Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- -
- S1: Effluent of the treatment plant.
- -
- S2: Near the first urban area on the river after the treatment plant.
- -
- S3: Mixing point between Zarqa River and another branch coming from Amman.
- -
- S4 to S7: Points defined near major human activities, mainly agricultural activities and poultry farms
2.2. Calculating the CCME WQI
2.3. Calculation of Weighted Arithmetic WQI
3. Results
3.1. Assessment of the Parameters as per the JS 893:2021 Standard
3.2. CCME Water Quality Index
3.3. Weighted Arithmetic Water Quality Index (WAWQI)
3.4. Microbial Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S. No. | Parameter | Unit | Technique/Apparatus Used |
---|---|---|---|
1. | TDS | mg/L | Portable waterproof meter (instruments: Hanna, Hl98194) |
2. | DO | mg/L | Titration method |
3. | COD | mg/L | Closed reflux colorimetric method (5220D) (instrument: spectrophotometer (DR 3900 Hach)) |
4. | BOD | mg/L | OxiTOP respirometric method (5210D) |
5. | E. coli | MPN/100 mL | Enzyme substrate test method (9223B) |
6. | pH | SU | Hanna waterproof pH tester |
7. | Bicarbonate | mg/L | Flame emission photometric method |
8. | Heavy metals | mg/L | ICP-OES method |
9. | Calcium (Ca2+) | mg/L | EDTA titrimetric method |
10. | Magnesium (Mg2+) | mg/L | EDTA titrimetric method |
11. | Sodium (Na+) | mg/L | Flame emission photometric method |
12. | Potassium (K+) | mg/L | Flame emission photometric method |
13. | Chloride (Cl−) | mg/L | Argentometric method |
14. | Phosphate PO43− | mg/L | Stannous chloride method |
15. | Nitrate (NO3−) | mg/L | Spectrophotometer (ultraviolet spectrophotometer screening method) |
S. No. | Parameter | Discharge | Irrigation | ||||
---|---|---|---|---|---|---|---|
Streams, Wadis, and Water Bodies (Drainage) | Groundwater Recharge | Parks, Playgrounds, and Roadsides Inside the Cities (A) | Fruit Trees Roadside Outside the Cities and Green Areas (B) | Industrial Crops, Field Crops, and Forestry (C) | Flowers (D) | ||
1. | BOD5 (mg/L) | 60 | 15 | 30 | 100 | 200 | 15 |
2. | COD (mg/L) | 150 | 50 | 100 | 200 | 300 | 50 |
3. | DO (mg/L) | >1 | >2 | >2 | - | - | >2 |
4. | E. coli (MPN/100 mL) | 1000 | <1.1 | 100 | 10000 | - | <1.1 |
5. | TDS (mg/L) | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
6. | pH | 6–9 | |||||
7. | Cl− (mg/L) | 500 | 500 | 500 | 500 | 500 | |
8. | Na+ (mg/L) | 200 | 230 | 230 | 230 | 230 | |
9. | Ca (mg/L) | 200 | 230 | 230 | 230 | 230 | |
10. | K+ (mg/L) | ||||||
11. | Mg+2 | 60 | 100 | 100 | 100 | 100 | |
12. | NO3 (mg/L) | 20 | - | 16 | 16 | 16 | 16 |
13. | PO4 (mg/L) | 5 | 10 | 10 | 10 | 10 | |
14. | HCO3 (mg/L) | 400 | 400 | 400 | 400 | 400 | |
15. | SO4 (mg/L) | 500 | 500 | 500 | 500 | 500 | |
16. | Fe (mg/L) | 5.0 | |||||
17. | Cu (mg/L) | 0.2 | |||||
18. | Pb (mg/L) | 0.2 | |||||
19. | Mn (mg/L) | 0.2 | |||||
20. | Co (mg/L) |
S. No. | Category | Description |
---|---|---|
1. | Excellent: (CCME WQI value 95–100) | Water quality is protected with a virtual absence of threat or impairment conditions very close to natural or pristine levels. |
2. | Good: (CCME WQI value 80–94) | Water quality is protected with only a minor degree of threat or impairment; conditions rarely depart from natural or desirable levels. |
3. | Fair: (CCME WQI value 65–79) | Water quality is usually protected but occasionally threatened or impaired; conditions sometimes depart from natural or desirable levels. |
4. | Marginal: (CCME WQI value 45–64) | Water quality is frequently threatened or impaired; conditions often depart from natural or desirable levels. |
5. | Poor: (CCME WQI value 0–44) | Water quality is almost always threatened or impaired; conditions usually depart from natural or desirable levels. |
S. No. | Water Quality Category | Calculated Score | Usage Possibilities |
---|---|---|---|
1. | Excellent water quality | 0–25 | Drinking, irrigation, industrial |
2. | Good water quality | 26–50 | Drinking, irrigation, industrial |
3. | Poor water quality | 51–75 | Irrigation, industrial |
4. | Very poor water quality | 76–100 | Irrigation |
5. | Unsuitable for drinking purpose | Above 100 | Proper treatment is required |
References
- Johansson, T. Sustainable Water Management in the Jordanian Phosphate Mining Industry. Available online: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9149101&fileOId=9149103 (accessed on 22 June 2024).
