incl. Cities Built Environ. 2023, 3, 65–74. [Google Scholar]
- Ayele, M.K. GIS based assessment of hydropower potential (A case study on Gumara River Basin, Ethiopia). Am. Sci. Res. J. Eng. Technol. Sci. 2020, 69, 26–44. [Google Scholar]
- Tecle, A.; Fogel, M.; Duckstein, L. Multicriterion Selection of Wastewater Management Alternatives. J. Water Resour. Plan. Manag. 1988, 114, 383–398. [Google Scholar] [CrossRef]
- Weng, S.Q.; Huang, G.H.; Li, Y.P. An integrated scenario-based multi-criteria decision support system for water resources management and planning—A case study in the Haihe River Basin. Expert Syst. Appl. 2010, 37, 8242–8254. [Google Scholar] [CrossRef]
- Areri, D.C.; Bibi, T.S. Identification of small-scale hydropower potential sites using geographic information system and hydrologic modeling technique: Awata river, Genale Dawa basin, Ethiopia. Energy Rep. 2023, 9, 2405–2419. [Google Scholar] [CrossRef]
- Atieh, M.; Gharabaghi, B.; Rudra, R. Entropy-based neural networks model for flow duration curves at ungauged sites. J. Hydrol. 2015, 529, 1007–1020. [Google Scholar] [CrossRef]
- Gazendam, E.; Gharabaghi, B.; McBean, E.; Whiteley, H.; Kostaschuk, R. Ranking of Waterways Susceptible to Adverse Stormwater Effects. Can. Water Resour. J. 2009, 34, 205–228. [Google Scholar] [CrossRef]
- Pathak, S.; Sharma, S.; Banerjee, A.; Kumar, S. A methodology to assess and evaluate sites with high potential for stormwater harvesting in Dehradun, India. Big Data Res. 2024, 35, 100415. [Google Scholar] [CrossRef]
- Kodikara, P.N.; Perera, B.J.C.; Kularathna, M.D.U.P. Stakeholder preference elicitation and modelling in multi-criteria decision analysis—A case study on urban water supply. Eur. J. Oper. Res. 2010, 206, 209–220. [Google Scholar] [CrossRef]
- Noori, A.; Bonakdari, H.; Morovati, K.; Gharabaghi, B. The optimal dam site selection using a group decision-making method through fuzzy TOPSIS model. Environ. Syst. Decis. 2018, 38, 471–488. [Google Scholar] [CrossRef]
- Elmahmoudi, F.; Abra, O.E.; Serrar, O.; Raihani, A.; Bahatti, L.; Rafik, M. GIS based multi-criteria decision analysis for renewable energy sites selection: Comparative study. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Ferguson, J.W.; Healey, M.; Dugan, P.; Barlow, C. Potential effects of dams on migratory fish in the Mekong River: Lessons from salmon in the fraser and Columbia Rivers. Environ. Manag. 2011, 47, 141–159. [Google Scholar] [CrossRef]
- Schmitt, R.J.P.; Rosa, L. Dams for hydropower and irrigation: Trends, challenges, and alternatives. Renew. Sustain. Energy Rev. 2024, 199, 114439. [Google Scholar] [CrossRef]
- Wang, M.; Shangguan, D.; Li, D.; Li, Y.; Wang, R.; He, R.; Butt, A.Q. Glacial hazards change in Xinjiang over the past seven decades: Spatiotemporal patterns and trends. Quat. Sci. Rev. 2025, 351, 109183. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Xu, J.; Zeng, G.; Sang, L.; Liu, Q.; Yin, Z.; Dai, J.; Yin, D.; Liang, J.; et al. Effects of dam construction on biodiversity: A review. J. Clean. Prod. 2019, 221, 480–489. [Google Scholar] [CrossRef]
- Sustainable Development Goals. 2024. Available online: https://www.un.org/sustainabledevelopment/energy/ (accessed on 1 January 2025).
- Malik, M.A.; Ashraf, M.; Bahzad, A.; Aslam, A.M. Soil Physical and Hydraulic Properties of the Upper Indus Plain of Pakistan; Pakistan Council of Research in Water Resources: Islamabad, Pakistan, 2019; ISBN 9789698469696.