- Ministry of Environment, Hashemite Kingdom of Jordan. Water Sector Green Growth National Action Plan 2021–2025. Amman. 2020. Available online: https://www.moenv.gov.jo/ebv4.0/root_storage/ar/eb_list_page/20022_jordan_water_v02_rc_web.pdf (accessed on 15 June 2024).
- International Trade Administration. Environment and Water Sector. 2024. Available online: https://www.trade.gov/country-commercial-guides/jordan-environment-and-water-sector (accessed on 27 June 2024).
- Ministry of Water and Irrigation. National Water Strategy 2023–2040 Summary. 2023. Available online: https://www.mwi.gov.jo/EBV4.0/Root_Storage/AR/EB_Ticker/National_Water_Strategy_2023-2040_Summary-English_-ver2.pdf (accessed on 1 March 2024).
- Tarawneh, A.; Assad, S.; Alkhalil, S.; Suleiman, A. Assessing acceptance of treated wastewater reuse in Jordan: A study of knowledge and preferences. Desalin. Water Treat. 2024, 317, 100030. [Google Scholar] [CrossRef]
- Ministry of Water and Irrigation. National Water Strategy 2023–2040. 2023. Available online: https://www.mwi.gov.jo/EBV4.0/Root_Storage/AR/EB_List_Page/national_water_strategy_2023-2040.pdf (accessed on 1 January 2024).
- Al-Addous, M.; Bdour, M.; Alnaief, M.; Rabaiah, S.; Schweimanns, N. Water resources in Jordan: A review of current challenges and future opportunities. Water 2023, 15, 3729. [Google Scholar] [CrossRef]
- Qteishat, O.; Radideh, J.; Alzboon, K.; Abu-Hamatteh, Z.; Tariq, A.L.; Numan, A.B.U. Wastewater Treatment and Water Reuse Technologies for Sustainable Water Resources: Jordan as a Case Study. Civ. Environ. Eng. Rep. 2024, 34, 177–192. [Google Scholar] [CrossRef]
- JS 893:2021; Water—Reclaimed Domestic Wastewater. Jordan Standards and Metrology Organization: Amman, Jordan, 2021. Available online: https://eservice.jsmo.gov.jo/ar/Standards/IcsAmfn/1306030?title=Sewage%20water (accessed on 10 December 2024).
- Gharaibeh, M.A.; Albalasmeh, A.A.; Obeidat, M.M. Assessment of Water Quality of Key Dams in Jordan for Irrigation Purposes with Insights on Parameter Thresholds. Water 2024, 16, 1726. [Google Scholar] [CrossRef]
- Gharaibeh, M.A.; Marschner, B.; Heinze, S.; Moos, N. Spatial distribution of metals in soils under agriculture in the Jordan Valley. Geoderma Reg. 2020, 20, e00245. [Google Scholar] [CrossRef]
- Al-Mubaidin, M.; Al-Hamaiedeh, H.; El-Hasan, T. Impact of the Effluent Characteristics of Industrial and Domestic Wastewater Treatment Plants on the Irrigated Soil and Plants. Jordan J. Earth Environ. Sci. 2022, 13, 223–231. [Google Scholar]
- Abualhaija, M.M.; Shammout, M.A.W.; Mohammad, A.H.; Hilal, A.H.A. Heavy Metals in water and sediments of King talal Dam the largest Man-Made water Body in Jordan. Water Energy Int. 2019, 62, 49–62. [Google Scholar]
- Abualhaija, M. Applying the quality and pollution indices for evaluating the wastewater effluent quality of Kufranja wastewater treatment plant, Jordan. Water Conserv. Manag. 2023, 7, 6–11. [Google Scholar] [CrossRef]
- Radaideh, J.A. Evaluation of Zarqa River Water quality on suitability for irrigation using the Canadian Council of Ministers of Environment Water Quality Index (CCME WQI) approach. Evaluation 2022, 16, 354–373. [Google Scholar]
- Jordanian Institute of Standards and Metrology (JISM). Jordanian Standards and Guidelines for Reuse in Irrigation in the Hashemite Kingdom of Jordan; Jordanian Institute of Standards and Metrology: Amman, Jordan, 2006. [Google Scholar]
- Al Hadidi, N.; Al Hadidi, M. Suitability of reclaimed wastewater effluent from decentralized wastewater plant for irrigation. Appl. Water Sci. 2021, 11, 173. [Google Scholar] [CrossRef]
- Almanaseer, N.; Hindiyeh, M.; Al-Assaf, R. Hydrological and environmental impact of wastewater treatment and reuse on Zarqa River Basin in Jordan. Environments 2020, 7, 14. [Google Scholar] [CrossRef]
- Ibrahim, M.N. Effluent quality assessment of selected wastewater treatment plant in Jordan for irrigation purposes: Water quality index approach. J. Ecol. Eng. 2019, 20, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.A.S.; Hussein, H.A.; Namer, N.S. Influence of adding CuO and MoS2 nano-particles to castor oil and moulding oil on tribological properties. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 518, p. 032040. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Abed, S.A. Water quality index for Al-Gharraf river, southern Iraq. Egypt. J. Aquat. Res. 2017, 43, 117–122. [Google Scholar] [CrossRef]
- Fashagba, T.S.; Bessedik, M.; ElSayed, N.B.; Abdelbaki, C.; Kumar, N. Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices. Water 2024, 16, 1291. [Google Scholar] [CrossRef]
- Woodward, K.P.; Rajan, A.; Barber, M.C.; Sullivan, E.; Richkus, J.A.; Everett, K.H.; Whaley, M.G. Application of the Canadian Council of Ministers of the Environment Water Quality Index to assess and communicate monitoring data from coastal waters in Abu Dhabi, United Arab Emirates. Aquat. Ecosyst. Health Manag. 2020, 23, 145–153. [Google Scholar] [CrossRef]
- Mahdi, F.; Razzaq, B.A.; Sultan, M. Assessment of Shatt Al-Arab Water Quality Using CCME/WQI Analysis in Basrah City of South Iraq. Iraqi J. Sci. 2023, 64, 480–491. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- United States Agency for International Development. Usaid Water Engineering Services Task 6.2: Technical Support for South Amman Wwtp. 2022. Available online: https://Pdf.Usaid.Gov/Pdf_Docs/Pa00zn4w.Pdf (accessed on 2 January 2024).
- Ministry of Water and Irrigation Jordan. Assessment of Treated Wastewater Quality Under Different Climate Change Scenarios in Jordan. 2011. Available online: http://www.mdgfund.org/sites/default/files/ENV_STUDY_Jordan_AssessmentoftreatedwastewaterQuality.pdf (accessed on 1 March 2024).