- Shangguan, D.; Li, D.; Ding, Y.; Liu, J.; Anjum, M.N.; Li, Y.; Guo, W. Determining the events in a glacial disaster chain at Badswat Glacier in the Karakoram Range using remote sensing. Remote Sens. 2021, 13, 1165. [Google Scholar] [CrossRef]
- Korup, O.; Montgomery, D.R.; Hewitt, K. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Earth Atmos. Planet. Sci. 2010, 107, 5317–5322. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.F.; Rogers, J.D. First-Approximation Landslide Inventory Maps for Northern Pakistan, Using ASTER DEM Data and Geomorphic Indicators. J. Environ. Eng. Geosci. 2014, 20, 67–83. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Banerjee, A.; Farooq, R.; Wang, R.; Afzal, M.; Li, D.; Wang, M.; Wu, J.; Han, T.; et al. Assessing societal perceptions and adaptive responses to GLOF and related hazards in the Upper Indus Basin, Pakistan. Discov. Appl. Sci. 2025, 7, 152. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Ding, Y.; Banerjee, A.; Sajjad, W.; Mukhtar, M.A. Assessing the existing guidelines of environmental impact assessment and mitigation measures for future hydropower projects in Pakistan. Front. Environ. Sci. 2024, 11, 1342953. [Google Scholar] [CrossRef]
- Ajmal, M.; Kim, T.-W.; Ahn, J.-H. Stability assessment of the curve number methodology used to estimate excess rainfall in forest-dominated watersheds. Arab. J. Geosci. 2016, 9, 402. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—The two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D.; Dercas, N.; Londra, P.A. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrol. Earth Syst. Sci. 2009, 13, 605–615. [Google Scholar] [CrossRef]
- Gianfagna, C.C.; Johnson, C.E.; Chandler, D.G.; Hofmann, C. Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York. J. Hydrol. Reg. Stud. 2015, 4, 583–594. [Google Scholar] [CrossRef]
- Ergen, K.; Kentel, E. An integrated map correlation method and multiple-source sites drainage-area ratio method for estimating streamflows at ungauged catchments: A case study of the Western Black Sea Region, Turkey. J. Environ. Manag. 2016, 166, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Farmer, W.H.; Vogel, R.M. Performance-weighted methods for estimating monthly streamflow at ungauged sites. J. Hydrol. 2013, 477, 240–250. [Google Scholar] [CrossRef]
- Shu, C.; Ouarda, T.B.M.J. Improved methods for daily streamflow estimates at ungauged sites. Water Resour. Res. 2012, 48, W02523. [Google Scholar] [CrossRef]
- Jasso, A.T. Evaluation of Small Hydro Power Potential in Three River Basins of Mexico; Mexican Institute of Water Technology (IMTA): Jiutepec, Mexico, 2009; pp. 1–14. [Google Scholar]
- Khan, M.; Zaidi, A.Z. Run-of-River Hydropower Potential of Kunhar River, Pakistan. Pak. J. Meteorol. 2015, 12, 25–32. [Google Scholar]
- Cai, X.; Ye, F.; Gholinia, F. Application of artificial neural network and Soil and Water Assessment Tools in evaluating power generation of small hydropower stations. Energy Rep. 2020, 6, 2106–2118. [Google Scholar] [CrossRef]
- Wali, U.G. Estimating Hydropower Potential of an Ungauged Stream. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 592–600. [Google Scholar]
- Roszkowska, E. Rank Ordering Criteria Weighting Methods—A Comparative Overview. Optimum. Stud. Ekon. 2013, 5, 14–33. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- AgriMet. Index of Agreement. AgriMetSoft (2019). Online Calculators. 2019. Available online: https://agrimetsoft.com/calculators/Index%20of%20Agreement (accessed on 1 January 2025).