- Al-Quraan, N.A.; Abu-Rub, L.I.; Sallal, A.K. Evaluation of bacterial contamination and mutagenic potential of treated wastewater from Al-Samra wastewater treatment plant in Jordan. J. Water Health 2020, 18, 1124–1138. [Google Scholar] [CrossRef]
- Saadoun, I.; Ababneh, Q.; Jaradat, Z. Genomic detection of waterborne enteric viruses as water quality indicators in Al-Zarqa River, Jordan. J. Water Health 2021, 19, 604–615. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A comprehensive review of water quality indices (WQIs): History, models, attempts and perspectives. Rev. Environ. Sci. Bio/Technol. 2023, 22, 349–395. [Google Scholar] [CrossRef]
- Abualhaija, M.M.; Mohammad, A.H. Assessing water quality of Kufranja Dam (Jordan) for drinking and irrigation: Application of the water quality index. J. Ecol. Eng. 2021, 22, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.N. Assessing groundwater quality for drinking purpose in Jordan: Application of water quality index. J. Ecol. Eng. 2019, 20, 101–111. [Google Scholar] [CrossRef]
- Al-Mahasneh, M.; Al Bsoul, A.; Al-Ananzeh, N.; Al-Khasawane, H.E.; Al-Mahasneh, M.; Tashtoush, R. The Characterization of Groundwater Quality for Safe Drinking Water Wells via Disinfection and Sterilization in Jordan: A Case Study. Hydrology 2023, 10, 135. [Google Scholar] [CrossRef]
- Hyarat, T.; Al Kuisi, M. Comparison between weighted arithmetic and Canadian council of ministers of the environment water quality indices performance in Amman-Zarqa Area, Jordan. Jordan J. Earth Environ. Sci. 2021, 12, 295–305. [Google Scholar]
- Patel, D.D.; Mehta, D.J.; Azamathulla, H.M.; Shaikh, M.M.; Jha, S.; Rathnayake, U. Application of the weighted arithmetic water quality index in assessing groundwater quality: A case study of the South Gujarat region. Water 2023, 15, 3512. [Google Scholar] [CrossRef]
- Chandra, D.S.; Asadi, S.S.; Raju, M.V.S. Estimation of water quality index by weighted arithmetic water quality index method: A model study. Int. J. Civ. Eng. Technol. 2017, 8, 1215–1222. [Google Scholar]
- Noori, M.D. Comparative analysis of weighted arithmetic and CCME Water Quality Index estimation methods, accuracy and representation. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 737, p. 012174. [Google Scholar] [CrossRef]
- Goher, M.E.; Hassan, A.M.; Abdel-Moniem, I.A.; Fahmy, A.H.; El-Sayed, S.M. Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egypt. J. Aquat. Res. 2014, 40, 225–233. [Google Scholar] [CrossRef]
- El Sayed, S.M.; Aly, M.Y.; El-Shamy, A.S.; El-Gaar, D.M.K.; Ghallab, M.H. Water quality indices and risk assessment of consumption of nile tilapia tissues from Ismailia Canal, Egypt. Egypt. J. Aquat. Biol. Fish. 2023, 27, 305–324. [Google Scholar] [CrossRef]
- García-Ávila, F.; Zhindón-Arévalo, C.; Valdiviezo-Gonzales, L.; Cadme-Galabay, M.; Gutiérrez-Ortega, H.; del Pino, L.F. A comparative study of water quality using two quality indices and a risk index in a drinking water distribution network. Environ. Technol. Rev. 2022, 11, 49–61. [Google Scholar] [CrossRef]
- Ojukwu, C.K.; Okeah, G.O.C.; Mmom, P.C. A Comparative Analysis of the Weighted Arithmetic and Canadian Council of Ministers of the Environment Water Quality Indices for Water Sources in Ohaozara, Ebonyi State, Nigeria. Int. J. Eng. Res. Technol. 2021, 10, 498–506. [Google Scholar]
- Sarwar, S.; Ahmmed, I.; Mustari, S.; Shaibur, M.R. Use of weighted arithmetic water quality index (WAWQI) to determine the suitability of groundwater of Chaugachcha and Manirampur Upazila, Jashore, Bangladesh. Biol. Res. 2020, 2, 22–30. [Google Scholar]
- Tokatli, C. Water quality assessment of Yazır Pond (Tekirdağ, Turkey): An application of water quality index. Biyol. Bilim. Araştırma Derg. 2019, 12, 26–29. [Google Scholar]
- Că Călmuc, V.A.; Călmuc, M.; Țopa, M.C.; Timofti, M.; Iticescu, C.; Georgescu, L.P. Various methods for calculating the water quality index. Analele Universității “Dunărea de Jos” din Galați. Fascicula II, Matematică, fizică, mecanică teoretică/Annals of the “Dunarea de Jos” University of Galati. Fascicle II Math. Phys. Theor. Mech. 2018, 41, 171–178. [Google Scholar]
- JS 1766:2014; Irrigation Water Quality Guidelines. 1st ed. Jordan Institution for Standards and Metrology: Amman, Jordan, 2014.
- Ahmed, M.; Mumtaz, R.; Hassan Zaidi, S.M. Analysis of water quality indices and machine learning techniques for rating water pollution: A case study of Rawal Dam, Pakistan. Water Supply 2021, 21, 3225–3250. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment. Ccme Water Quality Index User’s Manual 2017 Update. 2017. Available online: https://ccme.ca/en/res/wqimanualen.pdf (accessed on 1 June 2023).
- Awachat, A.R.; Salkar, V.D. Ground water quality assessment through WQIs. Int. J. Eng. Res. Technol. 2017, 10, 318–322. Available online: https://www.ripublication.com/irph/ijert_spl17/ijertv10n1spl_61.pdf (accessed on 2 March 2023).
- Al-Zahiri, A. Assessment of performance of wastewater treatment plants in Jordan. Int. J. Civ. Environ. Eng. 2015, 1, 1–6. [Google Scholar]
- Maddah, H.A. Predicting optimum dilution factors for BOD sampling and desired dissolved oxygen for controlling organic contamination in various wastewaters. Int. J. Chem. Eng. 2022, 2022, 8637064. [Google Scholar] [CrossRef]
- Shtull-Trauring, E.; Cohen, A.; Ben-Hur, M.; Israeli, M.; Bernstein, N. NPK in treated wastewater irrigation: Regional scale indices to minimize environmental pollution and optimize crop nutritional supply. Sci. Total Environ. 2022, 806, 150387. [Google Scholar] [CrossRef]
- Andrianjakarivony, F.H.; Bettarel, Y.; Desnues, C. Searching for a reliable viral indicator of faecal pollution in aquatic environments. J. Microbiol. 2023, 61, 589–602. [Google Scholar] [CrossRef]
- Alkathiri, A.; Eifan, S.; Hanif, A.; Nour, I.; Al-Anazi, A.E.; Maniah, K.; Alotaibi, R.; Alharbi, Y. Human Adenovirus Detection and Genetic Characterization in Irrigation Water from the Riyadh Region, Saudi Arabia. Water 2023, 15, 3318. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W.L.; Armas, F.; Kauffman, K.; Hanage, W.; Matus, M.; Ghaeli, N.; et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. Msystems 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- JPMC. Jordan Phosphate Mines Company Wastewater Treatment and Reuse in the Industrial Sector. 2018. Available online: https://www.jpmc.com.jo/en/environment (accessed on 1 April 2024).
- Saidan, M.N.; Al-Addous, M.; Al-Weshah, R.A.; Obada, I.; Alkasrawi, M.; Barbana, N. Wastewater reclamation in major Jordanian industries: A viable component of a circular economy. Water 2020, 12, 1276. [Google Scholar] [CrossRef]
- Zueter, A. The status of cryptosporidiosis in Jordan: A review. East. Mediterr. Health J. 2020, 26, 1565–1569. [Google Scholar] [CrossRef]
- Taamneh, Y.; Al Dwairi, R. The efficiency of Jordanian natural zeolite for heavy metals removal. Appl. Water Sci. 2013, 3, 77–84. [Google Scholar] [CrossRef]
- Nassif, M.H.; Tawfik, M.; Abi Saab, M.T. Water Quality Standards and Regulations for Agricultural Water Reuse in MENA: From International Guidelines to Country Practices. IWMI. 2022. Available online: https://www.iwmi.cgiar.org/Publications/Books/PDF/water_reuse_in_the_middle_east_and_north_africa-a_sourcebook-chapter-5.pdf (accessed on 15 June 2024).