- Meenu, R.; Rehana, S.; Mujumdar, P.P. Assessment of hydrologic impacts of climate change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrol. Process. 2013, 27, 1572–1589. [Google Scholar] [CrossRef]
- Xiao, B.; Zeng, Y.; Zou, Y.; Hu, W. Hydropower Unit State Evaluation Model Based on AHP and Gaussian Threshold Improved Fuzzy Comprehensive Evaluation. Energies 2023, 16, 5592. [Google Scholar] [CrossRef]
- Hämmerling, M.; Kocięcka, J.; Zaborowski, S. AHP as a useful tool in the assessment of the technical condition of hydrotechnical constructions. Sustainability 2021, 13, 1304. [Google Scholar] [CrossRef]
- Ali, F.; Srisuwan, C.; Techato, K.; Bennui, A. Assessment of small hydropower in Songkhla Lake Basin, Thailand using GIS-MCDM. Sustain. Water Resour. Manag. 2023, 9, 40899. [Google Scholar] [CrossRef]
- Vassoney, E.; Mammoliti Mochet, A.; Desiderio, E.; Negro, G.; Pilloni, M.G.; Comoglio, C. Comparing Multi-Criteria Decision-Making Methods for the Assessment of Flow Release Scenarios from Small Hydropower Plants in the Alpine Area. Front. Environ. Sci. 2021, 9, 635100. [Google Scholar] [CrossRef]
Major Criteria | Sub-Criteria | Criterion Type (Benefit or Cost) |
---|---|---|
Location Criteria (Power) | Head | Benefit |
Discharge | Benefit | |
Constraint Criteria (Environmental) | Site Access | Benefit |
Agricultural Areas | Cost | |
Residential Areas | Cost | |
Interaction with existing HPPs | Cost |
Cost Criteria | Assigned Value | Benefit Criteria |
---|---|---|
0 | ||
Very high | 1 | Very low |
High | 3 | Low |
Normal | 5 | Normal |
Low | 7 | High |
Very low | 9 | Very high |
10 |
UIB Sites | Latitude | Longitude | River | Elevation at Headrace (ft) | Elevation at Tailrace (ft) | Head (ft) | Head (m) |
---|---|---|---|---|---|---|---|
1 | 35.09024581 | 76.03007488 | Indus River | 7734 | 7713 | 21 | 6.402 |
2 | 35.32856256 | 75.84508775 | Indus River | 7465 | 7372 | 93 | 28.353 |
3 | 35.46771954 | 75.37402412 | Indus River | 6925 | 6842 | 83 | 25.305 |
4 | 35.58937774 | 75.31262481 | Indus River | 6661 | 6445 | 216 | 65.853 |
5 | 35.71520232 | 74.77516221 | Indus River | 5209 | 4880 | 329 | 100.304 |
6 | 35.83186087 | 74.7384981 | Indus River | 4687 | 4520 | 167 | 50.915 |
7 | 36.56014352 | 74.79766065 | Hunza river | 8831 | 8563 | 268 | 81.707 |
8 | 36.30682781 | 74.80682667 | Hunza river | 8321 | 7685 | 636 | 193.902 |
9 | 36.25099837 | 74.36602402 | Hunza river | 5887 | 5817 | 70 | 21.341 |
10 | 36.26599732 | 73.65190705 | Gilgit river | 6560 | 6406 | 154 | 46.951 |
11 | 36.17492298 | 73.18099361 | Gilgit river | 7957 | 7892 | 65 | 19.817 |
12 | 35.99434956 | 74.20603515 | Gilgit river | 5203 | 5128 | 75 | 22.866 |
13 | 35.42022285 | 74.29436234 | Indus River | 3478 | 3404 | 74 | 22.560 |
14 | 35.42795033 | 73.20348386 | Indus River | 2781 | 2704 | 77 | 23.476 |
15 | 35.10399255 | 73.00655144 | Indus River | 2214 | 2155 | 59 | 17.987 |
16 | 35.0027519 | 72.91029199 | Indus River | 2079 | 1960 | 119 | 36.280 |
17 | 34.82609753 | 73.00278555 | Indus River | 1818 | 1722 | 96 | 29.268 |
UIB Sites | Discharge Q50 (m3/s) | Head (m) | Density (kg/m3) | Turbine Efficiency | Gravitational Acceleration (ms−2) | Power (KW) | Power (MW) |