- Alkhaza’leh, H.; Abu-Awwad, A.; Alqinna, M. Effect of Irrigation with Treated Wastewater on Potatoes’ Yields, Soil Chemical, Physical and Microbial properties. Jordan J. Earth Environ. Sci. 2023, 14, 135–145. [Google Scholar]
S. No. | Parameter | Values | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Site 7 |
---|---|---|---|---|---|---|---|---|---|
1. | TDS | Mean | 1227 | 1274 | 1293 | 1268 | 1227 | 1336 | 1363 |
Std. deviation | 244 | 56 | 73 | 61 | 65 | 63 | 50 | ||
Minimum | 118 | 1181 | 1188 | 1147 | 1127 | 1207 | 1258 | ||
Maximum | 1353 | 1358 | 1415 | 1351 | 1346 | 1432 | 1451 | ||
2. | DO | Mean | 6.87 | 6.91 | 6.98 | 7.06 | 7.09 | 7.14 | 7.24 |
Std. deviation | 0.147 | 0.171 | 0.121 | 0.114 | 0.103 | 0.142 | 0.146 | ||
Minimum | 6.47 | 6.44 | 6.84 | 6.87 | 6.96 | 6.95 | 6.99 | ||
Maximum | 7.05 | 7.15 | 7.25 | 7.25 | 7.28 | 7.42 | 7.58 | ||
3. | COD | Mean | 103 | 98 | 90 | 84 | 79 | 74 | 66 |
Std. deviation | 16 | 11 | 14 | 18 | 15 | 12 | 12 | ||
Minimum | 75 | 70 | 61 | 41 | 52 | 55 | 42 | ||
Maximum | 136 | 114 | 118 | 112 | 102 | 95 | 89 | ||
4. | BOD | Mean | 31.80 | 29.56 | 27.19 | 23.99 | 22.94 | 22.49 | 19.31 |
Std. deviation | 4.48 | 4.81 | 5.33 | 6.63 | 4.63 | 5.23 | 5.29 | ||
Minimum | 26.21 | 19.5 | 12.15 | 9.47 | 14.21 | 11.3 | 4.5 | ||
Maximum | 44.51 | 39.28 | 33.18 | 36.69 | 32.39 | 33.22 | 32.79 | ||
5. | E. coli | Mean | 3352 | 5000 | 4457 | 4084 | 5434 | 70,904 | 8774 |
Std. deviation | 2698 | 5741 | 4570 | 3381 | 4558 | 174,111 | 11,532 | ||
Minimum | 22 | 17 | 21 | 14 | 11 | 1 | 1.7 | ||
Maximum | 9200 | 27,000 | 18,600 | 12,800 | 18,360 | 630,000 | 51,130 |
S. No. | Parameter | JS 893/2021 | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Site 7 |
---|---|---|---|---|---|---|---|---|---|
1. | pH | 06–09 | 7.78 | 7.79 | 7.88 | 7.82 | 7.95 | 7.97 | 7.65 |
2. | Cl− (mg/L) | 500 | 414.81 | 407.87 | 477.02 | 454.63 | 473.01 | 463.86 | 442.32 |
3. | Na+ (mg/L) | 230 | 245.05 | 243.17 | 295.20 | 278.68 | 287.15 | 280.81 | 282.10 |
4. | Ca (mg/L) | 230 | 107.98 | 102.34 | 134.40 | 119.72 | 156.7 | 135.96 | 143.06 |
5. | K+ (mg/L) | NA | 52.20 | 73.93 | 48.33 | 49.64 | 40.64 | 47.19 | 57.52 |
6. | Mg+2 | 60 (for drainage) and 100 (for A-D crops) | 39.92 | 33.08 | 33.17 | 41.69 | 45.28 | 38.77 | 60.47 |
7. | NO3 (mg/L) | 20 (for drainage) and 16 (for A-D crops) | 30.91 | 50.84 | 27.12 | 21.40 | 24.71 | 24.21 | 44.27 |
8. | PO4 (mg/L) | 5 (for drainage) and 10 (for A-D crops) | 2.21 | 20.98 | 5.09 | 0.96 | 1.53 | 1.68 | 35.58 |
9. | HCO3 (mg/L) | 400 | 388.46 | 341.99 | 445.91 | 481.11 | 553.31 | 498.63 | 521.78 |