---|---|---|---|---|---|---|---|
1 | 19.153 | 6.402439 | 1000 | 0.81 | 9.81 | 974.3978 | 0.974398 |
2 | 110.406 | 28.35366 | 1000 | 0.81 | 9.81 | 24,874.58 | 24.87458 |
3 | 220.472 | 25.30488 | 1000 | 0.81 | 9.81 | 44,331.43 | 44.33143 |
4 | 227.435 | 65.85366 | 1000 | 0.81 | 9.81 | 119,012.1 | 119.0121 |
5 | 246.942 | 100.3049 | 1000 | 0.81 | 9.81 | 196,820.8 | 196.8208 |
6 | 249.312 | 50.91463 | 1000 | 0.81 | 9.81 | 100,864.8 | 100.8648 |
7 | 34.169 | 81.70732 | 1000 | 0.81 | 9.81 | 22,184.38 | 22.18438 |
8 | 61.794 | 193.9024 | 1000 | 0.81 | 9.81 | 95,210.23 | 95.21023 |
9 | 81.405 | 21.34146 | 1000 | 0.81 | 9.81 | 13,804.77 | 13.80477 |
10 | 57.953 | 46.95122 | 1000 | 0.81 | 9.81 | 21,621.05 | 21.62105 |
11 | 24.792 | 19.81707 | 1000 | 0.81 | 9.81 | 3903.958 | 3.903958 |
12 | 93.132 | 22.86585 | 1000 | 0.81 | 9.81 | 16,921.56 | 16.92156 |
13 | 682.726 | 22.56098 | 1000 | 0.81 | 9.81 | 122,393.5 | 122.3935 |
14 | 788.72 | 23.47561 | 1000 | 0.81 | 9.81 | 147,127.5 | 147.1275 |
15 | 835.559 | 17.9878 | 1000 | 0.81 | 9.81 | 119,428.9 | 119.4289 |
16 | 845.2 | 36.28049 | 1000 | 0.81 | 9.81 | 243,661.3 | 243.6613 |
17 | 861.643 | 29.26829 | 1000 | 0.81 | 9.81 | 200,391.3 | 200.3913 |
Site No. | Power (MW) | Site Access | Agricultural Area | Residential Area | Interaction with Existing HPPs |
---|---|---|---|---|---|
1 | 0.9744 | 7 | 9 | 9 | 9 |
2 | 24.8746 | 7 | 9 | 7 | 9 |
3 | 44.3314 | 7 | 3 | 3 | 9 |
4 | 119.012 | 7 | 7 | 7 | 9 |
5 | 196.821 | 7 | 9 | 9 | 9 |
6 | 100.865 | 7 | 3 | 3 | 9 |
7 | 22.1844 | 7 | 7 | 7 | 9 |
8 | 95.2102 | 7 | 9 | 9 | 9 |
9 | 13.8048 | 7 | 3 | 3 | 9 |
10 | 21.6211 | 7 | 3 | 3 | 9 |
11 | 3.90396 | 7 | 7 | 7 | 9 |
12 | 16.9216 | 7 | 7 | 7 | 9 |
13 | 122.393 | 7 | 5 | 5 | 9 |
14 | 147.127 | 7 | 7 | 7 | 9 |
15 | 119.429 | 7 | 1 | 1 | 9 |
16 | 243.661 | 7 | 3 | 3 | 9 |
17 | 200.391 | 7 | 1 | 1 | 9 |
Site No. | Power (MW) | Site Access | Agricultural Area | Residential Area | Interaction with Existing HPP |
---|---|---|---|---|---|
1 | 0.0039 | 1 | 0.1111 | 0.1111 | 1 |
2 | 0.1021 | 1 | 0.1111 | 0.1428 | 1 |
3 | 0.1819 | 1 | 0.3333 | 0.3333 | 1 |
4 | 0.4884 | 1 | 0.1428 | 0.1428 | 1 |
5 | 0.8078 | 1 | 0.1111 | 0.1111 | 1 |
6 | 0.4139 | 1 | 0.3333 | 0.3333 | 1 |
7 | 0.0910 | 1 | 0.1428 | 0.1428 | 1 |
8 | 0.3907 | 1 | 0.1111 | 0.1111 | 1 |
9 | 0.0566 | 1 | 0.3333 | 0.3333 | 1 |
10 | 0.0887 | 1 | 0.3333 | 0.3333 | 1 |
11 | 0.0160 | 1 | 0.1428 | 0.1428 | 1 |
12 | 0.0694 | 1 | 0.1428 | 0.1428 | 1 |
13 | 0.5023 | 1 | 0.2 | 0.2 | 1 |
14 | 0.6038 | 1 | 0.1428 | 00.1428 | 1 |
15 | 0.4901 | 1 | 1 | 1 | 1 |
16 | 1 | 1 | 0.3333 | 0.3333 | 1 |
17 | 0.8224 | 1 | 1 | 1 | 1 |
Criterion | Preference | Relative Weight |
---|---|---|
Power | 1 | 0.333 |
Site Access | 2 | 0.267 |
Agricultural areas | 3 | 0.200 |
Residential areas | 4 | 0.133 |
Interaction with existing HPP | 5 | 0.067 |
Site No. | Outcome Accomplished by the Multiplication of Criteria by Their Respective Relative Weights | Summation of Criteria Weightage | ||||
---|---|---|---|---|---|---|
Power | Site Access | Agricultural Area | Residential Area | Interaction with Existing HPP | ||
1 | 0.00133 | 0.2667 | 0.02222 | 0.01481 | 0.0667 | 0.371 |
2 | 0.03399 | 0.2667 | 0.02222 | 0.01904 | 0.0667 | 0.408 |
3 | 0.06058 | 0.2667 | 0.06667 | 0.04443 | 0.0667 | 0.505 |
4 | 0.16264 | 0.2667 | 0.02857 | 0.01904 | 0.0667 | 0.544 |
5 | 0.26898 | 0.2667 | 0.02222 | 0.01481 | 0.0667 | 0.639 |
6 | 0.13784 | 0.2667 | 0.06667 | 0.04443 | 0.0667 | 0.5823 |
7 | 0.03031 | 0.2667 | 0.02857 | 0.01904 | 0.0667 | 0.411 |
8 | 0.13011 | 0.2667 | 0.02222 | 0.01481 | 0.0667 | 0.501 |
9 | 0.01886 | 0.2667 | 0.06667 | 0.04443 | 0.0667 | 0.463 |
10 | 0.02954 | 0.2667 | 0.06667 | 0.04443 | 0.0667 | 0.474 |
11 | 0.00533 | 0.2667 | 0.02857 | 0.01904 | 0.0667 | 0.386 |
12 | 0.02312 | 0.2667 | 0.02857 | 0.01904 | 0.0667 | 0.404 |
13 | 0.16726 | 0.2667 | 0.04 | 0.02666 | 0.0667 | 0.567 |
14 | 0.20107 | 0.2667 | 0.02857 | 0.01904 | 0.0667 | 0.5821 |
15 | 0.16321 | 0.2667 | 0.2 | 0.1333 | 0.0667 | 0.829 |
16 | 0.333 | 0.2667 | 0.06667 | 0.04443 | 0.0667 | 0.777 |
17 | 0.27386 | 0.2667 | 0.2 | 0.1333 | 0.0667 | 0.941 |
Site No. | Longitude | Latitude | Sum of All Criteria Weightage (from Table 8) | Final Rankings |
---|---|---|---|---|
1 | 35.09024581 | 76.03007488 | 0.371 | 17 |
2 | 35.32856256 | 75.84508775 | 0.408 | 14 |
3 | 35.46771954 | 75.37402412 | 0.505 | 9 |
4 | 35.58937774 | 75.31262481 | 0.544 | 8 |
5 | 35.71520232 | 74.77516221 | 0.639 | 4 |
6 | 35.83186087 | 74.7384981 | 0.5823 | 5 |
7 | 36.56014352 | 74.79766065 | 0.411 | 13 |
8 | 36.30682781 | 74.80682667 | 0.501 | 10 |
9 | 36.25099837 | 74.36602402 | 0.463 | 12 |
10 | 36.26599732 | 73.65190705 | 0.474 | 11 |
11 | 36.17492298 | 73.18099361 | 0.386 | 16 |
12 | 35.99434956 | 74.20603515 | 0.404 | 15 |
13 | 35.42022285 | 74.29436234 | 0.567 | 7 |
14 | 35.42795033 | 73.20348386 | 0.5821 | 6 |
15 | 35.10399255 | 73.00655144 | 0.829 | 2 |
16 | 35.0027519 | 72.91029199 | 0.777 | 3 |
17 | 34.82609753 | 73.00278555 | 0.941 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, A.Q.; Shangguan, D.; Waseem, M.; Abbas, A.; Banerjee, A.; Yadav, N. Assessment of Hydropower Potential in the Upper Indus Basin: A Geographic Information System-Based Multi-Criteria Decision Analysis for Sustainable Water Resources in Pakistan. Resources 2025, 14, 49. https://doi.org/10.3390/resources14030049
Butt AQ, Shangguan D, Waseem M, Abbas A, Banerjee A, Yadav N. Assessment of Hydropower Potential in the Upper Indus Basin: A Geographic Information System-Based Multi-Criteria Decision Analysis for Sustainable Water Resources in Pakistan. Resources. 2025; 14(3):49. https://doi.org/10.3390/resources14030049
Chicago/Turabian StyleButt, Asim Qayyum, Donghui Shangguan, Muhammad Waseem, Adnan Abbas, Abhishek Banerjee, and Nilesh Yadav. 2025. "Assessment of Hydropower Potential in the Upper Indus Basin: A Geographic Information System-Based Multi-Criteria Decision Analysis for Sustainable Water Resources in Pakistan" Resources 14, no. 3: 49. https://doi.org/10.3390/resources14030049
APA StyleButt, A. Q., Shangguan, D., Waseem, M., Abbas, A., Banerjee, A., & Yadav, N. (2025). Assessment of Hydropower Potential in the Upper Indus Basin: A Geographic Information System-Based Multi-Criteria Decision Analysis for Sustainable Water Resources in Pakistan. Resources, 14(3), 49. https://doi.org/10.3390/resources14030049