10. | SO4 (mg/L) | 500 | 91.03 | 72.36 | 92.17 | 72.83 | 102.79 | 84.89 | 150.10 |
11. | Fe (mg/L) | 5 | 0.0142 | 0.0142 | 0.0171 | 0.02 | 0.015 | 0.0178 | 0.0171 |
12. | Cu (mg/L) | 0.2 | 0.0141 | 0.0181 | 0.0208 | 0.0173 | 0.0210 | 0.0150 | 0.0177 |
13. | Pb (mg/L) | 0.2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
14. | Mn (mg/L) | 0.2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
15. | Co (mg/L) | NA | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Site Number | Category | No. of Failed Variables | No. of Failed Tests | No. of Total Variables | No. of Total Tests |
---|---|---|---|---|---|
Site 1 | Drainage | 1 | 19 | 5 | 168 |
A | 3 | 45 | 5 | 168 | |
B | 1 | 19 | 5 | 168 | |
D | 3 | 72 | 5 | 168 | |
Site 2 | Drainage | 1 | 18 | 5 | 168 |
A | 3 | 45 | 5 | 168 | |
B | 1 | 18 | 5 | 168 | |
D | 3 | 72 | 5 | 168 | |
Site 3 | Drainage | 1 | 21 | 5 | 168 |
A | 3 | 37 | 5 | 168 | |
B | 1 | 21 | 5 | 168 | |
D | 3 | 71 | 5 | 168 | |
Site 4 | Drainage | 1 | 20 | 5 | 168 |
A | 3 | 32 | 5 | 168 | |
B | 1 | 20 | 5 | 168 | |
D | 3 | 69 | 5 | 168 | |
Site 5 | Drainage | 1 | 21 | 5 | 168 |
A | 3 | 29 | 5 | 168 | |
B | 1 | 21 | 5 | 168 | |
D | 3 | 71 | 5 | 168 | |
Site 6 | Drainage | 1 | 19 | 5 | 168 |
A | 2 | 24 | 5 | 168 | |
B | 1 | 18 | 5 | 168 | |
D | 3 | 70 | 5 | 168 | |
Site 7 | Drainage | 1 | 20 | 5 | 168 |
A | 1 | 23 | 5 | 168 | |
B | 1 | 3 | 5 | 168 | |
D | 3 | 65 | 5 | 168 |
Category | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
Site Number | ||||||||
Drainage | 80 Good | 75 Fair | 76 Fair | 78 Fair | 74 Fair | 46 Marginal | 67 Fair | |
Irrigation Crops A | 39 Poor | 37 Poor | 38 Poor | 39 Poor | 38 Poor | 38 Poor | 45 Marginal | |
Irrigation Crops B | 80 Good | 75 Fair | 76 Fair | 78 Fair | 74 Fair | 46 Marginal | 67 Fair | |
Irrigation Crops C | 100 Excellent | 100 Excellent | 100 Excellent | 100 Excellent | 100 Excellent | 100 Excellent | 100 Excellent | |
Irrigation Crops D | 28 Poor | 28 Poor | 29 Poor | 29 Poor | 28 Poor | 29 Poor | 29 Poor |
S. No. | Site/Parameter | TDS | DO | COD | BOD |
---|---|---|---|---|---|
1. | Site 1 | 1271 | 6.87 | 103 | 32 |
2. | Site 2 | 1273.5 | 6.91 | 98 | 29.5 |
3. | Site 3 | 1293 | 6.98 | 90 | 27 |
4. | Site 4 | 1267.6 | 7.06 | 84 | 24 |
5. | Site 5 | 1227 | 7.09 | 79 | 23 |
6. | Site 6 | 1336 | 7.14 | 74 | 23 |
7. | Site 7 | 1363 | 7.24 | 66 | 19 |
S. No. | Site/Irrigation Category | Drainage | A | B | C | D |
---|---|---|---|---|---|---|
1. | Site 1 | 69 | 97 | 146 | 145 | 101 |
2. | Site 2 | 68 | 93 | 142 | 142 | 97 |
3. | Site 3 | 65 | 89 | 138 | 140 | 91 |
4. | Site 4 | 62 | 84 | 131 | 134 | 85 |
5. | Site 5 | 60 | 81 | 125 | 129 | 81 |
6. | Site 6 | 61 | 81 | 129 | 135 | 80 |
7. | Site 7 | 59 | 76 | 124 | 132 | 74 |
S. No. | Microbe | Values | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Site 7 |
---|---|---|---|---|---|---|---|---|---|
1. | Clostridium (CFU/100 mL) | Mean | 17.88 | 28.83 | 30.38 | 62.16 | 55.12 | 58.42 | 76.70 |
Std. deviation | 10.35 | 15.38 | 20.39 | 48.86 | 42.22 | 29.80 | 48.9 | ||
Minimum | 0 | 0.9 | 0 | 0 | 0 | 1 | 0.9 | ||
Maximum | 46 | 60 | 77 | 180 | 141 | 117 | 220 | ||
2. | Intestinal Enterococci (CFU/100 mL) | Mean | 34.08 | 283 | 194 | 148 | 168 | 397 | 177 |
Std. deviation | 19.50 | 178.5 | 138 | 123 | 184 | 433 | 267 | ||
Minimum | 1 | 0.9 | 12 | 0.9 | 0.9 | 20 | 0.9 | ||
Maximum | 67 | 650 | 517 | 433 | 697 | 1405 | 962 | ||
3. | Heterotrophic plate count (CFU/100 mL) | Mean | 3719 | 18,230 | 6503 | 4687 | 5597 | 165,777 | 101,704 |
Std. deviation | 6589 | 16,113 | 4157 | 3383 | 3553 | 172,636 | 95,457 | ||
Minimum | 260 | 200 | 266 | 202 | 47 | 200 | 4461 | ||
Maximum | 33,000 | 65,000 | 18,300 | 11,400 | 11,260 | 540,000 | 364,880 | ||
4. | Clostridium perfrings (CFU/100 mL) | Mean | 45.34 | 87.12 | 138.62 | 883 | 294.5 | 296.25 | 323.83 |
Std. deviation | 65.17 | 80 | 219 | 949 | 344 | 217 | 247 | ||
Minimum | 12 | 0.9 | 19 | 53 | 28 | 27 | 26 | ||
Maximum | 312 | 324 | 1075 | 4320 | 1650 | 840 | 890 |
S. No. | Type of Microbe/Site Number | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Site 7 |
---|---|---|---|---|---|---|---|---|
1. | Norovirus | 4 (16.7%) | 8 (33.3%) | 8 (33.3%) | 6 (25%) | 9 (37.5%) | 4 (16.7%) | 3 (12.5%) |
2. | Adenovirus | 12 (50%) | 9 (37.5%) | 16 (66.7%) | 13 (54.2%) | 10 (41.7%) | 18 (75%) | 14 (58.3%) |
3. | SARS-CoV-2 (COVID-19) | 11 (45.8%) | 7 (29.2%) | 17 (70.8%) | 6 (25%) | 13 (54.2%) | 13 (54.2%) | 10 (41.7%) |
4. | Cryptosporidium | 14 (58.3%) | 11 (45.8%) | 11 (45.8%) | 15 (62.5%) | 13 (54.2%) | 10 (41.7%) | 16 (66.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alassaf, R.; Blaschke, A.P. Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis. Resources 2025, 14, 69. https://doi.org/10.3390/resources14050069
Alassaf R, Blaschke AP. Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis. Resources. 2025; 14(5):69. https://doi.org/10.3390/resources14050069
Chicago/Turabian StyleAlassaf, Raha, and Alfred P. Blaschke. 2025. "Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis" Resources 14, no. 5: 69. https://doi.org/10.3390/resources14050069
APA StyleAlassaf, R., & Blaschke, A. P. (2025). Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis. Resources, 14(5), 69. https://doi.org/10.3390/resources14050069